Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Diabetes Obes Metab ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285685

RESUMEN

AIMS: To explore the associations between cuprotosis-related genes (CRGs) across different stages of liver disease in metabolic dysfunction-associated fatty liver disease (MAFLD), including hepatocellular carcinoma (HCC). MATERIALS AND METHODS: We analysed several bulk RNA sequencing datasets from patients with MAFLD (n = 331) and MAFLD-related HCC (n = 271) and two MAFLD single-cell RNA sequencing datasets. To investigate the associations between CRGs and MAFLD, we performed differential correlation, logistic regression and functional enrichment analyses. We also validated the findings in an independent Wenzhou PERSONS cohort of MAFLD patients (n = 656) used for a genome-wide association study (GWAS). RESULTS: GLS, GCSH and ATP7B genes showed significant differences across the MAFLD spectrum and were significantly associated with liver fibrosis stages. GLS was closely associated with fibrosis stages in patients with MAFLD and those with MAFLD-related HCC. GLS is predominantly expressed in monocytes and T cells in MAFLD. During the progression of metabolic dysfunction-associated fatty liver to metabolic-associated steatohepatitis, GLS expression in T cells decreased. GWAS revealed that multiple single nucleotide polymorphisms in GLS were associated with clinical indicators of MAFLD. CONCLUSIONS: GLS may contribute to liver inflammation and fibrosis in MAFLD mainly through cuprotosis and T-cell activation, promoting the progression of MAFLD to HCC. These findings suggest that cuprotosis may play a role in MAFLD progression, potentially providing new insights into MAFLD pathogenesis.

2.
J Am Stat Assoc ; 119(546): 811-824, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39280354

RESUMEN

Inferring and characterizing gene co-expression networks has led to important insights on the molecular mechanisms of complex diseases. Most co-expression analyses to date have been performed on gene expression data collected from bulk tissues with different cell type compositions across samples. As a result, the co-expression estimates only offer an aggregated view of the underlying gene regulations and can be confounded by heterogeneity in cell type compositions, failing to reveal gene coordination that may be distinct across different cell types. In this paper, we introduce a flexible framework for estimating cell-type-specific gene co-expression networks from bulk sample data, without making specific assumptions on the distributions of gene expression profiles in different cell types. We develop a novel sparse least squares estimator, referred to as CSNet, that is efficient to implement and has good theoretical properties. Using CSNet, we analyzed the bulk gene expression data from a cohort study on Alzheimer's disease and identified previously unknown cell-type-specific co-expressions among Alzheimer's disease risk genes, suggesting cell-type-specific disease mechanisms.

3.
Transl Cancer Res ; 13(8): 4257-4277, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39262476

RESUMEN

Background: Hepatocellular carcinoma (HCC) remains one of the most lethal cancers globally. Patients with advanced HCC tend to have poor prognoses and shortened survival. Recently, data from bulk RNA sequencing have been employed to discover prognostic markers for various cancers. However, they fall short in precisely identifying core molecular and cellular activities within tumor cells. In our present study, we combined bulk-RNA sequencing (bulk RNA-seq) data with single-cell RNA sequencing (scRNA-seq) to develop a prognostic model for HCC. The goal of our research is to uncover new biomarkers and enhance the accuracy of HCC prognosis prediction. Methods: Integrating single-cell sequencing data with transcriptomics were used to identify epithelial-mesenchymal transition (EMT)-related genes (ERGs) implicated in HCC progression and their clinical significance was elucidated. Utilizing marker genes derived from core cells and ERGs, we constructed a prognostic model using univariate Cox analysis, exploring a multitude of algorithmic combinations, and further refining it through multivariate Cox analysis. Additionally, we conducted an in-depth investigation into the disparities in clinicopathological features, immune microenvironment composition, immune checkpoint expression, and chemotherapeutic drug sensitivity profiles between high- and low-risk patient cohorts. Results: We developed a prognostic model predicated on the expression profiles of eight signature genes, namely HSP90AA1, CIRBP, CCR7, S100A9, ADAM17, ENG, PGF, and INPP4B, aiming at predicting overall survival (OS) outcomes. Notably, patients classified with high-risk scores exhibited a propensity towards diminished OS rates, heightened frequencies of stage III-IV disease, increased tumor mutational burden (TMB), augmented immune cell infiltration, and diminished responsiveness to immunotherapeutic interventions. Conclusions: This study presented a novel prognostic model for predicting the survival of HCC patients by integrating scRNA-seq and bulk RNA-seq data. The risk score emerges as a promising independent prognostic factor, showing a correlation with the immune microenvironment and clinicopathological features. It provided new clinical tools for predicting prognosis and aided future research into the pathogenesis of HCC.

4.
Brain Res ; 1846: 149237, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270996

RESUMEN

BACKGROUND: This study aimed to construct and validate a prognostic model based on tumor associated macrophage-related genes (TAMRGs) by integrating single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (bulk RNA-seq) data. METHODS: The scRNA-seq data of three inhouse glioma tissues were used to identify the tumor-associated macrophages (TAMs) marker genes, the DEGs from the The Cancer Genome Atlas (TCGA) - Genotype-Tissue Expression (GTEx) dataset were used to further select TAMs marker genes. Subsequently, a TAMRG-score was constructed by Least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression analysis in the TCGA dataset and validated in the Chinese Glioma Genome Atlas (CGGA) dataset. RESULTS: We identified 186 TAMs marker genes, and a total of 6 optimal prognostic genes including CKS2, LITAF, CTSB, TWISTNB, PPIF and G0S2 were selected to construct a TAMRG-score. The high TAMRG-score was significantly associated with worse prognosis (log-rank test, P<0.001). Moreover, the TAMRG-score outperformed the other three models with AUC of 0.808. Immune cell infiltration, TME scores, immune checkpoints, TMB and drug susceptibility were significantly different between TAMRG-score groups. In addition, a nomogram were constructed by combing the TAMRG-score and clinical information (Age, Grade, IDH mutation and 1p19q codeletion) to predict the survival of glioma patients with AUC of 0.909 for 1-year survival. CONCLUSION: The high TAMRG-score group was associated with a poor prognosis. A nomogram by incorporating TMARG-score could precisely predict glioma survival, and provide evidence for personalized treatment of glioma.

5.
J Inflamm Res ; 17: 5375-5388, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161677

RESUMEN

Background: Dilated cardiomyopathy (DCM) is the second leading cause of heart failure, with intricate pathophysiological underpinnings. In order to shed fresh light on the mechanistic research of DCM, we combined bulk RNA-seq and single-cell RNA-seq (scRNA-seq) data to examine significant cells and genes implicated in the disease. Methods: This analysis employed publicly accessible bulk RNA-seq and scRNA-seq DCM datasets. The scRNA-seq data underwent normalization, principal component, and t-distribution stochastic neighbor embedding analysis. Cell-to-cell communication networks and activity analysis were conducted using CellChat. Utilizing enrichment analysis, the marker genes' role in the active cells was evaluated. After screening by limma software and weighted gene co-expression network analysis, the differentially expressed genes (DEGs) served as hub genes. Furthermore, these hub genes were subjected to immunological studies, transcription factor expression, and gene set enrichment. Lastly, the expression of the four hub genes and their connection to DCM were verified using the rat models. Results: Fibroblasts and monocytes were chosen as hub cells from among the eight identified cell clusters; their marker genes intersected with DEGs to yield six hub genes. In addition, the six hub genes and the essential module genes intersected to yield four essential genes (ASPN, SFRP4, LUM, and FRZB) that were connected to the Wnt signaling pathway and highly expressed in fibroblast. The four hub DEGs had an expression pattern in the DCM rat model experiment results that was in line with the findings of the bioinformatics study. Additionally, there was a strong correlation between decreased cardiac function and the up-regulation of ASPN, SFRP4, LUM, and FRZB. Conclusion: Ultimately, bulk RNA-seq and scRNA-seq data identified fibroblasts and monocytes as the main cell types implicated in DCM. The highly expressed genes ASPN, FRZB, LUM, and SFRP4 in fibroblasts may aid in the mechanistic investigation of DCM.

6.
Sci Rep ; 14(1): 18110, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103477

RESUMEN

Sepsis, a life-threatening syndrome, continues to be a significant public health issue worldwide. Sialylation is a hot potential marker that affects the surface of a variety of cells. However, the role of genes related to sialylation and sepsis has not been fully explored. Bulk RNA-seq data sets (GSE66099 and GSE65682) were obtained from the open-access databases GEO. The classification of sepsis samples into subtypes was achieved by employing the R package "ConsensusClusterPlus" on the bulk RNA-seq data. Hub genes were discerned through the application of the R package "limma" and univariate regression analysis, with the calculation of risk scores carried out using the R package "survminer". To identify the best learning method and construct a prognostic model, we used 21 different combinations of machine learning, and C-index ranking results of these combinations have been showed. ROC curves, time-dependent ROC curves, and Kaplan-Meier curves were utilized to evaluate the diagnostic accuracy of the model. The R packages "ESTIMATE" and "GSVA" were employed to quantify the fractions of immune cell infiltration in each sample. The bulk RNA-seq samples were categorized into two distinct sepsis subtypes utilizing 14 prognosis-related sialylation genes. A total of 20 differentially expressed genes (DEGs) were identified as being associated with the relationship between sepsis and sialylation. The RSF was used to identify key genes with importance scores higher than 0.01. The nine hub genes (SLA2A1, TMCC2, TFRC, RHAG, FKBP1B, KLF1, PILRA, ARL4A, and GYPA) with the importance values greater than 0.01 was selected for constructing the prognostic model. This research offers some understanding of the relationship between sepsis and sialylation. Besides, it contains one predictive model that might develop into diagnostic biomarkers for sepsis.


Asunto(s)
Sepsis , Humanos , Sepsis/genética , Sepsis/diagnóstico , Pronóstico , Biomarcadores , Curva ROC , Aprendizaje Automático , Perfilación de la Expresión Génica/métodos , Ácido N-Acetilneuramínico/metabolismo , Estimación de Kaplan-Meier
7.
Methods Mol Biol ; 2812: 259-274, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39068368

RESUMEN

A generative adversarial network (GAN) is a generative model that consists of two adversarial networks, a discriminator and a generator, usually in the form of neural networks. One of the useful things about applying GANs is that they can synthesize two states to produce an intermediate output that implies a semantic feature. When applied to omics data that determine phenotypes of a disease, GANs can be used to associate these intermediate outputs with the progression of the disease. In this chapter, to realize the above idea, we will introduce the application of GAN methods to bulk RNA-seq data, which cover data preprocessing, training, and latent interpolation between different phenotypes describing disease progression.


Asunto(s)
Progresión de la Enfermedad , Redes Neurales de la Computación , RNA-Seq , Humanos , RNA-Seq/métodos , Biología Computacional/métodos , Algoritmos , Aprendizaje Automático , Análisis de Secuencia de ARN/métodos
8.
J Bioinform Comput Biol ; 22(3): 2450007, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39036848

RESUMEN

For sequencing-based spatial transcriptomics data, the gene-spot count matrix is highly sparse. This feature is similar to scRNA-seq. The goal of this paper is to identify whether there exist genes that are frequently under-detected in Visium compared to bulk RNA-seq, and the underlying potential mechanism of under-detection in Visium. We collected paired Visium and bulk RNA-seq data for 28 human samples and 19 mouse samples, which covered diverse tissue sources. We compared the two data types and observed that there indeed exists a collection of genes frequently under-detected in Visium compared to bulk RNA-seq. We performed a motif search to examine the last 350 bp of the frequently under-detected genes, and we observed that the poly (T) motif was significantly enriched in genes identified from both human and mouse data, which matches with our previous finding about frequently under-detected genes in scRNA-seq. We hypothesized that the poly (T) motif may be able to form a hairpin structure with the poly (A) tails of their mRNA transcripts, making it difficult for their mRNA transcripts to be captured during Visium library preparation.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Ratones , Humanos , Animales , Perfilación de la Expresión Génica/métodos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN/métodos , Análisis de Secuencia de ARN/estadística & datos numéricos , RNA-Seq/métodos , Biología Computacional/métodos , Motivos de Nucleótidos
9.
Front Immunol ; 15: 1414301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39026663

RESUMEN

Purpose: Osteoarthritis (OA) stands as the most prevalent joint disorder. Mitochondrial dysfunction has been linked to the pathogenesis of OA. The main goal of this study is to uncover the pivotal role of mitochondria in the mechanisms driving OA development. Materials and methods: We acquired seven bulk RNA-seq datasets from the Gene Expression Omnibus (GEO) database and examined the expression levels of differentially expressed genes related to mitochondria in OA. We utilized single-sample gene set enrichment analysis (ssGSEA), gene set enrichment analysis (GSEA), and weighted gene co-expression network analysis (WGCNA) analyses to explore the functional mechanisms associated with these genes. Seven machine learning algorithms were utilized to identify hub mitochondria-related genes and develop a predictive model. Further analyses included pathway enrichment, immune infiltration, gene-disease relationships, and mRNA-miRNA network construction based on these hub mitochondria-related genes. genome-wide association studies (GWAS) analysis was performed using the Gene Atlas database. GSEA, gene set variation analysis (GSVA), protein pathway analysis, and WGCNA were employed to investigate relevant pathways in subtypes. The Harmonizome database was employed to analyze the expression of hub mitochondria-related genes across various human tissues. Single-cell data analysis was conducted to examine patterns of gene expression distribution and pseudo-temporal changes. Additionally, The real-time polymerase chain reaction (RT-PCR) was used to validate the expression of these hub mitochondria-related genes. Results: In OA, the mitochondria-related pathway was significantly activated. Nine hub mitochondria-related genes (SIRT4, DNAJC15, NFS1, FKBP8, SLC25A37, CARS2, MTHFD2, ETFDH, and PDK4) were identified. They constructed predictive models with good ability to predict OA. These genes are primarily associated with macrophages. Unsupervised consensus clustering identified two mitochondria-associated isoforms that are primarily associated with metabolism. Single-cell analysis showed that they were all expressed in single cells and varied with cell differentiation. RT-PCR showed that they were all significantly expressed in OA. Conclusion: SIRT4, DNAJC15, NFS1, FKBP8, SLC25A37, CARS2, MTHFD2, ETFDH, and PDK4 are potential mitochondrial target genes for studying OA. The classification of mitochondria-associated isoforms could help to personalize treatment for OA patients.


Asunto(s)
Redes Reguladoras de Genes , Aprendizaje Automático , Mitocondrias , Osteoartritis , Humanos , Osteoartritis/genética , Osteoartritis/patología , Osteoartritis/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Biología Computacional/métodos , Bases de Datos Genéticas , Transcriptoma , Multiómica
10.
Front Immunol ; 15: 1336839, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947313

RESUMEN

Background: In spite of its high mortality rate and poor prognosis, the pathogenesis of sepsis is still incompletely understood. This study established a cuproptosis-based risk model to diagnose and predict the risk of sepsis. In addition, the cuproptosis-related genes were identified for targeted therapy. Methods: Single-cell sequencing analyses were used to characterize the cuproptosis activity score (CuAS) and intercellular communications in sepsis. Differential cuproptosis-related genes (CRGs) were identified in conjunction with single-cell and bulk RNA sequencing. LASSO and Cox regression analyses were employed to develop a risk model. Three external cohorts were conducted to assess the model's accuracy. Differences in immune infiltration, immune cell subtypes, pathway enrichment, and the expression of immunomodulators were further evaluated in distinct groups. Finally, various in-vitro experiments, such as flow cytometry, Western blot, and ELISA, were used to explore the role of LST1 in sepsis. Results: ScRNA-seq analysis demonstrated that CuAS was highly enriched in monocytes and was closely related to the poor prognosis of sepsis patients. Patients with higher CuAS exhibited prominent strength and numbers of cell-cell interactions. A total of five CRGs were identified based on the LASSO and Cox regression analyses, and a CRG-based risk model was established. The lower riskScore cohort exhibited enhanced immune cell infiltration, elevated immune scores, and increased expression of immune modulators, indicating the activation of an antibacterial response. Ultimately, in-vitro experiments demonstrated that LST1, a key gene in the risk model, was enhanced in the macrophage in response to LPS, which was closely related to the decrease of macrophage survival rate, the enhancement of apoptosis and oxidative stress injury, and the imbalance of the M1/M2 phenotype. Conclusions: This study constructed a cuproptosis-related risk model to accurately predict the prognosis of sepsis. We further characterized the cuproptosis-related gene LST1 to provide a theoretical framework for sepsis therapy.


Asunto(s)
Sepsis , Análisis de la Célula Individual , Sepsis/inmunología , Sepsis/genética , Humanos , Masculino , Femenino , Persona de Mediana Edad , Pronóstico , Análisis de Secuencia de ARN , Microambiente Celular/inmunología , Anciano
11.
Biomolecules ; 14(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39062554

RESUMEN

In studying the molecular underpinning of spermatogenesis, we expect to understand the fundamental biological processes better and potentially identify genes that may lead to novel diagnostic and therapeutic strategies toward precision medicine in male infertility. In this review, we emphasized our perspective that the path forward necessitates integrative studies that rely on complementary approaches and types of data. To comprehensively analyze spermatogenesis, this review proposes four axes of integration. First, spanning the analysis of spermatogenesis in the healthy state alongside pathologies. Second, the experimental analysis of model systems (in which we can deploy treatments and perturbations) alongside human data. Third, the phenotype is measured alongside its underlying molecular profiles using known markers augmented with unbiased profiles. Finally, the testicular cells are studied as ecosystems, analyzing the germ cells alongside the states observed in the supporting somatic cells. Recently, the study of spermatogenesis has been advancing using single-cell RNA sequencing, where scientists have uncovered the unique stages of germ cell development in mice, revealing new regulators of spermatogenesis and previously unknown cell subtypes in the testis. An in-depth analysis of meiotic and postmeiotic stages led to the discovery of marker genes for spermatogonia, Sertoli and Leydig cells and further elucidated all the other germline and somatic cells in the testis microenvironment in normal and pathogenic conditions. The outcome of an integrative analysis of spermatogenesis using advanced molecular profiling technologies such as scRNA-seq has already propelled our biological understanding, with additional studies expected to have clinical implications for the study of male fertility. By uncovering new genes and pathways involved in abnormal spermatogenesis, we may gain insights into subfertility or sterility.


Asunto(s)
RNA-Seq , Análisis de la Célula Individual , Espermatogénesis , Espermatogénesis/genética , Humanos , Masculino , Animales , Análisis de la Célula Individual/métodos , Ratones , RNA-Seq/métodos , Células Germinativas/metabolismo , Testículo/metabolismo , Infertilidad Masculina/genética , Análisis de Expresión Génica de una Sola Célula
12.
Transl Cancer Res ; 13(6): 2704-2720, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988915

RESUMEN

Background: Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths, and improving the prognosis of CRC patients is an urgent concern. The aim of this study was to explore new immunotherapy targets to improve survival in CRC patients. Methods: We analyzed CRC-related single-cell data GSE201348 from the Gene Expression Omnibus (GEO) database, and identified differentially expressed genes (DEGs). Subsequently, we performed differential analysis on the rectum adenocarcinoma (READ) and colon adenocarcinoma (COAD) transcriptome sequencing data [The Cancer Genome Atlas (TCGA)-CRC queue] and clinical data downloaded from TCGA database. Subgroup analysis was performed using CIBERSORTx and cluster analysis. Finally, biomarkers were identified by one-way cox regression as well as least absolute shrinkage and selection operator (LASSO) analysis. Results: In this study, we analyzed CRC-related single-cell data GSE201348, and identified 5,210 DEGs. Subsequently, we performed differential analysis on the TCGA-CRC queue database, and obtained 4,408 DEGs. Then, we categorized the cancer samples in the sequencing data into three groups (k1, k2, and k3), with significant differences observed between the k1 and k2 groups via survival analysis. Further differential analysis on the samples in the k1 and k2 groups identified 1,899 DEGs. A total of 77 DEGs were selected among those DEGs obtained from three differential analyses. Through subsequent Cox univariate analysis and LASSO analysis, seven biomarkers (RETNLB, CLCA4, UGT2A3, SULT1B1, CCL24, BMP5, and ATOH1) were identified and selected to establish a risk score (RS). Conclusions: To sum up, this study demonstrates the potential of the seven-gene prognostic risk model as instrumental variables for predicting the prognosis of CRC.

13.
Thorac Cancer ; 15(21): 1626-1637, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38886907

RESUMEN

BACKGROUND: Improving immunotherapy efficacy for EGFR-negative lung adenocarcinoma (LUAD) patients remains a critical challenge, and the therapeutic effect of immunotherapy is largely determined by the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are the top-ranked immune infiltrating cells in the TME, and M2-TAMs exert potent roles in tumor promotion and chemotherapy resistance. An M2-TAM-based prognostic signature was constructed by integrative analysis of single-cell RNA-seq (scRNA-seq) and bulk RNA-seq data to reveal the immune landscape and select drugs in EGFR-negative LUAD. METHODS: M2-TAM-based biomarkers were obtained from the intersection of bulk RNA-seq data and scRNA-seq data. After consensus clustering of EGFR-negative LUAD into different clusters based on M2-TAM-based genes, we compared the prognosis, clinical features, estimate scores, immune infiltration, and checkpoint genes among the clusters. Next, we combined univariate Cox and LASSO regression analyses to establish an M2-TAM-based prognostic signature. RESULTS: CCL20, HLA-DMA, HLA-DRB5, KLF4, and TMSB4X were verified as prognostic M2-like TAM-related genes by univariate Cox and LASSO regression analyses. IPS and TMB analyses revealed that the high-risk group responded better to common immunotherapy. CONCLUSION: The study shows the potential of the M2-like TAM-related gene signature in EGFR-negative LUAD, explores the immune landscape based on M2-like TAM-related genes, and predict immunotherapy response of patients with EGFR-negative LUAD, providing a new insight for individualized treatment.


Asunto(s)
Adenocarcinoma del Pulmón , Receptores ErbB , Neoplasias Pulmonares , Macrófagos Asociados a Tumores , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/inmunología , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Receptores ErbB/genética , Pronóstico , Microambiente Tumoral/inmunología , Masculino , Femenino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Factor 4 Similar a Kruppel , Regulación Neoplásica de la Expresión Génica
14.
Int J Mol Sci ; 25(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38891936

RESUMEN

Circadian rhythms are essential regulators of a multitude of physiological and behavioral processes, such as the metabolism and function of the liver. Circadian rhythms are crucial to liver homeostasis, as the liver is a key metabolic organ accountable for the systemic equilibrium of the body. Circadian rhythm disruption alone is sufficient to cause liver cancer through the maintenance of hepatic metabolic disorder. Although there is evidence linking CRD to hepatocarcinogenesis, the precise cellular and molecular mechanisms that underlie the circadian crosstalk that leads to hepatocellular carcinoma remain unknown. The expression of CRD-related genes in HCC was investigated in this study via bulk RNA transcriptomic analysis and single-cell sequencing. Dysregulated CRD-related genes are predominantly found in hepatocytes and fibroblasts, according to the findings. By using a combination of single-cell RNA sequencing and bulk RNA sequencing analyses, the dysregulated CRD-related genes ADAMTS13, BIRC5, IGFBP3, MARCO, MT2A, NNMT, and PGLYRP2 were identified. The survival analysis using the Kaplan-Meier method revealed a significant correlation between the expression levels of BIRC5 and IGFBP3 and the survival of patients diagnosed with HCC.


Asunto(s)
Carcinoma Hepatocelular , Ritmo Circadiano , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Survivin , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Humanos , Ritmo Circadiano/genética , Survivin/genética , Survivin/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina
15.
Sci Rep ; 14(1): 12602, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824202

RESUMEN

Mitochondrial RNA modification (MRM) plays a crucial role in regulating the expression of key mitochondrial genes and promoting tumor metastasis. Despite its significance, comprehensive studies on MRM in lower grade gliomas (LGGs) remain unknown. Single-cell RNA-seq data (GSE89567) was used to evaluate the distribution functional status, and correlation of MRM-related genes in different cell types of LGG microenvironment. We developed an MRM scoring system by selecting potential MRM-related genes using LASSO regression analysis and the Random Survival Forest algorithm, based on multiple bulk RNA-seq datasets from TCGA, CGGA, GSE16011, and E-MTAB-3892. Analysis was performed on prognostic and immunological features, signaling pathways, metabolism, somatic mutations and copy number variations (CNVs), treatment responses, and forecasting of potential small-molecule agents. A total of 35 MRM-related genes were selected from the literature. Differential expression analysis of 1120 normal brain tissues and 529 LGGs revealed that 22 and 10 genes were upregulated and downregulated, respectively. Most genes were associated with prognosis of LGG. METLL8, METLL2A, TRMT112, and METTL2B were extensively expressed in all cell types and different cell cycle of each cell type. Almost all cell types had clusters related to mitochondrial RNA processing, ribosome biogenesis, or oxidative phosphorylation. Cell-cell communication and Pearson correlation analyses indicated that MRM may promoting the development of microenvironment beneficial to malignant progression via modulating NCMA signaling pathway and ICP expression. A total of 11 and 9 MRM-related genes were observed by LASSO and the RSF algorithm, respectively, and finally 6 MRM-related genes were used to establish MRM scoring system (TRMT2B, TRMT11, METTL6, METTL8, TRMT6, and TRUB2). The six MRM-related genes were then validated by qPCR in glioma and normal tissues. MRM score can predict the malignant clinical characteristics, abundance of immune infiltration, gene variation, clinical outcome, the enrichment of signaling pathways and metabolism. In vitro experiments demonstrated that silencing METTL8 significantly curbs glioma cell proliferation and enhances apoptosis. Patients with a high MRM score showed a better response to immunotherapies and small-molecule agents such as arachidonyl trifluoromethyl ketone, MS.275, AH.6809, tacrolimus, and TTNPB. These novel insights into the biological impacts of MRM within the glioma microenvironment underscore its potential as a target for developing precise therapies, including immunotherapeutic approaches.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/patología , Pronóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral/genética , Procesamiento Postranscripcional del ARN , Clasificación del Tumor , Mitocondrias/genética , Mitocondrias/metabolismo , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Multiómica
16.
Transl Oncol ; 46: 101970, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38797016

RESUMEN

OBJECTIVES: This study aimed to investigate the role of BMP2 in hepatocellular carcinoma (HCC) growth and metastasis using a dual approach combining single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq. METHODS: scRNA-seq data from the GEO database and bulk RNA-seq data from the TCGA database were analyzed. Differentially expressed marker genes of endothelial cells were identified and analyzed using enrichment analysis, PPI analysis, correlation analysis, and GSEA. In vitro, experiments were conducted using the Huh-7 HCC cell line, and in vivo, models of HCC growth and metastasis were established by knocking down BMP2. RESULTS: The scRNA-seq analysis identified BMP2 as a key marker gene in endothelial cells of HCC samples. Elevated BMP2 expression correlated with poor prognosis in HCC. In vitro experiments showed that silencing BMP2 inhibited the proliferation, migration, and invasion of liver cancer cells. In vivo studies confirmed increased BMP2 expression in HCC tissues, promoting angiogenesis and HCC growth. CONCLUSION: This study highlights the role of BMP2 in tumor angiogenesis and HCC progression. Targeting BMP2 could be a promising therapeutic strategy against HCC.

17.
Arch Dermatol Res ; 316(6): 262, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795156

RESUMEN

Skin cutaneous melanoma (SKCM), a form of skin cancer, ranks among the most formidable and lethal malignancies. Exploring tumor microenvironment (TME)-based prognostic indicators would help improve the efficacy of immunotherapy for SKCM patients. This study analyzed SKCM scRNA-seq data to cluster non-malignant cells that could be used to explore the TME into nine immune/stromal cell types, including B cells, CD4 T cells, CD8 T cells, dendritic cells, endothelial cells, Fibroblasts, macrophages, neurons, and natural killer (NK) cells. Using data from The Cancer Genome Atlas (TCGA), we employed SKCM expression profiling to identify differentially expressed immune-associated genes (DEIAGs), which were then incorporated into weighted gene co-expression network analysis (WGCNA) to investigate TME-associated hub genes. Discover candidate small molecule drugs based on pivotal genes. Tumor immune microenvironment-associated genes (TIMAGs) for constructing TIMAS were identified and validated. Finally, the characteristics of TIAMS subgroups and the ability of TIMAS to predict immunotherapy outcomes were analyzed. We identified five TIMAGs (CD86, CD80, SEMA4D, C1QA, and IRF1) and used them to construct TIMAS. In addition, five potential SKCM drugs were identified. The results showed that TIMAS-low patients were associated with immune-related signaling pathways, high MUC16 mutation frequency, high T cell infiltration, and M1 macrophages, and were more favorable for immunotherapy. Collectively, TIMAS constructed by comprehensive analysis of scRNA-seq and bulk RNA-seq data is a promising marker for predicting ICI treatment outcomes and improving individualized therapy for SKCM patients.


Asunto(s)
Inmunoterapia , Melanoma , RNA-Seq , Neoplasias Cutáneas , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/terapia , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Melanoma/genética , Melanoma/inmunología , Melanoma/terapia , Melanoma/tratamiento farmacológico , Inmunoterapia/métodos , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica , Pronóstico , Melanoma Cutáneo Maligno , Masculino , Transcriptoma , Femenino , Resultado del Tratamiento , Análisis de Expresión Génica de una Sola Célula
18.
Front Immunol ; 15: 1382449, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745657

RESUMEN

Background: Acute Respiratory Distress Syndrome (ARDS) or its earlier stage Acute lung injury (ALI), is a worldwide health concern that jeopardizes human well-being. Currently, the treatment strategies to mitigate the incidence and mortality of ARDS are severely restricted. This limitation can be attributed, at least in part, to the substantial variations in immunity observed in individuals with this syndrome. Methods: Bulk and single cell RNA sequencing from ALI mice and single cell RNA sequencing from ARDS patients were analyzed. We utilized the Seurat program package in R and cellmarker 2.0 to cluster and annotate the data. The differential, enrichment, protein interaction, and cell-cell communication analysis were conducted. Results: The mice with ALI caused by pulmonary and extrapulmonary factors demonstrated differential expression including Clec4e, Retnlg, S100a9, Coro1a, and Lars2. We have determined that inflammatory factors have a greater significance in extrapulmonary ALI, while multiple pathways collaborate in the development of pulmonary ALI. Clustering analysis revealed significant heterogeneity in the relative abundance of immune cells in different ALI models. The autocrine action of neutrophils plays a crucial role in pulmonary ALI. Additionally, there was a significant increase in signaling intensity between B cells and M1 macrophages, NKT cells and M1 macrophages in extrapulmonary ALI. The CXCL, CSF3 and MIF, TGFß signaling pathways play a vital role in pulmonary and extrapulmonary ALI, respectively. Moreover, the analysis of human single-cell revealed DCs signaling to monocytes and neutrophils in COVID-19-associated ARDS is stronger compared to sepsis-related ARDS. In sepsis-related ARDS, CD8+ T and Th cells exhibit more prominent signaling to B-cell nucleated DCs. Meanwhile, both MIF and CXCL signaling pathways are specific to sepsis-related ARDS. Conclusion: This study has identified specific gene signatures and signaling pathways in animal models and human samples that facilitate the interaction between immune cells, which could be targeted therapeutically in ARDS patients of various etiologies.


Asunto(s)
Lesión Pulmonar Aguda , Comunicación Celular , Perfilación de la Expresión Génica , Animales , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/inmunología , Ratones , Humanos , Comunicación Celular/inmunología , Transcriptoma , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/genética , Modelos Animales de Enfermedad , Análisis de la Célula Individual , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neutrófilos/metabolismo , COVID-19/inmunología , COVID-19/genética , Transducción de Señal , Masculino , Macrófagos/inmunología , Macrófagos/metabolismo
19.
Cell Genom ; 4(6): 100566, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38788713

RESUMEN

Meningiomas, although mostly benign, can be recurrent and fatal. World Health Organization (WHO) grading of the tumor does not always identify high-risk meningioma, and better characterizations of their aggressive biology are needed. To approach this problem, we combined 13 bulk RNA sequencing (RNA-seq) datasets to create a dimension-reduced reference landscape of 1,298 meningiomas. The clinical and genomic metadata effectively correlated with landscape regions, which led to the identification of meningioma subtypes with specific biological signatures. The time to recurrence also correlated with the map location. Further, we developed an algorithm that maps new patients onto this landscape, where the nearest neighbors predict outcome. This study highlights the utility of combining bulk transcriptomic datasets to visualize the complexity of tumor populations. Further, we provide an interactive tool for understanding the disease and predicting patient outcomes. This resource is accessible via the online tool Oncoscape, where the scientific community can explore the meningioma landscape.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Transcriptoma , Meningioma/genética , Meningioma/patología , Humanos , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patología , Masculino , Femenino , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica , Algoritmos , Perfilación de la Expresión Génica/métodos
20.
Life (Basel) ; 14(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38792580

RESUMEN

The LPS-induced inflammation model is widely used for studying inflammatory processes due to its cost-effectiveness, reproducibility, and faithful representation of key hallmarks. While researchers often validate this model using clinical cytokine markers, a comprehensive understanding of gene regulatory mechanisms requires extending investigation beyond these hallmarks. Our study leveraged multiple whole-blood bulk RNA-seq datasets to rigorously compare the transcriptional profiles of the well-established LPS-induced inflammation model with those of several human diseases characterized by systemic inflammation. Beyond conventional inflammation-associated systems, we explored additional systems indirectly associated with inflammatory responses (i.e., ISR, RAAS, and UPR) using a customized core inflammatory gene list. Our cross-condition-validation approach spanned four distinct conditions: systemic lupus erythematosus (SLE) patients, dengue infection, candidemia infection, and staphylococcus aureus exposure. This analysis approach, utilizing the core gene list aimed to assess the model's suitability for understanding the gene regulatory mechanisms underlying inflammatory processes triggered by diverse factors. Our analysis resulted in elevated expressions of innate immune-associated genes, coinciding with suppressed expressions of adaptive immune-associated genes. Also, upregulation of genes associated with cellular stresses and mitochondrial innate immune responses underscored oxidative stress as a central driver of the corresponding inflammatory processes in both the LPS-induced and other inflammatory contexts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA