Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
Vet J ; 308: 106228, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243806

RESUMEN

Bovine herpesvirus 1 (BoHV-1), a significant pathogen in the alpha-herpesvirus subfamily, primarily infects cattle and causes the upper respiratory disease known as infectious bovine rhinotracheitis (IBR). In silico studies evaluated the BoHV-1 D protein to be non-allergenic, non-toxic, and highly antigenic, highlighting its potential as an antigen for vaccine development. Therefore, this study aimed to evaluate the efficacy of a subunit vaccine using the ectodomain of glycoprotein D (gD34-380) as an antigen. The truncated gD was successfully cloned and expressed in both Escherichia coli (E. coli, termed EgD) and baculovirus (termed BgD) systems, with expected molecular weights of 65 kDa and 50 kDa, respectively. For the vaccine formulation, the gD proteins were used either alone or in combination with in-house inactivated BoHV-1. Vaccination of mice and bovines showed that baculovirus-expressed gD34-380 accelerated the antibody response. Moreover, the BgD-vaccinated group also showed significantly higher neutralizing antibody levels against BoHV-1 than the control group (p<0.0001). In conclusion, our study found that BgD from BoHV-1 can increase the immune response and enhance vaccine efficacy.

2.
Microb Pathog ; 195: 106896, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39208957

RESUMEN

BACKGROUND: Bovine herpesvirus 1 (BoHV-1) is a major pathogen that affects the global bovine population, primarily inducing respiratory and reproductive disorders. Its ability to establish latent infections in neuronal cells and to reactivate under certain conditions poses a continual threat to uninfected hosts. In this study, we aimed to analyze the replication characteristics of BoHV-1 in neuronal cells, as well as the effects of viral replication on host cell immunity and physiology. METHODS: Using the Neuro-2a neuronal-origin cell line as a model, we explored the dynamics of BoHV-1 replication and analyzed differential gene expression profiles post-BoHV-1 infection using high-throughput RNA sequencing. RESULTS: BoHV-1 demonstrated restricted replication in Neuro-2a cells. BoHV-1 induced apoptotic pathways and enhanced the transcription of interferon-stimulated genes and interferon regulatory factors while suppressing the complement cascade in Neuro-2a cells. CONCLUSIONS: Different from BoHV-1 infection in other non-highly differentiated somatic cells result in viral dominance, BoHV-1 regulated the innate immune response in neuronal cells formed a "virus-nerve cell" relative equilibrium state, which may account for the restricted replication of BoHV-1 in neuronal cells, leading to a latent infection. These findings provide a foundation for further research into the mechanism underlying BoHV-1-induced latent infection in nerve cells.


Asunto(s)
Perfilación de la Expresión Génica , Herpesvirus Bovino 1 , Inmunidad Innata , Neuronas , Replicación Viral , Herpesvirus Bovino 1/inmunología , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/fisiología , Animales , Bovinos , Neuronas/virología , Neuronas/inmunología , Línea Celular , Ratones , Infecciones por Herpesviridae/virología , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/veterinaria , Apoptosis , Transcriptoma , Latencia del Virus , Interacciones Huésped-Patógeno/inmunología , Enfermedades de los Bovinos/virología , Enfermedades de los Bovinos/inmunología , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento
3.
Front Microbiol ; 15: 1444414, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104584

RESUMEN

Schisandra chinensis, a traditional Chinese medicine known for its antitussive and sedative effects, has shown promise in preventing various viral infections. Bovine herpesvirus-1 (BoHV-1) is an enveloped DNA virus that causes respiratory disease in cattle, leading to significant economic losses in the industry. Because the lack of previous reports on Schisandra chinensis resisting BoHV-1 infection, this study aimed to investigate the specific mechanisms involved. Results from TCID50, qPCR, IFA, and western blot analyses demonstrated that Schisandra chinensis could inhibit BoHV-1 entry into MDBK cells, primarily through its extract Methylgomisin O (Meth O). The specific mechanism involved Meth O blocking BoHV-1 entry into cells via clathrin- and caveolin-mediated endocytosis by suppressing the activation of PI3K-Akt signaling pathway. Additionally, findings from TCID50, qPCR, co-immunoprecipitation and western blot assays revealed that Schisandra chinensis blocked BoHV-1 gD transcription through enhancing m6A methylation of gD after virus entry, thereby hindering gD protein expression and preventing progeny virus entry into cells and ultimately inhibiting BoHV-1 replication. Overall, these results suggest that Schisandra chinensis can resist BoHV-1 infection by targeting the PI3K-Akt signaling pathway and inhibiting gD transcription.

4.
Vet Med Sci ; 10(5): e1574, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39177083

RESUMEN

BACKGROUND: Widely regarded as one of the chief causes of diseases in cattle population, bovine herpesvirus-1 (BoHV-1) has the potential to infect sheep and goat, making them potential reservoirs or hosts for this virus. Thus, preventive measures against BoHV-1 in cattle should not overlook the ability of this virus to infect other animals. AIMS: Therefore, the focal point of this study was to ascertain the seroprevalence of BoHV-1 in 300 healthy goats, the relationship between host and the environmental determinants of infection, and the contributing role of goats in the epidemiology of the BoHV-1. MATERIALS & METHODS: In order to pinpoint the existing antibodies to BoHV-1, the obtained sera were analyzed by Virus Neutralization test. RESULTS: According to this test, the seroprevalence of BoHV-1 appeared to be 64.33% in southwestern Iran. What logistic regression disclosed was that the odds ratio between age and infection with BoHV-1 was 0.83 (p = 0.01), representing a decrease of 17% as goats grew one year older. In addition, females manifested a higher relative frequency of infection compared to males, with the odds of infection in female goats being registered at 1.88, compared to those in males (p = 0.2). Moreover, contrasted with goats lacking any history of abortion, those with a history of abortion featured 1.1 as the odds ratio (p = 0.87). The seroprevalence in Hendijan, Ahvaz, Shushtar and Dasht e Azadegan was detected to stand at 73.24, 71.30, 55.56 and 47.06 percent, respectively, with 6% of fluctuation in the infection rates being attributed to various geographical locations under the scrutiny of this study (p = 0.003). DISCUSSION AND CONCLUSION: Having attested the marked seroprevalence of BoHV-1, the definitive role of goats in the epidemiology of this virus as a secondary host or reservoir was confirmed by the present study, necessitating the strict monitoring of BoHV-1 in goats by animal health authorities in areas where BoHV-1 abounds in cattle.


Asunto(s)
Enfermedades de las Cabras , Cabras , Infecciones por Herpesviridae , Herpesvirus Bovino 1 , Animales , Estudios Seroepidemiológicos , Irán/epidemiología , Enfermedades de las Cabras/epidemiología , Enfermedades de las Cabras/virología , Femenino , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/epidemiología , Infecciones por Herpesviridae/virología , Masculino
5.
Viruses ; 16(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39066187

RESUMEN

Herpesviruses are significant pathogens of ruminants. In water buffaloes (Bubalus bubalis), however, herpesviruses have not been thoroughly studied. Although bubaline alphaherpesvirus 1 (BuAHV1) and bovine alphaherpesvirus 1 (BoAHV1) have already been recovered from water buffaloes, to date, no reports on the occurrence of bovine alphaherpesvirus 5 (BoAHV5) in these animals have been published. Therefore, the aim of this study was to search for BuAHV1, BoAHV1, and BoAHV5 in palatine tonsils of apparently healthy water buffaloes from the Pará state, Northern Brazil. Tissue samples of tonsils (n = 293) were screened by a nested PCR (nPCR) targeting a region of UL44 (gC coding gene), followed by sequencing, to detect and differentiate between the viral types. Viral genome segments were detected in 18 out of 293 (6.1%) of the palatine tonsil samples. Two animals carried genomes of BoAHV1 only, eleven animals carried BoAHV5 genomes only, and four animals carried BuAHV1 only. Another animal had both BoAHV1 and BoAHV5 genomes in its tonsils. No infectious virus could be recovered from any of the samples. The BuAHV1 sequences identified here were more closely related to BuAHV1 genomes identified in India. Phylogenetic analyses suggested a closer relationship between the recovered BoAHV5 and BuAHV1 genomes. Therefore, evidence is provided here to confirm that not only BoAHV1 and BuAHV1, but also BoAHV5, can infect water buffaloes. This report highlights (i) the first detection of BoAHV5 in water buffaloes and (ii) the occurrence of coinfections with BoAHV1 and BoAHV5 in that species. Such findings and the similarity of BoAHV5 to Indian herpesvirus genomes suggest that the origin of type 5 may be linked to recombinations between bovine and bubaline herpesviruses within bubalines, since the scenario for generation of recombinants in buffaloes is potentially present.


Asunto(s)
Alphaherpesvirinae , Búfalos , Infecciones por Herpesviridae , Tonsila Palatina , Animales , Bovinos , Alphaherpesvirinae/genética , Alphaherpesvirinae/aislamiento & purificación , Alphaherpesvirinae/clasificación , Brasil , ADN Viral/genética , Genoma Viral , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Tonsila Palatina/virología , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
6.
Pathogens ; 13(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38921814

RESUMEN

The efficacy of an intranasal (IN) bovine respiratory syncytial virus (BRSV) vaccine administered in the presence of passive immunity was assessed. Pooled colostrum was administered by intubation to 50 beef-dairy crossbred calves the day they were born. The calves were transported to a research facility and were blocked by age and sex, and randomly assigned into two groups: sham-vaccinated intranasally with a placebo (sterile water) or vaccinated with a trivalent (BRSV, bovine herpesvirus 1 and bovine parainfluenza 3) modified live viral (MLV) vaccine. The calves were 9 ± 2 days old when vaccinated (day 0). The calves were challenged by aerosolized BRSV on days 80 and 81 as a respiratory challenge. The study was terminated on day 88. Lung lesion scores (LLS) were significantly lower for calves vaccinated with trivalent MLV vaccine than those for calves that were sham-vaccinated. Serum neutralization (SN) antibody against BRSV in calves vaccinated with the trivalent MLV vaccine demonstrated an anamnestic response on day 88. After challenge, the calves sham-vaccinated with the placebo lost weight, while those vaccinated with the trivalent MLV vaccine gained weight. In this study, colostrum-derived antibodies did not interfere with the immune response or protection provided by one dose of the trivalent MLV vaccine.

7.
Animals (Basel) ; 14(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791675

RESUMEN

Bovine respiratory disease complex, a complex respiratory ailment in cattle, results from a combination of viral and bacterial factors, compounded by environmental stressors such as overcrowding, transportation, and adverse weather conditions. Its impact extends beyond mere health concerns, posing significant economic threats to the cattle industry. This study presents an extensive investigation into viral pathogens associated with BRDC in Serbian cattle, utilizing serum samples and nasal swabs. A cross-sectional study was conducted in 2024 across 65 randomly selected dairy farms in Serbia, excluding farms with vaccinated cattle. The farms were categorized by their livestock count: small (≤50 animals), medium (51-200 animals), and large (>200 animals). Serum samples from adult cattle older than 24 months were tested for antibodies against BVDV, BHV-1, BRSV, and BPIV3. Nasal swab samples from the animals with respiratory signs were tested using PCR for viral genome detection. The results showed seropositivity for all four viruses across all of the farms, with BPIV3 exhibiting universal seropositivity. Medium-sized and large farms demonstrated higher levels of seropositivity for BRSV and BHV-1 compared to small farms (p < 0.05). Our true seroprevalence estimates at the animal level were 84.29% for BRSV, 54.08% for BVDV, 90.61% for BHV-1, and 84.59% for BPIV3. A PCR analysis of the nasal swabs revealed positive detections for BRSV (20%), BHV-1 (1.7%), BVDV (8%), and BPIV3 (10.9%). Influenza D virus was not found in any of the samples. This study provides critical insights into the prevalence and circulation of viral pathogens associated with BRDC in Serbian cattle, emphasizing the importance of surveillance and control measures to mitigate the impact of respiratory diseases in cattle populations.

8.
Biology (Basel) ; 13(4)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38666861

RESUMEN

The prevalent pathogens associated with bovine uterine infections are bacteria that appear to increase the host's susceptibility to secondary infections with other bacteria or viruses, among which BoGHV4 is the most frequently found. In this work, the study of the pathways of apoptosis induction was carried out on an experimental model of primary culture of endometrial cells, in order to know the implication of BoGHV4 and the presence of bacterial LPS in the pathogenesis of the bovine reproductive tract. For this, different staining techniques and molecular analysis by RT-PCR were used. The results obtained allowed us to conclude that the level of cell death observed in the proposed primary culture is directly related to the time of viral infection and the presence of LPS in BoGHV4 infection. The apoptosis indices in cells infected with BoGHV4 and BoGHV4 + LPS revealed a maximum that correlated with the appearance of cytopathic effects and the maximum viral titers in the model studied. However, morphological, biochemical, and molecular changes were evident during both early and late stages of apoptosis. These findings provide information on the factors that may influence the pathogenesis of BoGHV4 and help to better understand the mechanisms involved in virus infection.

9.
J Vet Med Sci ; 86(6): 645-652, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38644182

RESUMEN

Bovine herpesvirus 4 (BoHV-4) is an indigenous virus in cattle prevalent mainly in North and South American countries and European countries, but the genomic sequences and genetic characteristics of Japanese strains have not been reported. BoHV-4 is suspected, but not proven, to be associated with various diseases. In the present study, we isolated BoHV-4 from a 10-month-old Japanese Black calf with respiratory symptoms in Japan. To identify the genetic characteristics of the isolate named strain SG20, complete genome sequencing was performed using a combination of next-generation and Sanger sequencing technologies. The complete long unique coding region (LUR) of SG20 was found to comprise 108,819 nucleotides with 41.4% GC content and contain at least 78 open reading frames. It shares 83.4 to 99.3% overall nucleotide identity with six BoHV-4 strains available in the database. The deduced amino acid sequence alignment revealed that SG20 contains genotype 1-specific features of BoHV-4, such as amino acid substitutions and insertions within the glycoprotein B region. Phylogenetic analyzes based on the nucleotide sequences of ORF20 indicated that the virus belonged to genotype 1 (Movar 33/63-like group). The strain was also analyzed using the complete LUR and placed in the same clade as a strain recently isolated from China, but it was distinct from American and European BoHV-4 strains of genotype 1. Although further genomic and epidemiologic information is needed, our results help elucidate the molecular epidemiology of BoHV-4 and provide a foundation for future studies.


Asunto(s)
Enfermedades de los Bovinos , Genoma Viral , Infecciones por Herpesviridae , Herpesvirus Bovino 4 , Filogenia , Animales , Bovinos , Enfermedades de los Bovinos/virología , Enfermedades de los Bovinos/epidemiología , Herpesvirus Bovino 4/genética , Herpesvirus Bovino 4/aislamiento & purificación , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Japón/epidemiología , Secuenciación Completa del Genoma , Sistemas de Lectura Abierta , Genotipo
10.
Pathogens ; 13(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38535562

RESUMEN

Ovine herpesvirus 2 (OvHV-2) and bovine herpesvirus 4 (BoHV-4) are gamma herpesviruses that belong to the genera Macavirus and Rhadinovirus, respectively. As with all herpesviruses, both OvHV-2 and BoHV-4 express glycoprotein B (gB), which plays an essential role in the infection of host cells. In that context, it has been demonstrated that a BoHV-4 gB-null mutant is unable to infect host cells. In this study, we used homologous recombination to insert OvHV-2 ORF 8, encoding gB, into the BoHV-4 gB-null mutant genome, creating a chimeric BoHV-4 virus carrying and expressing OvHV-2 gB (BoHV-4∆gB/OvHV-2-gB) that was infectious and able to replicate in vitro. We then evaluated BoHV-4∆gB/OvHV-2-gB as a potential vaccine candidate for sheep-associated malignant catarrhal fever (SA-MCF), a fatal disease of ungulates caused by OvHV-2. Using rabbits as a laboratory model for MCF, we assessed the safety, immunogenicity, and efficacy of BoHV-4∆gB/OvHV-2-gB in an immunization/challenge trial. The results showed that while BoHV-4∆gB/OvHV-2-gB was safe and induced OvHV-2 gB-specific humoral immune responses, immunization conferred only 28.5% protection upon challenge with OvHV-2. Therefore, future studies should focus on alternative strategies to express OvHV-2 proteins to develop an effective vaccine against SA-MCF.

11.
Front Microbiol ; 15: 1371849, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38486701

RESUMEN

Bovine herpes virus 1 (BoHV-1) causes a wide variety of diseases in wild and domestic cattle. The most widely used method for viral identification is real-time PCR, which can only be performed in laboratories using sophisticated instruments by expert personnel. Herein, we developed an ultrasensitive time-resolved fluorescence lateral flow immunochromatographic strip (ICS) assay for detecting BoHV-1 in bovine samples using a monoclonal antibody against BoHV-1 labelled with fluorescent microspheres, which can be applied in any setting. The intact process from sample collection to final result can be achieved in 15 min. The limit of detection of the assay for BoHV-1 was 102 TCID50/100 µL. The coincidence rate of the ICS method and real-time PCR recommended by the World Organization for Animal Health (WOAH) was 100% for negative, 92.30% for positive, and 95.42% for total, as evaluated by the detection of 131 clinical samples. This detection method was specifically targeted to BoHV-1, not exhibiting cross-reactivity with other bovine pathogens including BoHV-5. We developed an ICS assay equipped with a portable instrument that offers a sensitive and specific platform for the rapid and reliable detection of BoHV-1 in the field. The Point-of-Care test of BoHV-1 is suitable for the screening and surveillance of BoHV-1 in dairy herds.

12.
Am J Vet Res ; 85(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38457927

RESUMEN

OBJECTIVE: Compare immune responses induced by 2 commercial intranasal (IN) modified-live viral (MLV) vaccines given individually or coadministered and evaluate prevention of infection and lung pathology following bovine herpesvirus-1 (BHV-1) challenge. ANIMALS: 36 male Holstein calves (ages, 5 to 12 days). METHODS: In a randomized complete block design, each calf received an IN injection of either vaccine diluent (Placebo), an MLV vaccine containing bovine herpesvirus-1 (BHV-1; N3), bovine coronavirus vaccine (BC), or both N3 and BC (BC + N3) with a booster 4 weeks later. Nasal secretions and blood were collected weekly. Three weeks after the booster, the calves were challenged with BHV-1, sampled for virus shedding, and euthanized 10 days later to quantify lung pathology. The study period was September 7, 2020, to April 6, 2021. RESULTS: Calves were seropositive for BHV-1 and BC before vaccination. No significant difference in BC-specific serum immunoglobin G and nasal immunoglobin A antibody responses in the BC versus BC + N3 group or BHV-1-specific serum immunoglobin G and nasal immunoglobin A antibody responses in the N3 versus BC + N3 group. Cytokine responses to BHV-1 and BC did not differ among groups. BHV-1 shedding after challenge was significantly reduced in N3 groups versus Placebo and BC. There was a significant reduction in lung pathology in the N3 + BC group versus Placebo. CLINICAL RELEVANCE: This study provides evidence an MLV vaccine containing BHV-1 and an MLV BC vaccine can be coadministered to neonatal calves without significantly altering immune responses to the 2 viruses or compromising the prevention of BHV-1 respiratory disease. Calves receiving the BC + N3 vaccine had a significant reduction in lung pathology after BHV-1 aerosol challenge.


Asunto(s)
Administración Intranasal , Animales Recién Nacidos , Enfermedades de los Bovinos , Infecciones por Coronavirus , Coronavirus Bovino , Infecciones por Herpesviridae , Herpesvirus Bovino 1 , Vacunas Atenuadas , Vacunas Virales , Animales , Bovinos , Herpesvirus Bovino 1/inmunología , Administración Intranasal/veterinaria , Masculino , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Coronavirus Bovino/inmunología , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/virología , Enfermedades de los Bovinos/inmunología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/prevención & control , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Rinotraqueítis Infecciosa Bovina/prevención & control , Rinotraqueítis Infecciosa Bovina/inmunología , Esparcimiento de Virus , Anticuerpos Antivirales/sangre , Distribución Aleatoria
13.
Methods Mol Biol ; 2753: 105-142, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38285335

RESUMEN

Viral infectious diseases are important causes of reproductive disorders, as abortion, fetal mummification, embryonic mortality, stillbirth, and congenital abnormalities in animals and in humans. In this chapter, we provide an overview of some virus, as important agents in teratology.We begin by describing the Zika virus, whose infection in humans had a very significant impact in recent years and has been associated with major health problems worldwide. This virus is a teratogenic agent in humans and has been classified as a public health emergency of international concern (PHEIC).Then, some viruses associated with reproductive abnormalities on animals, which have a significant economic impact on livestock, are described, as bovine herpesvirus, bovine viral diarrhea virus, Schmallenberg virus, Akabane virus, and Aino virus.For all viruses mentioned in this chapter, the teratogenic effects and the congenital malformations associated with fetus and newborn are described, according to the most recent scientific publications.


Asunto(s)
Teratogénesis , Infección por el Virus Zika , Virus Zika , Femenino , Embarazo , Animales , Humanos , Recién Nacido , Feto , Ganado , Salud Pública
14.
Prev Vet Med ; 224: 106116, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38271923

RESUMEN

There is sufficient evidence that both bovine herpesvirus (BoHV-1) and bubaline herpesvirus (BuHV-1) can overcome the species barrier represented by their respective hosts, cattle and buffalo. Although several studies have focused on the impact of BoHV-1 on buffalo, little is known about the impact of BuHV-1 on cattle. In this work, we evaluated the seroprevalence of BuHV-1 in the cattle population in an area where intensive buffalo farming is highly developed (Campania region, Italy). BuHV-1 seroprevalence of cattle sampled in this study was estimated to be 21.4% using a specific commercial ELISA for the detection of antibodies against glycoprotein E of the virus. Risk factor assessment by univariate analysis revealed a correlation between housing type and higher prevalence. Similarly, cattle housed with buffalo and adult animals had a higher likelihood of being seropositive. BoHV-1 vaccination did not prove to be a protective factor against BuHV-1 exposure. The role of age, grazing, and co-living with buffalo in influencing BuHV-1 exposure was also confirmed by multivariate analysis. All BuHV-1 positive animals were also tested with cross-serum neutralization aimed at evaluating the specific antibody titers against BoHV-1 and BuHV-1. We, therefore, assessed the potential cross-reaction between BoHV-1 and BuHV-1, the co-infection rate, and the agreement of the assays used. This study described the presence of BuHV-1 in the cattle population of the Campania region (Italy) and indicated the requirement to take BuHV-1 into consideration for any measures and control and/or eradication plans to be applied against BoHV-1.


Asunto(s)
Bison , Enfermedades de los Bovinos , Infecciones por Herpesviridae , Herpesviridae , Herpesvirus Bovino 1 , Animales , Bovinos , Infecciones por Herpesviridae/epidemiología , Infecciones por Herpesviridae/veterinaria , Búfalos , Estudios Seroepidemiológicos , Enfermedades de los Bovinos/epidemiología , Anticuerpos Antivirales
15.
J Gen Virol ; 104(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37976092

RESUMEN

Virus vectored vaccines are not available commercially for cattle even though compelling potential applications exist. Bovine papular stomatitis virus (BPSV), a highly prevalent parapoxvirus, causes self-limited oral lesions in cattle. Ability of virus to accommodate large amounts of foreign DNA, induce low level of antiviral immunity, and circulate and likely persist in cattle populations, make BPSV an attractive candidate viral vector. Here, recombinant BPSV were constructed expressing either Bovine herpesvirus 1 (BoHV-1) glycoprotein gD (BPSVgD), or gD and gB (BPSVgD/gB). Immunization of BPSV serologically-positive calves with BPSVgD or BPSVgD/gB induced BoHV-1 neutralization antibodies and provided protection for three of four animals following a high dose BoHV-1 challenge at day 70 pi. Results indicate BPSV suitability as a candidate virus vector for cattle vaccines.


Asunto(s)
Enfermedades de los Bovinos , Herpesvirus Bovino 1 , Parapoxvirus , Estomatitis , Vacunas , Vacunas Virales , Bovinos , Animales , Parapoxvirus/genética , Anticuerpos Antivirales , Herpesvirus Bovino 1/genética , Vacunas Virales/genética , Enfermedades de los Bovinos/prevención & control
16.
Vet Microbiol ; 287: 109899, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37931576

RESUMEN

Bovine herpesvirus-1 (BoHV-1) can infect all breeds of cattle and cause respiratory and genital tract diseases. In the process of viral infection, viruses can use their own proteins to suppress the innate immunity of the host and promote its replication; however, the mechanism by which BoHV-1 evades the innate immune response is not fully understood. In this study, we found that rabbits inoculated with the live gene deletion vaccine BoHV-1-△gI/gE/TK generated higher interferon-ß (IFN-ß) production in the serum, liver, lung and kidney than rabbits inoculated with wt BoHV-1, which led to milder lesions in the lung and kidney. We performed gene deletion and ectopic expression experiments on viral proteins and found that gE was the major protein that inhibited IFN-ß expression. Further studies showed that MAVS and IRF3 were the targets of gE, and the specific mechanism was that gE inhibited IFN-ß production by promoting MAVS ubiquitination and interfering with the interaction between IRF3 and CBP/p300. These results suggest a new way of BoHV-1 inhibition of IFN-ß production to evade the host innate immunity.


Asunto(s)
Herpesvirus Bovino 1 , Bovinos , Conejos , Animales , Herpesvirus Bovino 1/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ubiquitinación , Interferón beta/genética , Interferón beta/metabolismo , Inmunidad Innata
17.
Viruses ; 15(10)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37896756

RESUMEN

Bovine herpesvirus type 1 (BoHV-1) is an important agricultural pathogen that infects cattle and other ruminants worldwide. Though it was first sequenced and annotated over twenty years ago, the Cooper strain, used in this study, was sequenced as recently as 2012 and is currently said to encode 72 unique proteins. However, tandem mass spectrometry has identified several peptides produced during active infection that align with the BoHV-1 genome in unannotated regions. One of these abundant peptides, "ORF M", aligned antisense to the DNA helicase/primase protein UL5. This study characterizes the novel transcript and its protein product and provides evidence to support the existence of homolog protein-coding genes in other Herpesviruses.


Asunto(s)
Infecciones por Herpesviridae , Herpesvirus Bovino 1 , Animales , Bovinos , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/metabolismo , Secuencia de Bases , Simplexvirus/genética , ADN Primasa/genética , Péptidos/genética
18.
Microbiol Spectr ; : e0196323, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37655900

RESUMEN

Phospholipase C gamma 1 (PLC-γ1) may locate at distinct subcellular locations, such as cytosol, plasma membrane, and nucleus for varied biological functions. Bovine herpesvirus 1 (BoHV-1) productive infection activates PLC-γ1 signaling, as demonstrated by increased protein levels of phosphorylated-PLC-γ1 at Ser1248 [p-PLC-γ1(S1248)], which benefits virus productive infection. Here, for the first time, we reported that Golgi apparatus also contains activated p-PLC-γ1(S1248). And BoHV-1 productive infection at later stages (24 hpi) increased the accumulation of p-PLC-γ1(S1248) in the Golgi apparatus, where p-PLC-γ1(S1248) forms highlighted puncta observed via a confocal microscope. Coimmunoprecipitation studies demonstrated that the Golgi p-PLC-γ1(S1248) is specifically associated with the viral protein gD but not gC. In addition, we found that p-PLC-γ1(S1248) is consistently associated with both the plasma membrane-associated virions and the released virions. When the virus-infected cells were treated with PLC-γ1-specific inhibitor, U73122, for a short duration of 4 hours prior to the endpoint of virus infection, we found that the viral protein gD was trapped in the Golgi apparatus, suggesting that the PLC-γ1 signaling may facilitate trafficking of progeny virions out of this organelle. These findings provide a novel insight into the interplay between PLC-γ1 signaling and BoHV-1 replication. IMPORTANCE Bovine herpesvirus 1 (BoHV-1) productive infection increases protein levels of phosphorylated-phospholipase C gamma 1 at Ser1248 [p-PLC-γ1(S1248)]. However, whether it causes any variations to p-PLC-γ1(S1248) localization is not well understood. Here, for the first time, we found that partial p-PLC-γ1(S1248) is residing in the Golgi apparatus, where the accumulation is enhanced by virus infection. p-PLC-γ1(S1248) is consistently associated with virions, partially via binding to gD, in both the Golgi apparatus and cytoplasm membranes. Surprisingly, it also associates with the released virions. Of note, this is the first evidenced BoHV-1 virion-bound host protein. It seems that p-PLC-γ1(S1248) works as an escort during trafficking of progeny virions out of Golgi apparatus to the plasma membranes as well as releasing outside of the cell membranes. Furthermore, we showed that the activated p-PLC-γ1(S1248) is potentially implicated in the transport of virions out of Golgi apparatus, which may represent a novel mechanism to regulate virus productive infection.

19.
Front Immunol ; 14: 1201973, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600784

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) remains a leading cause of economic loss in pig farming worldwide. Existing commercial vaccines, all based on modified live or inactivated PRRSV, fail to provide effective immunity against the highly diverse circulating strains of both PRRSV-1 and PRRSV-2. Therefore, there is an urgent need to develop more effective and broadly active PRRSV vaccines. In the absence of neutralizing antibodies, T cells are thought to play a central role in controlling PRRSV infection. Herpesvirus-based vectors are novel vaccine platforms capable of inducing high levels of T cells against encoded heterologous antigens. Therefore, the aim of this study was to assess the immunogenicity and efficacy of an attenuated herpesvirus-based vector (bovine herpesvirus-4; BoHV-4) expressing a fusion protein comprising two well-characterized PRRSV-1 T-cell antigens (M and NSP5). Prime-boost immunization of pigs with BoHV-4 expressing the M and NSP5 fusion protein (vector designated BoHV-4-M-NSP5) induced strong IFN-γ responses, as assessed by ELISpot assays of peripheral blood mononuclear cells (PBMC) stimulated with a pool of peptides representing PRRSV-1 M and NSP5. The responses were closely mirrored by spontaneous IFN-γ release from unstimulated cells, albeit at lower levels. A lower frequency of M and NSP5 specific IFN-γ responding cells was induced following a single dose of BoHV-4-M-NSP5 vector. Restimulation using M and NSP5 peptides from PRRSV-2 demonstrated a high level of cross-reactivity. Vaccination with BoHV-4-M-NSP5 did not affect viral loads in either the blood or lungs following challenge with the two heterologous PRRSV-1 strains. However, the BoHV-4-M-NSP5 prime-boost vaccination showed a marked trend toward reduced lung pathology following PRRSV-1 challenge. The limited effect of T cells on PRRSV-1 viral load was further examined by analyzing local and circulating T-cell responses using intracellular cytokine staining and proliferation assays. The results from this study suggest that vaccine-primed T-cell responses may have helped in the control of PRRSV-1 associated tissue damage, but had a minimal, if any, effect on controlling PRRSV-1 viral loads. Together, these results indicate that future efforts to develop effective PRRSV vaccines should focus on achieving a balanced T-cell and antibody response.


Asunto(s)
Vacunas contra Herpesvirus , Inmunogenicidad Vacunal , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Proteínas de la Matriz Viral , Proteínas no Estructurales Virales , Vacunas contra Herpesvirus/inmunología , Vacunas Atenuadas/inmunología , Linfocitos T/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Vectores Genéticos , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Animales , Porcinos , Proteínas de la Matriz Viral/inmunología
20.
Pol J Vet Sci ; 26(2): 211-221, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37389423

RESUMEN

Cultivation-based assays represent the gold standard for the assessment of virus infectivity; however, they are time-consuming and not suitable for every virus type. Pre-treatment with platinum (Pt) compounds followed by real-time PCR has been shown to discriminate between infectious and non-infectious RNA viruses. This study examined the effect of Pt and palladium (Pd) compounds on enveloped DNA viruses, paying attention to two significant pathogens of livestock - bovine herpesvirus-1 (BoHV-1) and African swine fever virus (ASFV). Native or heat-treated BoHV-1 suspension was incubated with the spectrum of Pt/Pd compounds. Bis(benzonitrile)palladium(II) dichloride (BB-PdCl 2) and dichloro(1,5-cyclooctadiene) palladium(II) (PdCl 2-COD) produced the highest differences found between native and heat- -treated viruses. Optimized pre-treatment conditions (1 mM of Pd compound, 15 min, 4°C) were applied on both virus genera and the heat inactivation profiles were assessed. A significant decrease in the detected quantity of BoHV-1 DNA and ASFV DNA after heat-treatment (60°C and 95°C) and consequent incubation with Pd compounds was observed. BB-PdCl 2 and PdCl 2-COD could help to distinguish between infectious and non-infectious enveloped DNA viruses such as BoHV-1 or ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Herpesvirus Bovino 1 , Animales , Porcinos , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Paladio/farmacología , Virus de la Fiebre Porcina Africana/genética , Virus ADN , Bioensayo/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA