Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1417440, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39301173

RESUMEN

Bone structures facilitate the regeneration and repair of bone tissue in regions where it has been damaged or destroyed, either temporarily or permanently. Therefore, the bone's fatigue strength and durability are crucial to its efficacy and longevity. Several variables, such as the construct's material qualities, design, and production procedure, loading and unloading cycles, and physiological conditions influence the endurance life of bone constructs. Metals, ceramics, and polymers are all routinely utilized to create bone substitutes, and each of these materials has unique features that might affect the fatigue strength and endurance life of the final product. The mechanical performance and capacity to promote bone tissue regeneration may be affected by the scaffold's design, porosity, and pore size. Researchers employ mechanical testing under cyclic loading circumstances as one example of an experimental approach used to assess bone construction endurance. These analyses can give us important information about the stress-strain behavior, resistance to multiple loading cycles, and fatigue strength of the new structure. Predicting the endurance life of the developed construct may also be possible with the use of simulations and numerical analyses. Hence, in order to create reliable and efficient constructs for bone tissue engineering, it is crucial to understand their fatigue strength and durability. The purpose of this study is to analyze the effective parameters for fatigue strength of bone structures and to gather the models and evaluations utilized in endurance life assessments.

2.
Adv Healthc Mater ; 8(14): e1900133, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31112356

RESUMEN

The scapholunate interosseous ligament (SLIL) is a frequently torn wrist ligament, and current surgical options for SLIL tears are suboptimal. This research aims to develop a novel multiphasic bone-ligament-bone scaffold (BLB) with a porous interface using 3D-printing and cell sheet technology for the reconstruction of the dorsal scapholunate interosseous ligament. The BLB comprises two bone compartments bridged by aligned polycaprolactone fibers mimicking the architecture of the native tissue. Mechanical testing of the BLBs shows their ability to withstand physiological forces. Combination of the BLB with human bone marrow mesenchymal stem cell sheet demonstrates that the harvesting did not compromise cell viability, while allowing homogeneous distribution in the ligament compartment. The BLBs are loaded with cell sheets and bone morphogenetic protein-2 in the ligament and bone compartment respectively prior to ectopic implantation into athymic rats. The histology demonstrates rapid tissue infiltration, high vascularization, and more importantly the maintenance of the compartmentalization as bone formation remains localized to the bone compartment despite the porous interface. The cells in the ligament compartment become preferentially aligned, and this proof-of-concept study demonstrates that the BLB can provide sufficient compartmentalization and fiber guiding properties necessary for the regeneration of the dorsal SLIL.


Asunto(s)
Huesos/cirugía , Ligamentos Articulares/cirugía , Procedimientos de Cirugía Plástica , Andamios del Tejido/química , Calcificación Fisiológica , Supervivencia Celular , Coristoma/patología , Colágeno/metabolismo , ADN/metabolismo , Humanos , Impresión Tridimensional , Prótesis e Implantes , Resistencia a la Tracción , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA