Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(36): e2404797, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39030758

RESUMEN

2D perovskite passivation strategies effectively reduce defect-assisted carrier nonradiative recombination losses on the perovskite surface. Nonetheless, severe energy losses are causing by carrier thermalization, interfacial nonradiative recombination, and conduction band offset still persist at heterojunction perovskite/PCBM interfaces, which limits further performance enhancement of inverted heterojunction PSCs. Here, 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (5FTPP) is introduced between 3D/2D perovskite heterojunction and PCBM. Compared to tetraphenylporphyrin without electron-withdrawing fluoro-substituents, 5FTPP can self-assemble with PCBM at interface into donor-acceptor (D-A) complex with stronger supramolecular interaction and lower energy transfer losses. This rapid energy transfer from donor (5FTPP) to acceptor (PCBM) within femtosecond scale is demonstrated to enlarge hot carrier extraction rates and ranges, reducing thermalization losses. Furthermore, the incorporation of polystyrene derivative (PD) reinforces D-A interaction by inhibiting self-π-π stacking of 5FTPP, while fine-tuning conduction band offset and suppressing interfacial nonradiative recombination via Schottky barrier, dipole, and n-doping. Notably, the multidentate anchoring of PD-5FTPP with FA+, Pb2+, and I- mitigates the adverse effects of FA+ volatilization during thermal stress. Ultimately, devices with PD-5FTPP achieve a power conversion efficiency of 25.78% (certified: 25.36%), maintaining over 90% of initial efficiency after 1000 h of continuous illumination at the maximum power point (65 °C) under ISOS-L-2 protocol.

2.
Adv Mater ; 36(33): e2401206, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38888509

RESUMEN

Lead halide perovskite and organic semiconductors are promising classes of materials for photodetector (PD) applications. State-of-the-art perovskite PDs have performance metrics exceeding silicon PDs in the visible. While organic semiconductors offer bandgap tunability due to their chemical design with detection extended into the near-infrared (NIR), perovskites are limited to the visible band and the first fraction of the NIR spectrum. In this work, perovskite-organic heterojunction (POH) PDs with absorption up to 950 nm are designed by the dual contribution of perovskite and the donor:acceptor bulk-heterojunction (BHJ), without any intermediate layer. The effect of the energetics of the donor materials is systematically studied on the dark current (Jd) of the device by using the PBDB-T polymer family. Combining the experimental results with drift-diffusion simulations, it is shown that Jd in POH devices is limited by thermal generation via deep trap states in the BHJ. Thus, the best performance is obtained for the PM7-based POH, which delivers an ultra-low noise current of 2 × 10-14 A Hz-1/2 and high specific detectivity of 4.7 × 1012 Jones in the NIR. Last, the application of the PM7-based POH devices as NIR pulse oximeter with high-accuracy heartbeat monitoring at long-distance of 2 meters is demonstrated.

3.
Heliyon ; 10(10): e30802, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38778931

RESUMEN

ZnO-Cu2O composites were made as photocatalysts in a range of different amounts using an easy, cheap, and environment-friendly coprecipitation method due to their superior visible light activity to remove pollutants from the surrounding atmosphere. X-ray diffraction and Fourier transform infrared spectroscopy (FT-IR) have demonstrated that ZnO-Cu2O catalysts are made of highly pure hexagonal ZnO and cubic Cu2O. X-ray photoelectron spectroscopy has confirmed that there is a substantial interaction between the two phases of the resultant catalyst. The optical characterizations of the synthesized ZnO-Cu2O composite were done via UV-vis reflectance spectroscopy. Due to the doping on ZnO, the absorption range of the ZnO-Cu2O catalyst is shifted from the ultraviolet to the visible region due to diffuse reflection. The degradation efficiency is affected by the Ratio of ZnO: Cu2O and ZnO-Cu2O composite with a proportion of 90:10 exhibited the most prominent photocatalytic activity on Acid Red 114, with a pseudo-first-order rate constant of 0.05032 min-1 that was 6 and 11 times greater than those of ZnO and Cu2O, respectively. The maximum degradation efficiency is 97 %. The enhanced photocatalytic activity of the composite is caused by the synergistic interaction of ZnO and Cu2O, which improves visible light absorption by lowering band gap energy and decreasing the rate at which the electron-hole pairs recombine. The scavenging experiment confirmed that hydroxyl radical was the dominant species for the photodegradation of Acid Red 114. Notably, the recycling test demonstrated the ZnO-Cu2O photocatalyst was highly stable and recyclable. These results suggest that the ZnO-Cu2O mix might be able to clean up environmental pollutants when it meets visible light.

4.
Micromachines (Basel) ; 15(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675323

RESUMEN

In this study, the electrical performance and bias stability of InSnO/a-InGaZnO (ITO/a-IGZO) heterojunction thin-film transistors (TFTs) are investigated. Compared to a-IGZO TFTs, the mobility (µFE) and bias stability of ITO/a-IGZO heterojunction TFTs are enhanced. The band alignment of the ITO/a-IGZO heterojunction is analyzed by using X-ray photoelectron spectroscopy (XPS). A conduction band offset (∆EC) of 0.5 eV is observed in the ITO/a-IGZO heterojunction, resulting in electron accumulation in the formed potential well. Meanwhile, the ∆EC of the ITO/a-IGZO heterojunction can be modulated by nitrogen doping ITO (ITON), which can affect the carrier confinement and transport properties at the ITO/a-IGZO heterojunction interface. Moreover, the carrier concentration distribution at the ITO/a-IGZO heterointerface is extracted by means of TCAD silvaco 2018 simulation, which is beneficial for enhancing the electrical performance of ITO/a-IGZO heterojunction TFTs.

5.
Sci Rep ; 14(1): 9414, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658733

RESUMEN

The h-BN/diamond mix-dimensional heterostructure has broad application prospects in the fields of optoelectronic devices and power electronic devices. In this paper, the electronic properties and band offsets of hexagonal boron nitride (h-BN)/(H, O, F, OH)-diamond (111) heterostructures were studied by first-principles calculations under biaxial strain. The results show that different terminals could significantly affect the interface binding energy and charge transfer of h-BN/diamond heterostructure. All heterostructures exhibited semiconductor properties. The h-BN/(H, F)-diamond systems were indirect bandgap, while h-BN/(O, OH)-diamond systems were direct bandgap. In addition, the four systems all formed type-II heterostructures, among which h-BN/H-diamond had the largest band offset, indicating that the system was more conducive to the separation of electrons and holes. Under biaxial strain the bandgap values of the h-BN/H-diamond system decreased, and the band type occurred direct-indirect transition. The bandgap of h-BN/(O, F, OH)-diamond system increased linearly in whole range, and the band type only transformed under large strain. On the other hand, biaxial strain could significantly change the band offset of h-BN/diamond heterostructure and promote the application of this heterostructure in different fields. Our work provides theoretical guidance for the regulation of the electrical properties of h-BN/diamond heterostructures by biaxial strain.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38019534

RESUMEN

Heterojunctions featuring a type II band alignment play a crucial role in a wide range of devices, particularly in the realm of solar cells. However, the design of such heterojunctions with a specific type of band alignment poses a substantial challenge due to the immense number of potential combinations of bulk semiconductors and their relative orientations. In this study, we propose an efficient, high-throughput computational screening method tailored for heterojunctions. Our approach, using the ideal vacuum level as a reference energy, eliminates the need for explicit electronic structure calculations for junctions. Through this protocol, we identify 1041 type II heterojunctions out of 2692 structures constructed from 86 selected inorganic compounds with appropriate band gaps sourced from the Inorganic Crystal Structure Database. For potential application in solar cells, we assess these heterojunctions, and remarkably, 58 of them exhibit a power conversion efficiency (PCE) exceeding 15%, with 13 surpassing the 20% threshold. Test calculations with expensive interface models confirm the reliability of PCE predictions based on ideal vacuums. These predictions will be of benefit in assessing the material applicability for solar cell applications. Furthermore, the versatility of our proposed screening method extends beyond solar cells, making it a valuable theoretical design tool that can be applied to a wide range of heterojunction devices.

7.
Nanomaterials (Basel) ; 13(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37887920

RESUMEN

Semiconductor heterostructures have been the backbone of developments in electronic and optoelectronic devices. One class of structures of interest is the so-called type II band alignment, in which optically excited electrons and holes relax into different material layers. The unique properties observed in two-dimensional transition metal dichalcogenides and the possibility to engineer van der Waals heterostructures make them candidates for future high-tech devices. In these structures, electronic, optical, and magnetic properties can be tuned through the interlayer coupling, thereby opening avenues for developing new functional materials. We report the possibility of explicitly tuning the emission of interlayer exciton energies in the binary-ternary heterobilayer of Mo0.5W0.5Se2 with MoSe2 and WSe2. The respective interlayer energies of 1.516 eV and 1.490 eV were observed from low-temperature photoluminescence measurements for the MoSe2- and WSe2- based heterostructures, respectively. These interlayer emission energies are above those reported for MoSe2/WSe2 (≃1.30-1.45 eV). Consequently, binary-ternary heterostructure systems offer an extended energy range and tailored emission energies not accessible with the binary counterparts. Moreover, even though Mo0.5W0.5Se2 and MoSe2 have almost similar optical gaps, their band offsets are different, resulting in charge transfer between the monolayers following the optical excitation. Thus, confirming TMDs alloys can be used to tune the band-offsets, which adds another design parameter for application-specific optoelectronic devices.

8.
ACS Appl Mater Interfaces ; 15(32): 38888-38900, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37539844

RESUMEN

Optical second-harmonic generation (SHG) is a reliable technique for probing material surface and interface characteristics. Here, we have demonstrated a non-destructive, contactless SHG-based semiconductor/dielectric interface characterization method to measure the conduction band offset and quantitatively evaluate charge densities at the interface in oxide and at the oxide surface. This technique extracts the interface-trapped charge type (donor/acceptor) and qualitatively analyzes the process-induced variation in interface states (Dit), oxide, and oxide surface state density. These qualitative and quantitative analyses provide us with a glimpse into the band bending. The metrology method is validated through a detailed characterization of the Si/HfO2 interface. An optical setup has been developed to monitor the time-dependent second-harmonic generation (TDSHG) from the semiconductor/oxide interface. The temporal characteristics of TDSHG are explained with its relationship to the filling of Dit and spatio-temporal trapping of photoexcited charge in oxide and at the oxide surface. A numerical solver, based on plausible carrier dynamics, is used to model the experimental data and to extract the electronic properties at the Si/HfO2 interface.

9.
Nanomaterials (Basel) ; 12(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36500747

RESUMEN

Silicon oxide atomic layer deposition synthesis development over the last few years has open the route to its use as a dielectric within diamond electronics. Its great band-gap makes it a promising material for the fabrication of diamond-metal-oxide field effects transistor gates. Having a sufficiently high barrier both for holes and electrons is mandatory to work in accumulation and inversion regimes without leakage currents, and no other oxide can fulfil this requisite due to the wide diamond band-gap. In this work, the heterojunction of atomic-layer-deposited silicon oxide and (100)-oriented p-type oxygen-terminated diamond is studied using scanning transmission electron microscopy in its energy loss spectroscopy mode and X-ray photoelectron spectroscopy. The amorphous phase of silicon oxide was successfully synthesized with a homogeneous band-gap of 9.4 eV. The interface between the oxide and diamond consisted mainly of single- and double-carbon-oxygen bonds with a low density of interface states and a straddling band setting with a 2.0 eV valence band-offset and 1.9 eV conduction band-offset.

10.
Heliyon ; 8(11): e11380, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36387462

RESUMEN

Perovskite Solar Cells (PSCs) are the most promising candidates for low-cost and high-efficiency devices in the future photovoltaic market. PSCs are also used as the top cell in tandem devices with silicon bottom cells. However, research in PSCs is still at an early stage while racing towards a promising future. Along with experimental research, numerous simulation studies are conducted with PSCs aiming to analyze new materials and optimize their performance. Here, a wavelength-dependent model is implemented to account for the reflected part of irradiance from the cells, which is ignored in most SCAPS-1D based PSC simulated models. This model optimizes the MgF2 anti-reflective coating in SCAPS-1D simulation to allow maximum photons to pass inside the device. A simple structured PSC (MgF2/Glass/ITO/ZnO/CH3NH3PbI3/Spiro-OMeTAD/Au) is simulated and optimized optically as well as electrically with this model's modified spectrum. The device was optimized for layer thickness, defects, and doping. Moreover, the effects of temperature and device resistances are discussed. The optimized device yields 21.62% power conversion efficiency, which can be further improved to reach over 25% through better processing schemes. Finally, the optimized device was compared with other devices having different ETL/absorber/HTL combinations and the pathway to achieving higher efficiencies was discussed. This article aims at improving the credibility of simulated devices by incorporating top surface reflection with electrical optimization.

11.
Adv Mater ; 34(43): e2206486, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36047665

RESUMEN

The intentionally designed band alignment of heterostructures and doping engineering are keys to implement device structure design and device performance optimization. According to the theoretical prediction of several typical materials among the transition metal dichalcogenides (TMDs) and group-IV metal chalcogenides, MoS2 and SnSe2 present the largest staggered band offset. The large band offset is conducive to the separation of photogenerated carriers, thus MoS2 /SnSe2 is a theoretically ideal candidate for fabricating photodetector, which is also verified in the experiment. Furthermore, in order to extend the photoresponse spectrum to solar-blind ultraviolet (SBUV), doping engineering is adopted to form an additional electron state, which provides an extra carrier transition channel. In this work, pure MoS2 /SnSe2 and doped MoS2 /SnSe2 heterostructures are both fabricated. In terms of the photoelectric performance evaluation, the rejection ratio R254 /R532 of the photodetector based on doped MoS2 /SnSe2 is five orders of magnitude higher than that of pure MoS2 /SnSe2 , while the response time is obviously optimized by 3 orders. The results demonstrate that the combination of band alignment and doping engineering provides a new pathway for constructing SBUV photodetectors.

12.
Artículo en Inglés | MEDLINE | ID: mdl-35848769

RESUMEN

The band offsets for the ß-(Al0.21Ga0.79)2O3/ß-Ga2O3 (010) heterojunction have been experimentally measured by X-ray photoelectron spectroscopy. High-quality ß-(Al0.21Ga0.79)2O3 films were grown by metal-organic chemical vapor deposition for characterization. The indirect band gap of ß-(Al0.21Ga0.79)2O3 was determined by optical transmission to be 4.69 ± 0.03 eV with a direct transition of 5.37 ± 0.03 eV, while ß-Ga2O3 was confirmed to have an indirect band gap of 4.52 ± 0.03 eV with a direct transition of 4.94 ± 0.03 eV. The resulting band alignment at the heterojunction was determined to be of type II with the valence and conduction band edges of ß-(Al0.21Ga0.79)2O3 being -0.26 ± 0.08 and 0.43 ± 0.08 eV, respectively, above those of ß-Ga2O3 (010). These values can now be used to help better design and predict the performance of ß-(AlxGa1-x)2O3 heterojunction-based devices.

13.
ACS Appl Mater Interfaces ; 14(30): 34697-34705, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35856522

RESUMEN

An efficient carrier transport is essential for enhancing the performance of thin-film solar cells, in particular Cu(In,Ga)Se2 (CIGS) solar cells, because of their great sensitivities to not only the interface but also the film bulk. Conventional methods to investigate the outcoming carriers and their transport properties measure the current and voltage either under illumination or dark conditions. However, the evaluation of current and voltage changes along the cross-section of the devices presents several limitations. To mitigate this shortcoming, we prepared gently etched devices and analyzed their properties using micro-Raman scattering spectroscopy, Kelvin probe force microscopy, and photoluminescence measurements. The atomic distributions and microstructures of the devices were investigated, and the defect densities in the device bulk were determined via admittance spectroscopy. The effects of Ga grading on the charge transport at the CIGS-CdS interface were categorized into various types of band offsets, which were directly confirmed by our experiments. The results indicated that reducing open-circuit voltage loss is crucial for obtaining a higher power conversion efficiency. Although the large Ga grading in the CIGS absorber induced higher defect levels, it effectuated a smaller open-circuit voltage loss because of carrier transport enhancement at the absorber-buffer interface, resulting from the optimized conduction band offsets.

14.
Sensors (Basel) ; 21(12)2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34204838

RESUMEN

Terahertz radiation pulses emitted after exciting semiconductor heterostructures by femtosecond optical pulses were used to determine the electron energy band offsets between different constituent materials. It has been shown that when the photon energy is sufficient enough to excite electrons in the narrower bandgap layer with an energy greater than the conduction band offset, the terahertz pulse changes its polarity. Theoretical analysis performed both analytically and by numerical Monte Carlo simulation has shown that the polarity inversion is caused by the electrons that are excited in the narrow bandgap layer with energies sufficient to surmount the band offset with the wide bandgap substrate. This effect is used to evaluate the energy band offsets in GaInAs/InP and GaInAsBi/InP heterostructures.

15.
ACS Appl Mater Interfaces ; 13(17): 20479-20488, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33878265

RESUMEN

Impurity doping in silicon (Si) ultra-large-scale integration is one of the key challenges which prevent further device miniaturization. Using ultraviolet photoelectron spectroscopy and X-ray absorption spectroscopy in the total fluorescence yield mode, we show that the lowest unoccupied and highest occupied electronic states of ≤3 nm thick SiO2-coated Si nanowells shift by up to 0.2 eV below the conduction band and ca. 0.7 eV below the valence band edge of bulk silicon, respectively. This nanoscale electronic structure shift induced by anions at surfaces (NESSIAS) provides the means for low-nanoscale intrinsic Si (i-Si) to be flooded by electrons from an external (bigger, metallic) reservoir, thereby getting highly electron- (n-) conductive. While our findings deviate from the behavior commonly believed to govern the properties of silicon nanowells, they are further confirmed by the fundamental energy gap as per nanowell thickness when compared against published experimental data. Supporting our findings further with hybrid density functional theory calculations, we show that other group IV semiconductors (diamond, Ge) do respond to the NESSIAS effect in accord with Si. We predict adequate nanowire cross-sections (X-sections) from experimental nanowell data with a recently established crystallographic analysis, paving the way to undoped ultrasmall silicon electronic devices with significantly reduced gate lengths, using complementary metal-oxide-semiconductor-compatible materials.

16.
ACS Appl Mater Interfaces ; 13(13): 15746-15754, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33764742

RESUMEN

Understanding electronic and ionic transport across interfaces is crucial for designing high-performance electric devices. The adjustment of work functions is critical for band alignment at the interfaces of metals and semiconductors. However, the electronic structures at the interfaces of metals and mixed conductors, which conduct both electrons and ions, remain poorly understood. This study reveals that a Schottky barrier is present at the interface of the Nb-doped SrTiO3 metal and a LiCoO2 mixed conductor and that the interfacial resistance can be tuned by inserting an electric dipole layer. The interfacial resistance significantly decreased (by more than 5 orders of magnitude) upon the insertion of a 1 nm thick insulating LaAlO3 layer at the interface. We apply these techniques to solid-state lithium batteries and demonstrate that tuning the electronic energy band alignment by interfacial engineering is applicable to the interfaces of metals and mixed conductors. These results highlight the importance of designing positive electrode and current collector interfaces for solid-state lithium batteries with high power density.

17.
J Phys Condens Matter ; 33(3)2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33007770

RESUMEN

One of the major challenges for the GaN-based high-electron-mobility transistors (HEMTs) used as high power devices is to understand the effect of defects, especially on the band alignment. Usingab initiocalculation, herein we investigate the variations of band offsets with interfacial structure, defect position, interface states and Al content in AlxGa1-xN/GaN heterostructures (x= 0.06, 0.13, 0.19, 0.25). It was found that N vacancy (VN) and Ga anti-site (GaN) introduce nonlocal interface states and the change of valence band offset (VBO) depends on the defect location. While the interface states induced by Ga vacancy (VGa) and N anti-site (NGa) show strong localization behavior, and their impact on VBO is independent on the defect position. The low symmetry of wurtzite nitride and the lattice mismatch between AlGaN and GaN will generate polarization charge (spontaneous polarization and piezoelectric polarization) at the interface. Along the direction of polarization field, VNand GaNlying in the AlGaN side change the VBO most pronouncedly. These theoretical results provide useful guidance for control of point defects in AlGaN/GaN HEMTs, which have profound impact on the performance and reliability of GaN-based devices.

18.
ACS Nano ; 14(10): 14008-14016, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32954722

RESUMEN

Heteroatom-doped carbon-based materials are of significance for clean energy conversion and storage because of their fascinating electronic properties, low cost, high durability, and environmental friendliness. Atomically precise fabrication of carbon-based materials with well-defined heteroatom-dopant positions and atomic-scale understanding of their atomic-level electronic properties is a challenge. Herein, we demonstrate the bottom-up on-surface synthesis of 1D and 2D monolayer carbon nitride nanostructures with precise control of the nitrogen-atom doping sites and pore sizes. We also observe an electronic band offset at the C-N heterojunction. Using high-resolution scanning tunneling microscopy, the atomic structure of the as-prepared carbon nitride nanoporous monolayers are revealed, indicating successful and precise control of the structures and N atom doping sites. Furthermore, corroborated by theoretical calculations, scanning tunneling spectroscopy measurements reveal a valence band shift of 140 meV that results in an electric field of 2.9 × 108 V m-1 at the C-N heterojunction, indicating efficient separation of the electron-hole pair at the N doping site. Our finding offers direct atomic-level insights into the local electronic structure of the heteroatom-doped carbon-based materials.

19.
ACS Appl Mater Interfaces ; 12(24): 27131-27139, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32427458

RESUMEN

Organic-inorganic lead halide perovskites are promising materials for realization of low-cost and high-efficiency solar cells. Because of the toxicity of lead, Sn-based perovskite materials have been developed as alternatives to enable fabrication of Pb-free perovskite solar cells. However, the solar cell performance of Sn-based perovskite solar cells (Sn-PSCs) remains poor because of their large open-circuit voltage (VOC) loss. Sn-based perovskite materials have lower electron affinities than Pb-based perovskite materials, which result in larger conduction band offset (CBO) values at the interface between the Sn-based perovskite and a conventional electron transport layer (ETL) material such as TiO2. Herein, the relationship between the VOC and the CBO in these devices was studied to improve the solar cell performances of Sn-PSCs. It was found that the band offset at the ETL/perovskite layer interface affects the VOC of the Sn-PSCs significantly but does not affect that of the Pb-PSCs because the Sn-based perovskite material is a p-type semiconductor, unlike the Pb-based perovskite. It was also found that Nb2O5 has the CBO that is closest to zero for Sn-based perovskite materials, and the VOC values of Sn-PSCs that use Nb2O5 as their ETL are higher than those of Sn-PSCs using TiO2 or SnO2 ETLs. This study indicates that control of the energy alignment at the ETL/perovskite layer interface is an important factor in improving the VOC values of Sn-PSCs.

20.
J Hazard Mater ; 392: 122345, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32092644

RESUMEN

Petal-like ZnS-SnS2 heterojunctions with Z-scheme band alignment were prepared by one-pot solvothermal strategy. The optimal (1:1) ZnS-SnS2 can degrade 93.46 % of tetracycline and remove 73.9 % COD of pharmaceutical wastewater under visible-light irradiation due to the efficient production of H, O2-, h+ and OH. The toxicity evaluation by ECOSAR prediction and the growth of E. coli indicates efficient toxicity reduction of tetracycline by photocatalysis and the non-toxicity of ZnS-SnS2. The attacked sites on tetracycline by reactive species were analyzed according to Fukui index, and two degradation pathways of tetracycline were inferred via the identification of intermediate products. Tetracycline degradation efficiency and the energy consumption in different water bodies were compared, and it was found that the electrical energy per order (EE/O) was the lowest in Ganjiang River. The valence band offset (ΔEVBO) and conduction band offset (ΔECBO) of ZnS-SnS2 were 1.02 eV and 0.22 eV, respectively. The probable photocatalytic mechanism of ZnS/SnS2 heterojunctions with Z-scheme band alignment based on ΔEVBO and ΔECBO was first presented.


Asunto(s)
Antibacterianos/química , Luz , Sulfuros/efectos de la radiación , Tetraciclina/química , Compuestos de Estaño/efectos de la radiación , Contaminantes Químicos del Agua/química , Compuestos de Zinc/efectos de la radiación , Antibacterianos/toxicidad , Catálisis , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Procesos Fotoquímicos , Sulfuros/química , Tetraciclina/toxicidad , Compuestos de Estaño/química , Eliminación de Residuos Líquidos , Aguas Residuales , Purificación del Agua , Compuestos de Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA