Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 12205, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806557

RESUMEN

Due to the high degree of automation, automated guided vehicles (AGVs) have been widely used in many scenarios for transportation, and traditional computing power is stretched in large-scale AGV scheduling. In recent years, quantum computing has shown incomparable performance advantages in solving specific problems, especially Combinatorial optimization problem. In this paper, quantum computing technology is introduced into the study of the AGV scheduling problem. Additionally two types of quadratic unconstrained binary optimisation (QUBO) models suitable for different scheduling objectives are constructed, and the scheduling scheme is coded into the ground state of Hamiltonian operator, and the problem is solved by using optical coherent Ising machine (CIM). The experimental results show that compared with the traditional calculation method, the optical quantum computer can save 92% computation time on average. It has great application potential.

2.
Biomimetics (Basel) ; 9(1)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38248609

RESUMEN

Automated guided vehicles (AGVs) are vital for optimizing the transport of material in modern industry. AGVs have been widely used in production, logistics, transportation, and commerce, enhancing productivity, lowering labor costs, improving energy efficiency, and ensuring safety. However, path planning for AGVs in complex and dynamic environments remains challenging due to the computation of obstacle avoidance and efficient transport. This study proposes a novel approach that combines multi-objective particle swarm optimization (MOPSO) and the dynamic-window approach (DWA) to enhance AGV path planning. Optimal AGV trajectories considering energy consumption, travel time, and collision avoidance were used to model the multi-objective functions for dealing with the outcome-feasible optimal solution. Empirical findings and results demonstrate the approach's effectiveness and efficiency, highlighting its potential for improving AGV navigation in real-world scenarios.

3.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37420781

RESUMEN

This paper presents a multi-agent reinforcement learning (MARL) algorithm to address the scheduling and routing problems of multiple automated guided vehicles (AGVs), with the goal of minimizing overall energy consumption. The proposed algorithm is developed based on the multi-agent deep deterministic policy gradient (MADDPG) algorithm, with modifications made to the action and state space to fit the setting of AGV activities. While previous studies overlooked the energy efficiency of AGVs, this paper develops a well-designed reward function that helps to optimize the overall energy consumption required to fulfill all tasks. Moreover, we incorporate the e-greedy exploration strategy into the proposed algorithm to balance exploration and exploitation during training, which helps it converge faster and achieve better performance. The proposed MARL algorithm is equipped with carefully selected parameters that aid in avoiding obstacles, speeding up path planning, and achieving minimal energy consumption. To demonstrate the effectiveness of the proposed algorithm, three types of numerical experiments including the ϵ-greedy MADDPG, MADDPG, and Q-Learning methods were conducted. The results show that the proposed algorithm can effectively solve the multi-AGV task assignment and path planning problems, and the energy consumption results show that the planned routes can effectively improve energy efficiency.


Asunto(s)
Aprendizaje , Recompensa , Algoritmos , Vehículos Autónomos , Fenómenos Físicos
4.
Heliyon ; 9(5): e15950, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37215808

RESUMEN

Automated Guided Vehicles (AGVs) have become a vital part of the automation sector and a key component of a new industrial revolution that promises to: i. automate the entire manufacturing process, ii. increase productivity rates, iii. develop safer workplaces, while iv. maximising profits and reducing running costs for businesses. However, several concerns arise in the face of this very promising revolution. A major issue is how to ensure that AGVs function effectively and safely during interactions with humans. Another one concerns the ethical desirability of pervasive, continuous, and multidimensional couplings (or interactions) between humans and robots. Generally speaking, automated systems, in virtue of their vast sensing capabilities, may pose privacy challenges to their users. This is because such systems can seamlessly gather information about people' behaviors, without people's consent or awareness. To tackle the important issues abovementioned, we performed a systematic literature review [SLR] on AGVs with mounted serial manipulators. We used as an input 282 papers published in the relevant scientific literature. We analysed these papers and selected 50 papers based on certain criteria to find out trends, algorithms, performance metrics used, as well as potential ethical concerns raised by the deployment of AGVs in the industry. Our findings suggest that corporations can effectively rely on AGVs with mounted manipulators as an efficient and safe solution to production challenges.

5.
Sensors (Basel) ; 23(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37050575

RESUMEN

Recently, a novel approach in the field of Industry 4.0 factory operations was proposed for a new generation of automated guided vehicles (AGVs) that are connected to a virtualized programmable logic controller (PLC) via a 5G multi-access edge-computing (MEC) platform to enable remote control. However, this approach faces a critical challenge as the 5G network may encounter communication disruptions that can lead to AGV deviations and, with this, potential safety risks and workplace issues. To mitigate this problem, several works have proposed the use of fixed-horizon forecasting techniques based on deep-learning models that can anticipate AGV trajectory deviations and take corrective maneuvers accordingly. However, these methods have limited prediction flexibility for the AGV operator and are not robust against network instability. To address this limitation, this study proposes a novel approach based on multi-horizon forecasting techniques to predict the deviation of remotely controlled AGVs. As its primary contribution, the work presents two new versions of the state-of-the-art transformer architecture that are well-suited to the multi-horizon prediction problem. We conduct a comprehensive comparison between the proposed models and traditional deep-learning models, such as the long short-term memory (LSTM) neural network, to evaluate the performance and capabilities of the proposed models in relation to traditional deep-learning architectures. The results indicate that (i) the transformer-based models outperform LSTM in both multi-horizon and fixed-horizon scenarios, (ii) the prediction accuracy at a specific time-step of the best multi-horizon forecasting model is very close to that obtained by the best fixed-horizon forecasting model at the same step, (iii) models that use a time-sequence structure in their inputs tend to perform better in multi-horizon scenarios compared to their fixed horizon counterparts and other multi-horizon models that do not consider a time topology in their inputs, and (iv) our experiments showed that the proposed models can perform inference within the required time constraints for real-time decision making.

6.
Sensors (Basel) ; 22(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36298370

RESUMEN

Automated guided vehicles are widely used in warehousing environments for automated pallet handling, which is one of the fundamental parts to construct intelligent logistics systems. Pallet detection is a critical technology for automated guided vehicles, which directly affects production efficiency. A novel pallet detection method for automated guided vehicles based on point cloud data is proposed, which consists of five modules including point cloud preprocessing, key point extraction, feature description, surface matching and point cloud registration. The proposed method combines the color with the geometric features of the pallet point cloud and constructs a new Adaptive Color Fast Point Feature Histogram (ACFPFH) feature descriptor by selecting the optimal neighborhood adaptively. In addition, a new surface matching method called the Bidirectional Nearest Neighbor Distance Ratio-Approximate Congruent Triangle Neighborhood (BNNDR-ACTN) is proposed. The proposed method overcomes the problems of current methods such as low efficiency, poor robustness, random parameter selection, and being time-consuming. To verify the performance, the proposed method is compared with the traditional and modified Iterative Closest Point (ICP) methods in two real-world cases. The results show that the Root Mean Square Error (RMSE) is reduced to 0.009 and the running time is reduced to 0.989 s, which demonstrates that the proposed method has faster registration speed while maintaining higher registration accuracy.

7.
Front Neurorobot ; 16: 1053067, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699949

RESUMEN

In modern industrial warehouses, heterogeneous and flexible fleets of automated guided vehicles (AGVs) are widely used to improve transport efficiency. However, as their scale and limit of battery capacity increase, the complexity of dynamic scheduling also increases dramatically. The problem is to assign tasks and determine detailed paths to AGVs to keep the multi-AGV system running efficiently and sustainedly. In this context, a mixed-integer linear programming (MILP) model is formulated. A hierarchical planning method is used, which decomposes the integrated problem into two levels: the upper-level task-assignment problem and the lower-level path-planning problem. A hybrid discrete state transition algorithm (HDSTA) based on an elite solution set and the Tabu List method is proposed to solve the dynamic scheduling problem to minimize the sum of the costs of requests and the tardiness costs of conflicts for the overall system. The efficacy of our method is investigated by computational experiments using real-world data.

8.
Sensors (Basel) ; 21(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34883834

RESUMEN

The contemporary market creates a demand for continuous improvement of production, service, and management processes. Increasingly advanced IT technologies help designers to meet this demand, as they allow them to abandon classic design and design-testing methods in favor of techniques that do not require the use of real-life systems and thus significantly reduce the costs and time of implementing new solutions. This is particularly important when re-engineering production and logistics processes in existing production companies, where physical testing is often infeasible as it would require suspension of production for the testing period. In this article, we showed how the Digital Twin technology can be used to test the operating environment of an autonomous mobile robot (AMR). In particular, the concept of the Digital Twin was used to assess the correctness of the design assumptions adopted for the early phase of the implementation of an AMR vehicle in a company's production hall. This was done by testing and improving the case of a selected intralogistics task in a potentially "problematic" part of the shop floor with narrow communication routes. Three test scenarios were analyzed. The results confirmed that the use of digital twins could accelerate the implementation of automated intralogistics systems and reduce its costs.


Asunto(s)
Robótica , Pruebas Diagnósticas de Rutina , Tecnología
9.
Sensors (Basel) ; 20(15)2020 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-32722582

RESUMEN

In the last decades, virtual sensors have found increasing attention in the research community. Virtual sensors employ mathematical models and different sources of information such as actuator states or sensors, which are already existing in a system, in order to generate virtual measurements. Additionally, in recent years, the concept of virtual actuators has been proposed by leading researchers. Virtual actuators are parts of a fault-tolerant control strategy and aim to accommodate faults and to achieve a safe operation of a faulty plant. This paper describes a novel concept for a fuzzy virtual actuator applied to an automated guided vehicle (AGV). The application of fuzzy logic rules allows integrating expert knowledge or experimental data into the decision making of the virtual actuator. The AGV under consideration disposes of an innovative steering concept, which leads to considerable advantages in terms of maneuverability, but requires an elaborate control system. The application of the virtual actuator allows the accommodation of several possible faults, such as a slippery surface under one of the drive modules of the AGV.

10.
Sensors (Basel) ; 19(19)2019 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-31547572

RESUMEN

The increasing use of Automated Guided Vehicles (AGV) in the industry points to a search for better techniques and technologies to adapt to market requirements. Proper position control and movement give an AGV greater movement accuracy and greater lateral oscillations stability and vibration. It leads to smaller corridors and leaner plants, to more relaxed shipment devices, and to greater safety in the transport of fragile loads, for instance. AGV control techniques are not new, but new sensors' applications are possible, such as USB cameras. In this sense, it is necessary to ensure the sensor is adequate to control system requirements. This work addresses AGVs driven by passive floor demarcations. It presents a qualitative analysis of a USB camera as sensors for AGV control, not yet a common industrial application. We performed the experiments with a small AGV prototype on an eight-shaped lane, varying both camera parameters and AGV parameters, such as linear speed. The AGV uses a USB camera with different image processing settings-different morphological filters structuring elements shapes and sizes, and three different image resolutions-to analyze the factors that affect line detection and control processing. This paper's main contribution is a qualitative and quantitative analysis for the different sensor configurations. In addition, it discusses the influence sources on camera image as a position sensor. Furthermore, the experiments confirm sensor pertinence for the proposed control system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA