Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
1.
Biosens Bioelectron ; 263: 116599, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39111251

RESUMEN

Surface biofunctionalization is an essential stage in the preparation of any bioassay affecting its analytical performance. However, a complete characterization of the biofunctionalized surface, considering studies of coverage density, distribution and orientation of biomolecules, layer thickness, and target biorecognition efficiency, is not met most of the time. This review is a critical overview of the main techniques and strategies used for characterizing biofunctionalized surfaces and the process in between. Emphasis is given to scanning force microscopies as the most versatile and suitable tools to evaluate the quality of the biofunctionalized surfaces in real-time dynamic experiments, highlighting the helpful of atomic force microscopy, Kelvin probe force microscopy, electrochemical atomic force microscopy and photo-induced force microscopy. Other techniques such as optical and electronic microscopies, quartz crystal microbalance, X-ray photoelectron spectroscopy, contact angle, and electrochemical techniques, are also discussed regarding their advantages and disadvantages in addressing the whole characterization of the biomodified surface. Scarce reviews point out the importance of practicing an entire characterization of the biofunctionalized surfaces. This is the first review that embraces this topic discussing a wide variety of characterization tools applied in any bioanalysis platform developed to detect both clinical and environmental analytes. This survey provides information to the analysts on the applications, strengths, and weaknesses of the techniques discussed here to extract fruitful insights from them. The aim is to prompt and help the analysts to accomplish an entire assessment of the biofunctionalized surface, and profit from the information obtained to enhance the bioanalysis output.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Microscopía de Fuerza Atómica , Tecnicas de Microbalanza del Cristal de Cuarzo , Propiedades de Superficie , Técnicas Biosensibles/métodos , Humanos , Técnicas Electroquímicas/métodos , Tecnicas de Microbalanza del Cristal de Cuarzo/métodos , Espectroscopía de Fotoelectrones , Animales
2.
Chemistry ; 30(47): e202400855, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39031737

RESUMEN

Hydrogels with cell adhesive moieties stand out as promising materials to enhance tissue healing and regeneration. Nonetheless, bacterial infections of the implants represent an unmet major concern. In the present work, we developed an alginate hydrogel modified with a multifunctional peptide containing the RGD cell adhesive motif in combination with an antibacterial peptide derived from the 1-11 region of lactoferrin (LF). The RGD-LF branched peptide was successfully anchored to the alginate backbone by carbodiimide chemistry, as demonstrated by 1H NMR and fluorescence measurements. The functionalized hydrogel presented desirable physicochemical properties (porosity, swelling and rheological behavior) to develop biomaterials for tissue engineering. The viability of mesenchymal stem cells (MSCs) on the peptide-functionalized hydrogels was excellent, with values higher than 85 % at day 1, and higher than 95 % after 14 days in culture. Moreover, the biological characterization demonstrated the ability of the hydrogels to significantly enhance ALP activity of MSCs as well as to decrease bacterial colonization of both Gram-positive and Gram-negative models. Such results prove the potential of the functionalized hydrogels as novel biomaterials for tissue engineering, simultaneously displaying cell adhesive activity and the capacity to prevent bacterial contamination, a dual bioactivity commonly not found for these types of hydrogels.


Asunto(s)
Alginatos , Adhesión Celular , Hidrogeles , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Alginatos/química , Adhesión Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Oligopéptidos/química , Oligopéptidos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Ingeniería de Tejidos , Péptidos/química , Péptidos/farmacología , Supervivencia Celular/efectos de los fármacos
3.
Small ; : e2400775, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829024

RESUMEN

Graphene, a 2D carbon material, possesses extraordinary mechanical, electrical, and thermal properties, making it highly attractive for various biological applications such as biosensing, biotherapeutics, and tissue engineering. However, the tendency of graphene sheets to aggregate and restack hinders its dispersion in water, limiting these applications. Peptides, with their defined amino acid sequences and versatile functionalities, are compelling molecules with which to modify graphene-aromatic amino acids can strengthen interactions through π-stacking and charged groups can be chosen to make the sheets dispersible and stable in water. Here, a facile and green method for covalently functionalizing and dispersing graphene using amphiphilic tripeptides, facilitated by a tyrosine phenol side chain, through an aqueous enzymatic oxidation process is demonstrated. The presence of a second aromatic side chain group enhances this interaction through non-covalent support via π-π stacking with the graphene surface. Futhermore, the addition of charged moieties originating from either ionizable amino acids or terminal groups facilitates profound interactions with water, resulting in the dispersion of the newly functionalized graphene in aqueous solutions. This biofunctionalization method resulted in ≈56% peptide loading on the graphene surface, leading to graphene dispersions that remain stable for months in aqueous solutions outperforming currently used surfactants.

4.
Anal Bioanal Chem ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902345

RESUMEN

Immune checkpoint inhibitors (ICIs) emerged as promising immunotherapies for cancer treatment, harnessing the patient's immune system to fight and eliminate tumor cells. However, despite their potential and proven efficacies, checkpoint inhibitors still face important challenges such as the tumor heterogeneity and resistance mechanisms, and the complex in vitro testing, which limits their widespread applicability and implementation to treat cancer. To address these challenges, we propose a novel analytical technique utilizing biomimetic label-free nanoplasmonic biosensors for rapid and reliable screening and evaluation of checkpoint inhibitors. We have designed and fabricated a low-density nanostructured plasmonic sensor based on gold nanodisks that enables the direct formation of a functional supported lipid bilayer, which acts as an artificial cell membrane for tumor ligand immobilization. With this biomimetic scaffold, our biosensing approach provides real-time, highly sensitive analysis of immune checkpoint pathways and direct assessment of the blocking effects of monoclonal antibodies in less than 20 min/test. We demonstrate the accuracy of our biomimetic sensor for the study of the programmed cell death protein 1 (PD1) checkpoint pathway, achieving a limit of detection of 6.7 ng/mL for direct PD1/PD-L1 interaction monitoring. Besides, we have performed dose-response inhibition curves for an anti-PD1 monoclonal antibody, obtaining a half maximal inhibitory concentration (IC50) of 0.43 nM, within the same range than those obtained with conventional techniques. Our biomimetic sensor platform combines the potential of plasmonic technologies for rapid label-free analysis with the reliability of cell-based assay in terms of ligand mobility. The biosensor is integrated in a compact user-friendly device for the straightforward implementation in biomedical and pharmaceutical laboratories.

5.
Biomed Mater ; 19(5)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38917837

RESUMEN

Insufficient osseointegration of titanium-based implants is a factor conditioning their long-term success. Therefore, different surface modifications, such as multifunctional oxide coatings, calcium phosphates, and the addition of molecules such as peptides, have been developed to improve the bioactivity of titanium-based biomaterials. In this work, we investigate the behavior of human oral mucosal stem cells (hOMSCs) cultured on amorphous titanium oxide (aTiO2), surfaces designed to simulate titanium (Ti) surfaces, biofunctionalized with a novel sequence derived from cementum attachment protein (CAP-p15), exploring its impact on guiding hOMSCs towards an osteogenic phenotype. We carried out cell attachment and viability assays. Next, hOMSCs differentiation was assessed by red alizarin stain, ALP activity, and western blot analysis by evaluating the expression of RUNX2, BSP, BMP2, and OCN at the protein level. Our results showed that functionalized surfaces with CAP-p15 (1 µg ml-1) displayed a synergistic effect increasing cell proliferation and cell attachment, ALP activity, and expression of osteogenic-related markers. These data demonstrate that CAP-p15 and its interaction with aTiO2surfaces promote osteoblastic differentiation and enhanced mineralization of hOMSCs when compared to pristine samples. Therefore, CAP-p15 shows the potential to be used as a therapeutical molecule capable of inducing mineralized tissue regeneration onto titanium-based implants.


Asunto(s)
Adhesión Celular , Diferenciación Celular , Proliferación Celular , Mucosa Bucal , Osteogénesis , Células Madre , Titanio , Titanio/química , Humanos , Osteogénesis/efectos de los fármacos , Mucosa Bucal/citología , Mucosa Bucal/metabolismo , Células Madre/citología , Células Madre/metabolismo , Propiedades de Superficie , Células Cultivadas , Osteoblastos/citología , Osteoblastos/metabolismo , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Supervivencia Celular , Oseointegración/efectos de los fármacos , Materiales Biocompatibles/química
6.
Biosens Bioelectron ; 261: 116486, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38861811

RESUMEN

Current uric acid detection methodologies lack the requisite sensitivity and selectivity for point-of-care applications. Plasmonic sensors, while promising, demand refinement for improved performance. This work introduces a biofunctionalized sensor predicated on surface plasmon resonance to quantify uric acid within physiologically relevant concentration ranges. The sensor employs the covalent immobilization of uricase enzyme using 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-Hydroxysuccinimide (NHS) crosslinking agents, ensuring the durable adherence of the enzyme onto the sensor probe. Characterization through atomic force microscopy and Fourier transform infrared spectroscopy validate surface alterations. The Langmuir adsorption isotherm model elucidates binding kinetics, revealing a sensor binding affinity of 298.83 (mg/dL)-1, and a maximum adsorption capacity of approximately 1.0751°. The biofunctionalized sensor exhibits a sensitivity of 0.0755°/(mg/dL), a linear correlation coefficient of 0.8313, and a limit of detection of 0.095 mg/dL. Selectivity tests against potentially competing interferents like glucose, ascorbic acid, urea, D-cystine, and creatinine showcase a significant resonance angle shift of 1.1135° for uric acid compared to 0.1853° for interferents at the same concentration. Significantly, at a low uric acid concentration of 0.5 mg/dL, a distinct shift of 0.3706° was observed, setting it apart from the lower values noticed at higher concentrations for all typical interferent samples. The uricase enzyme significantly enhances plasmonic sensors for uric acid detection, showcasing a seamless integration of optical principles and biological recognition elements. These sensors hold promise as vital tools in clinical and point-of-care settings, offering transformative potential in biosensing technologies and the potential to revolutionize healthcare outcomes in biomedicine.


Asunto(s)
Técnicas Biosensibles , Enzimas Inmovilizadas , Oro , Resonancia por Plasmón de Superficie , Urato Oxidasa , Ácido Úrico , Urato Oxidasa/química , Ácido Úrico/química , Ácido Úrico/análisis , Oro/química , Humanos , Enzimas Inmovilizadas/química , Técnicas Biosensibles/métodos , Límite de Detección , Nanopartículas del Metal/química , Succinimidas
7.
Biomimetics (Basel) ; 9(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38667255

RESUMEN

Biomaterials are an important and integrated part of modern medicine, and their development and improvement are essential. The fundamental requirement of a biomaterial is found to be in its interaction with the surrounding environment, with which it must coexist. The aim of this study was to assess the biological characteristics of hydroxyapatite (HAp)-based coatings doped with Mg and Zn ions obtained by the pulsed galvanostatic electrochemical method on the surface of pure titanium (cp-Ti) functionalized with titanium dioxide nanotubes (NTs TiO2) obtained by anodic oxidation. The obtained results highlighted that the addition of Zn or Mg into the HAp structure enhances the in vitro response of the cp-Ti surface functionalized with NT TiO2. The contact angle and surface free energy showed that all the developed surfaces have a hydrophilic character in comparison with the cp-Ti surface. The HAp-based coatings doped with Zn registered superior values than the ones with Mg, in terms of biomineralization, electrochemical behavior, and cell interaction. Overall, it can be said that the addition of Mg or Zn can enhance the in vitro behavior of the HAp-based coatings in accordance with clinical requirements. Antibacterial tests showed that the proposed HAp-Mg coatings had no efficiency against Escherichia coli, while the HAp-Zn coatings registered the highest antibacterial efficiency.

8.
Adv Healthc Mater ; 13(17): e2303888, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38451476

RESUMEN

Current vascular access options require frequent interventions. In situ tissue engineering (TE) may overcome these limitations by combining the initial success of synthetic grafts with long-term advantages of autologous vessels by using biodegradable grafts that transform into autologous vascular tissue at the site of implantation. Scaffolds (6 mm-Ø) made of supramolecular polycarbonate-bisurea (PC-BU), with a polycaprolactone (PCL) anti-kinking-coil, are implanted between the carotid artery and jugular vein in goats. A subset is bio-functionalized using bisurea-modified-Stromal cell-derived factor-1α (SDF1α) derived peptides and ePTFE grafts as controls. Grafts are explanted after 1 and 3 months, and evaluated for material degradation, tissue formation, compliance, and patency. At 3 months, the scaffold is resorbed and replaced by vascular neo-tissue, including elastin, contractile markers, and endothelial lining. No dilations, ruptures, or aneurysms are observed and grafts are successfully cannulated at termination. SDF-1α-peptide-biofunctionalization does not influence outcomes. Patency is lower in TE grafts (50%) compared to controls (100% patency), predominantly caused by intimal hyperplasia. Rapid remodeling of a synthetic, biodegradable vascular scaffold into a living, compliant arteriovenous fistula is demonstrated in a large animal model. Despite lower patency compared to ePTFE, transformation into autologous and compliant living tissue with self-healing capacity may have long-term advantages.


Asunto(s)
Prótesis Vascular , Cabras , Animales , Andamios del Tejido/química , Implantes Absorbibles , Fístula Arteriovenosa , Poliésteres/química , Arterias Carótidas/cirugía , Ingeniería de Tejidos/métodos , Quimiocina CXCL12/farmacología , Quimiocina CXCL12/metabolismo , Grado de Desobstrucción Vascular
9.
Biomater Adv ; 159: 213828, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479240

RESUMEN

Due to organ donor shortages, long transplant waitlists, and the complications/limitations associated with auto and allotransplantation, biomaterials and tissue-engineered models are gaining attention as feasible alternatives for replacing and reconstructing damaged organs and tissues. Among various tissue engineering applications, bone tissue engineering has become a promising strategy to replace or repair damaged bone. We aimed to provide an overview of bioactive ceramic scaffolds in bone tissue engineering, focusing on angiogenesis and the effect of different biofunctionalization strategies. Different routes to angiogenesis, including chemical induction through signaling molecules immobilized covalently or non-covalently, in situ secretion of angiogenic growth factors, and the degradation of inorganic scaffolds, are described. Physical induction mechanisms are also discussed, followed by a review of methods for fabricating bioactive ceramic scaffolds via microfabrication methods, such as photolithography and 3D printing. Finally, the strengths and weaknesses of the commonly used methodologies and future directions are discussed.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Angiogénesis , Materiales Biocompatibles , Cerámica/uso terapéutico , Cerámica/química
10.
Sensors (Basel) ; 24(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38475224

RESUMEN

This work focuses on demonstrating the working principle of inkjet-printed Au nanoparticle (NP) two-layer Gigahertz (2.6 GHz) microwave split-ring resonators (SRRs) as a novel platform for the detection of analytes on flexible substrates. In contrast to the standard fabrication of split-ring resonator biosensors using printed circuit board technology, which results in a seven-layer system, the resonators in this work were fabricated using a two-layer system. A ground plane is embedded in the SRR measurement setup. In this method, a microwave electromagnetic wave is coupled into the Au SRR via an inkjet-printed Cu-NP stripline that is photonically sintered. This coupling mechanism facilitates the detection of analytes by inducing resonance shifts in the SRR. In this study, the functionality of the printed sensors was demonstrated using two different Au functionalization processes, firstly, with HS-PEG7500-COOH, and, secondly, with protein G with an N-terminal cysteine residue. The sensing capabilities of the printed structures are shown by the attachment of biomolecules to the SRR and the measurement of the resulting resonance shift. The experiments show a clear shift of the resonance frequency in the range of 20-30 MHz for both approaches. These results demonstrate the functionality of the simplified printed two-layer microwave split-ring resonator for use as a biosensor.

11.
Heliyon ; 10(5): e26943, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38449639

RESUMEN

The 21st century information and communication industries have played the pivotal role of bio-sensing technologies, refining privacy policies for human performance, facilitating scientific innovation, shaping e-governance, and reinforcing public confidence using nanotechnology. Human body is a thermodynamic heat engine in providing effective mechanical work as a function of psyche, conventional fuel transformation into enriched protein meal, and balancing of work-life fulcrum. The triboelectric effect of rubbing surfaces, interfaces, and interphases is invincible from the large field of the planet to nanodomains.

12.
Adv Healthc Mater ; 13(15): e2304250, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38444191

RESUMEN

Nanoparticle (NP) surface functionalization with proteins, including monoclonal antibodies (mAbs), mAb fragments, and various peptides, has emerged as a promising strategy to enhance tumor targeting specificity and immune cell interaction. However, these methods often rely on complex chemistry and suffer from batch-dependent outcomes, primarily due to limited control over the protein orientation and quantity on NP surfaces. To address these challenges, a novel approach based on the supramolecular assembly of two peptides is presented to create a heterotetramer displaying VHHs on NP surfaces. This approach effectively targets both tumor-associated antigens (TAAs) and immune cell-associated antigens. In vitro experiments showcase its versatility, as various NP types are biofunctionalized, including liposomes, PLGA NPs, and ultrasmall silica-based NPs, and the VHHs targeting of known TAAs (HER2 for breast cancer, CD38 for multiple myeloma), and an immune cell antigen (NKG2D for natural killer (NK) cells) is evaluated. In in vivo studies using a HER2+ breast cancer mouse model, the approach demonstrates enhanced tumor uptake, retention, and penetration compared to the behavior of nontargeted analogs, affirming its potential for diverse applications.


Asunto(s)
Nanopartículas , Péptidos , Nanopartículas/química , Animales , Humanos , Ratones , Péptidos/química , Línea Celular Tumoral , Femenino , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Receptor ErbB-2/inmunología , Receptor ErbB-2/metabolismo , Neoplasias de la Mama/metabolismo
13.
J Biomater Sci Polym Ed ; 35(6): 880-897, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38346177

RESUMEN

The aim of the in vitro study was to asses the effect of hyaluronate in conjunction with bovine derived xenografts on the viability, proliferation on day 4, 7 and 10, expression of early osteogenic differentiation marker Alkaline phosphatase on day 14 and 21, collagen, calcium deposition on day 14, 21 and 28 and cellular characteristics, as assessed through live cell image analysis, confocal laser scanning microscopy and scanning electron microscopy, in primary human osteoblasts compared to three bovine xenografts without hyaluronate. All experiments were performed in triplicates. Data were compared between groups and timepoints using one-way analysis of variance (ANOVA). Bonferroni post hoc test were further used for multiple comparison between groups (p < .05) An increase in cell viability (p < .05) and enhanced ALP activity was observed in all xenografts. Specimens containing hyaluronate showed a highest significant difference (23755 ± 29953, p < .0001). The highest levels of calcium (1.60 ± 0.30) and collagen (1.92 ± 0.09, p < .0001) deposition were also observed with hyaluronate loaded groups. The osteoblasts were well attached and spread on all xenograft groups. However, a higher number of cells were observed with hyaluronate functionalized xenograft (76.27 ± 15.11, (p < .0001) in live cell image analysis and they migrated towards the graft boundaries. The biofunctionalization of xenografts with hyaluronate improves their in vitro performance on human osteoblasts. This suggests that hyaluronate might be able to improve the bone regeneration when using such xenografts.


Asunto(s)
Calcio , Osteogénesis , Humanos , Animales , Bovinos , Osteogénesis/fisiología , Xenoinjertos , Calcio/metabolismo , Diferenciación Celular , Osteoblastos , Colágeno/farmacología , Glicosaminoglicanos , Proliferación Celular , Fosfatasa Alcalina/metabolismo
14.
Bioact Mater ; 34: 436-462, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38282967

RESUMEN

Mesoporous bioactive glasses (MBGs), which belong to the category of modern porous nanomaterials, have garnered significant attention due to their impressive biological activities, appealing physicochemical properties, and desirable morphological features. They hold immense potential for utilization in diverse fields, including adsorption, separation, catalysis, bioengineering, and medicine. Despite possessing interior porous structures, excellent morphological characteristics, and superior biocompatibility, primitive MBGs face challenges related to weak encapsulation efficiency, drug loading, and mechanical strength when applied in biomedical fields. It is important to note that the advantageous attributes of MBGs can be effectively preserved by incorporating supramolecular assemblies, miscellaneous metal species, and their conjugates into the material surfaces or intrinsic mesoporous networks. The innovative advancements in these modified colloidal inorganic nanocarriers inspire researchers to explore novel applications, such as stimuli-responsive drug delivery, with exceptional in-vivo performances. In view of the above, we outline the fabrication process of calcium-silicon-phosphorus based MBGs, followed by discussions on their significant progress in various engineered strategies involving surface functionalization, nanostructures, and network modification. Furthermore, we emphasize the recent advancements in the textural and physicochemical properties of MBGs, along with their theranostic potentials in multiple cancerous and non-cancerous diseases. Lastly, we recapitulate compelling viewpoints, with specific considerations given from bench to bedside.

15.
Biomater Adv ; 158: 213768, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38237320

RESUMEN

Despite the clinical prevalence of various bone defect repair materials, a full understanding of their influence on bone repair and regeneration remains elusive. This study focuses on poly(acrylamide) (PAAm) hydrogels, popular 2D model substrates, which have regulable mechanical properties within physiological. However, their bio-inert nature requires surface biofunctionalization to enhance cell-material interactions and facilitate the study of bone repair mechanisms. We utilized PAAm hydrogels of varying stiffness (18, 76 and 295 kPa), employed sulfosuccinimidyl-6-(4'-azido-2'-nitropheny-lamino) hexanoate (sulfo-SANPAH) and N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride/N-hydroxysuccinimidyl acrylate (EDC/NHS) as crosslinkers, and cultured macrophages, endothelial cells, and bone mesenchymal stem cells on these hydrogels. Our findings indicated that sulfo-SANPAH's crosslinking efficiency surpassed that of EDC/NHS, irrespective of pore size and stiffness. Importantly, we observed that the stiffness and surface biofunctionalization method of hydrogels significantly impacted cell adhesion and proliferation. The collagen-modified hydrogels by EDC/NHS strategy failed to support the normal biological behavior of bone mesenchymal stem cells and hindered endothelial cell spreading. In contrast, these modified hydrogels by the sulfo-SANPAH method showed good cytocompatibility with the three types of cells. This study underscores the critical role of appropriate conjugation strategies for PAAm hydrogels, providing valuable insights for hydrogel surface modification in bone repair and regeneration research.


Asunto(s)
Resinas Acrílicas , Azidas , Regeneración Ósea , Células Endoteliales , Succinimidas , Hidrogeles/farmacología
16.
Int J Biol Macromol ; 260(Pt 2): 129379, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242410

RESUMEN

Advances in polymer-based nanocomposites have revolutionized biomedical applications over the last two decades. Heparin (HP), being a highly bioactive polymer of biological origin, provides strong biotic competence to the nanocomposites, broadening the horizon of their applicability. The efficiency, biocompatibility, and biodegradability properties of nanomaterials significantly improve upon the incorporation of heparin. Further, inclusion of structural/chemical derivatives, fractionates, and mimetics of heparin enable fabrication of versatile nanocomposites. Modern nanotechnological interventions have exploited the inherent biofunctionalities of heparin by formulating various nanomaterials, including inorganic/polymeric nanoparticles, nanofibers, quantum dots, micelles, liposomes, and nanogels ensuing novel functionalities targeting diverse clinical applications involving drug delivery, wound healing, tissue engineering, biocompatible coatings, nanosensors and so on. On this note, the present review explicitly summarises the recent HP-oriented nanotechnological developments, with a special emphasis on the reported successful engagement of HP and its derivatives/mimetics in nanocomposites for extensive applications in the laboratory and health-care facility. Further, the advantages and limitations/challenges specifically associated with HP in nanocomposites, undertaken in this current review are quintessential for future innovations/discoveries pertaining to HP-based nanocomposites.


Asunto(s)
Nanocompuestos , Nanopartículas , Heparina , Ingeniería de Tejidos , Nanocompuestos/química , Polímeros
17.
Macromol Biosci ; 24(3): e2300308, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37931180

RESUMEN

Nanofibrous scaffolds have attracted much attention in bladder reconstruction approaches due to their excellent mechanical properties. In addition, their biological properties can be improved by combination with biological materials. Taking into account the advantages of nanofibrous scaffolds and decellularized extracellular matrix (dECM) in tissue engineering, scaffolds of poly-L-lactic acid (PLLA) coated with decellularized human amnion membrane (hAM) or sheep bladder (SB)-derived ECM proteins are developed (amECM-coated PLLA and sbECM-coated PLLA, respectively). The bladder regenerative potential of modified electrospun PLLA scaffolds is investigated in rabbits. The presence of ECM proteins is confirmed on the nanofibers' surface. Coating the surface of the PLLA nanofibers improves cell adhesion and proliferation. Histological and immunohistochemical evaluations show that rabbits subjected to cystoplasty with a multilayered PLLA scaffold show de novo formation and maturation of the multilayered urothelial layer. However, smooth muscle bundles (myosin heavy chain [MHC] and α-smooth muscle actin [α-SMA] positive) are detected only in ECM-coated PLLA groups. All groups show no evidence of a diverticulumor fistula in the urinary bladder. These results suggest that the biofunctionalization of electrospun PLLA nanofibers with ECM proteins can be a promising option for bladder tissue engineering. Furthermore, hAM can also replace animal-sourced ECM proteins in bladder tissue regeneration approaches.


Asunto(s)
Nanofibras , Andamios del Tejido , Humanos , Conejos , Animales , Ovinos , Andamios del Tejido/química , Nanofibras/química , Vejiga Urinaria , Amnios , Ingeniería de Tejidos/métodos , Poliésteres/farmacología , Poliésteres/química , Proteínas de la Matriz Extracelular , Músculo Liso
18.
ACS Appl Bio Mater ; 7(1): 59-79, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38115212

RESUMEN

Identification of correct blood types holds paramount importance in understanding the pathophysiological parameters of patients, therapeutic interventions, and blood transfusion. Considering the wide applications of blood typing, the requirement of centralized laboratory facilities is not well suited on many occasions. In this context, there has been a significant development of such blood typing devices on different microfluidic platforms. The advantages of these microfluidic devices offer easy, rapid test protocols, which could potentially be adapted in resource-limited settings and thereby can truly lead to the decentralization of testing facilities. The advantages of pump-free liquid transport (i.e., low power consumption) and biodegradability of paper substrates (e.g., reduction in medical wastes) make it a more preferred platform in comparison to other microfluidic devices. However, these devices are often coupled with some inherent challenges, which limit their potential to be used on a mass commercial scale. In this context, our Review offers a succinct summary of the recent development, especially to understand the importance of underlying facets for long-term sustainability. Our Review also delineates the role of integration with digital technologies to minimize errors in interpreting the readouts.


Asunto(s)
Tipificación y Pruebas Cruzadas Sanguíneas , Microfluídica , Humanos , Dispositivos Laboratorio en un Chip
19.
Int J Biol Macromol ; 258(Pt 2): 129039, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154704

RESUMEN

Compared with traditional tedious organic solvent-assisted separation process in natural medicinal chemistry, cytomembrane (CM) fishing technique became a more appealing and greener choice for screening bioactive components from natural products. However, its large-scale practical value was greatly weakened by the easy fall-off of CMs from magnetic supports, rooted in the instability of common Fe3O4 particles and their insufficient interaction with CMs. In this research, a new green biostable platform was developed for drug screening through the integration of hyperbranched quaternized hydrothermal magnetic carbon spheres (HQ-HMCSs) and CMs. The positive-charged HQ-HMCSs were constructed by chitosan-based hydrothermal carbonization onto Fe3O4 nanospheres and subsequent aqueous hyperbranching quaternization with 1,4-butanediol diglycidyl ether and methylamine. The strong interaction between HQ-HMCSs and CMs was formed via electrostatic attraction of HQ-HMCSs to negative-charged CMs and covalent linkage derived from the epoxy-amine addition reactions. The chemically stable HMCSs and its integration with CMs contributed to dramatically higher stability and recyclability of bionic nanocomposites. With the fishing of osteoblast CMs integrated HQ-HMCSs, two novel potential anti-osteoporosis compounds, narcissoside and beta-ionone, were discovered from Hippophae rhamnoides L. Enhanced osteoblast proliferation, alkaline phosphatase, and mineralization levels proved their positive osteogenesis effects. Preliminary pharmacological investigation demonstrated their potential action on membrane proteins of estrogen receptor alpha and insulin-like growth factor 1. Furthermore, beta-ionone showed apparent therapeutic effects on osteogenic lesions in zebrafish. These results provide a green, stable, cost-efficient, and reliable access to rapid discovery of drug leads, which verifiably benefits the design of nanocarbon-based biocomposites with increasingly advanced functionality.


Asunto(s)
Productos Biológicos , Quitosano , Nanosferas , Norisoprenoides , Animales , Quitosano/química , Nanosferas/química , Pez Cebra , Carbono/química , Fenómenos Magnéticos
20.
Rev. colomb. biotecnol ; 25(2)dic. 2023.
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1535728

RESUMEN

En el presente trabajo, se biofuncionalizaron con heparina películas fabricadas a base de fibroína (SF) y polivinil alcohol (PVA) utilizando dos técnicas diferentes, la primera por acople de carbodiimida y la segunda por aprovechamiento de interacciones electrostáticas, buscando conseguir un comportamiento antitrombogénico en la superficie de las películas fabricas para su potencial uso como biomateriales para la fabricación de implantes cardiovasculares. Las muestras biofuncionalizadas fueron sometidas a una prueba de coagulación de sangre para verificar el éxito de dicha biofuncionalización. Los resultados mostraron que las muestras biofuncionalizadas por acople de carbodiimida, además de presentar una actividad antitrombogénica superior a las biofuncionalizadas por aprovechamiento de interacciones electrostáticas, presentaban valores de ángulos de contacto más cercanos a los de los materiales para la fabricación de implantes cardiovasculares, y que también, la biofuncionalización no afecta significativamente las propiedades mecánicas y superficiales de las películas fabricadas.


In the present work, fibroin, and polyvinyl alcohol (PVA) - based films were biofunctionalized using two different techniques, the first by carbodiimide coupling and second by exploiting electrostatic interactions, seeking to achieve antithrombogenic behavior on the surface of the manufactured films for their potential use as biomaterials for the manufacture of cardiovascular implants. The biofunctionalized samples were submitted to the blood clotting test to verify the success of said biofunctionalization. The results showed that the samples biofunctionalized by carbodiimide coupling, in addition to presenting a higher antithrombogenic activity than those biofunctionalized by taking advantage of electrostatic interactions, presented contact angles values closer to those of the materials for the manufacture of cardiovascular implants, and that also, the biofunctionalization does not significantly affect the mechanical and surface properties of the fabricated films

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA