Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
iScience ; 27(9): 110785, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39286503

RESUMEN

Supernumerary teeth are common developmental anomalies of dentition. However, the factors and mechanisms driving their formation remain largely unknown. Here, we report that conditional knockout of Fst, encoding an antagonist for the transforming growth factor ß (TGF-ß) signaling pathway, in both oral epithelium and mesenchyme of mice (Fst CKO ) led to supernumerary upper incisor teeth, arising from the lingual dental epithelium of the native teeth and preceded by an enlarged and split lingual cervical loop. Fst-deficiency greatly activated TGF-ß signaling in developing maxillary incisor teeth, associated with increased epithelium cell proliferation. Moreover, Fst CKO teeth exhibited increased expression of Tbx1, Sp6, and Sox2, which were identified as direct targets of TGF-ß/SMAD2 signaling. Finally, we show that upregulation of Tbx1 in response to Fst-deficiency was largely responsible for the formation of extra teeth in Fst CKO mice. Taken together, our investigation indicates a novel role for Fst in controlling murine tooth number by restricting TGF-ß signaling.

2.
iScience ; 27(6): 109850, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38779481

RESUMEN

Milk fat is an important indicator for evaluating the quality of cow's milk. In this study, we used bovine mammary epithelial cells (BMECs) to investigate the role and molecular mechanism of KLF4 in the regulation of milk fat synthesis. The results showed that KLF4 was more highly expressed in mammary tissues of high-fat cows compared with low-fat cows. KLF4 positively regulated the expression of genes related to milk fat synthesis in BMECs, increasing intracellular triglycerides content, and KLF4 promoted milk fat synthesis by activating the PI3K-AKT-mTOR signaling pathway. Furthermore, the results of animal experiments also confirmed that knockdown of KLF4 inhibited milk fat synthesis. In addition, yeast one-hybrid assays and dual-luciferase reporter gene assays confirmed that KLF4 directly targets and binds to the fatty acid synthase (FASN) promoter region to promote FASN transcription. These results demonstrate that KLF4 is a key transcription factor for milk fat synthesis in BMECs.

3.
iScience ; 27(4): 109407, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38532885

RESUMEN

Converging studies showed interstitial fluid (ISF) adjacent to blood vessels flows in adventitia along vasculature into heart and lungs. We aim to reveal circulatory pathways and regulatory mechanism of such adventitial ISF flow in rat model. By MRI, real-time fluorescent imaging, micro-CT, and histological analysis, ISF was found to flow in adventitial matrix surrounded by fascia and along systemic vessels into heart, then flow into lungs via pulmonary arteries and back to heart via pulmonary veins, which was neither perivascular tissues nor blood or lymphatic vessels. Under physiological conditions, speckle-like adventitial ISF flow rate was positively correlated with heart rate, increased when holding breath, became pulsative during heavy breathing. During cardiac or respiratory cycle, each dilation or contraction of heart or lungs can generate to-and-fro adventitial ISF flow along femoral veins. Discovered regulatory mechanisms of adventitial ISF flow along vasculature by heart and lungs will revolutionize understanding of cardiovascular system.

4.
iScience ; 27(2): 108837, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38303705

RESUMEN

Obstructive sleep apnea (OSA) induces intermittent hypoxia (IH), an independent risk factor for non-alcoholic fatty liver disease (NAFLD). While the molecular links between IH and NAFLD progression are unclear, immune cell-driven inflammation plays a crucial role in NAFLD pathogenesis. Using lean mice exposed to long-term IH and a cohort of lean OSA patients (n = 71), we conducted comprehensive hepatic transcriptomics, lipidomics, and targeted serum proteomics. Significantly, we demonstrated that long-term IH alone can induce NASH molecular signatures found in human steatohepatitis transcriptomic data. Biomarkers (PPARs, NRFs, arachidonic acid, IL16, IL20, IFNB, TNF-α) associated with early hepatic and systemic inflammation were identified. This molecular link between IH, sleep apnea, and steatohepatitis merits further exploration in clinical trials, advocating for integrating sleep apnea diagnosis in liver disease phenotyping. Our unique signatures offer potential diagnostic and treatment response markers, highlighting therapeutic targets in the comorbidity of NAFLD and OSA.

5.
iScience ; 27(2): 108841, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38318374

RESUMEN

Zebrafish regenerate their fins which involves a component of cell plasticity. It is currently unclear how regenerate cells divide labor to allow for appropriate growth and patterning. Here, we studied lineage relationships of fluorescence-activated cell sorting-enriched epidermal, bone-forming (osteoblast), and (non-osteoblast) blastemal fin regenerate cells by single-cell RNA sequencing, lineage tracing, targeted osteoblast ablation, and electron microscopy. Most osteoblasts in the outgrowing regenerate derive from osterix+ osteoblasts, while mmp9+ cells reside at segment joints. Distal blastema cells contribute to distal osteoblast progenitors, suggesting compartmentalization of the regenerating appendage. Ablation of osterix+ osteoblasts impairs segment joint and bone matrix formation and decreases regenerate length which is partially compensated for by distal regenerate cells. Our study characterizes expression patterns and lineage relationships of rare fin regenerate cell populations, indicates inherent detection and compensation of impaired regeneration, suggests variable dependence on growth factor signaling, and demonstrates zonation of the elongating fin regenerate.

6.
iScience ; 27(2): 108864, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38318353

RESUMEN

Artificial light at night (ALAN) is a ubiquitous pollutant worldwide. Exposure can induce immediate behavioral and physiological changes in animals, sometimes leading to severe health consequences. Nevertheless, many organisms persist in light-polluted environments and may have mechanisms of habituating, reducing responses to repeated exposure over time, but this has yet to be tested experimentally. Here, we tested whether zebra finches (Taeniopygia guttata) can habituate to dim (0.3 lux) ALAN, measuring behavior, physiology (oxidative stress and telomere attrition), and gene expression in a repeated measures design, over 6 months. We present evidence of tolerance to chronic exposure, persistent behavioral responses lasting 8 weeks post-exposure, and attenuation of responses to re-exposure. Oxidative stress decreased under chronic ALAN. Changes in the blood transcriptome revealed unique responses to past exposure and re-exposure. Results demonstrate organismal resilience to chronic stressors and shed light on the capacity of birds to persist in an increasingly light-polluted world.

7.
J Pediatr Urol ; 20(2): 315-317, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38238242

RESUMEN

When performing animal experimentation in Pediatric Urology studies, it is important to be aware of physiological differences between species and to understand when relevant disease models are available. Diseased animal models may be more relevant in many cases, rather than performing studies in healthy and normally developed animals. For example, they may be more appropriate for the study of congenital malformations, to investigate the secondary effects of prenatal urinary obstruction, to study the effect of prenatal exposure to endogenous or exogenous factors which may lead to disease, or in testing bioengineered structures. In this short educational article, we aim to describe some disease models that have been used to simulate human pathologies and how, if properly designed, these studies can lead to important new knowledge for human translation. In addition, we also highlight the importance of formulating a research question(s) before deciding on the animal experimental model and species to choose.


Asunto(s)
Experimentación Animal , Urología , Animales , Humanos , Niño , Modelos Animales
8.
J Endocrinol ; 260(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38198372

RESUMEN

Metabolic tests are vital to determine in vivo insulin sensitivity and glucose metabolism in preclinical models, usually rodents. Such tests include glucose tolerance tests, insulin tolerance tests, and glucose clamps. Although these tests are not standardized, there are general guidelines for their completion and analysis that are constantly being refined. In this review, we describe metabolic tests in rodents as well as factors to consider when designing and performing these tests.


Asunto(s)
Resistencia a la Insulina , Humanos , Glucemia/metabolismo , Prueba de Tolerancia a la Glucosa , Técnica de Clampeo de la Glucosa , Insulina/metabolismo
9.
iScience ; 27(2): 108800, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38292430

RESUMEN

Alzheimer's disease (AD) is associated with both extracellular amyloid-ß (Aß) plaques and intracellular tau-containing neurofibrillary tangles (NFT). We characterized the behavioral, metabolic and lipidomic phenotype of the 5xFADxTg30 mouse model which contains overexpression of both Aß and tau. Our results independently reproduce several phenotypic traits described previously for this model, while providing additional characterization. This model develops many aspects associated with AD including frailty, decreased survival, initiation of aspects of cognitive decline and alterations to specific lipid classes and molecular lipid species in the plasma and brain. Notably, some sex-specific differences exist in this model and motor impairment with aging in this model does compromise the utility of the model for some movement-based behavioral assessments of cognitive function. These findings provide a reference for individuals interested in using this model to understand the pathology associated with elevated Aß and tau or for testing potential therapeutics for the treatment of AD.

10.
iScience ; 27(1): 108619, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38155774

RESUMEN

We found major seasonal changes of polyunsaturated fatty acids (PUFAs) in muscular phospholipids (PL) in a large non-hibernating mammal, the red deer (Cervus elaphus). Dietary supply of essential linoleic acid (LA) and α-linolenic acid (ALA) had no, or only weak influence, respectively. We further found correlations of PL PUFA concentrations with the activity of key metabolic enzymes, independent of higher winter expression. Activity of the sarcoplasmic reticulum (SR) Ca++-ATPase increased with SR PL concentrations of n-6 PUFA, and of cytochrome c oxidase and citrate synthase, indicators of ATP-production, with concentrations of eicosapentaenoic acid in mitochondrial PL. All detected cyclic molecular changes were controlled by photoperiod and are likely of general relevance for mammals living in seasonal environments, including humans. During winter, these changes at the molecular level presumably compensate for Arrhenius effects in the colder peripheral body parts and thus enable a thrifty life at lower body temperature.

11.
iScience ; 26(10): 107688, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37701572

RESUMEN

The fish plasma model (FPM) facilitated the environmental risk assessment of human drugs by using existing data on human therapeutic plasma concentrations (HTPCs) and predicted fish plasma concentrations (FPCs). However, studies on carbamazepine (CMZ) with both the mode of action (MOA) based biological effects at molecular level (such as neurotransmitter and gene level) and measured FPCs are lacking. Bioconcentration of CMZ in adult zebrafish demonstrated that the FPM underestimated the bioconcentration factors (BCFs) in plasma at environmental CMZ exposure concentrations (1-100 µg/L). CMZ significantly increased Glu and GABA, decreased ACh and AChE as well as inhibited the transcription levels of gabra1, grin1b, grin2b, gad1b, and abat when the actual FPCs were in the ranges of 1/1000 HTPC to HTPC. It is the first read-across study of CMZ integrating MOA-based biological effects at molecular level and FPCs. This study facilitates model performance against a range of different drug classes.

12.
Animals (Basel) ; 13(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37760307

RESUMEN

Animal welfare is a subject of increasing scientific and ethical concern in today's society, crucial for the well-being of animals used in research and the integrity of scientific data. Equipping researchers in the life science disciplines with a science-based knowledge of animal welfare, behaviour, physiology, and health is, therefore, essential. Nevertheless, previous studies evaluating animal welfare education focused on veterinary, laboratory, or farm animal science. Consequently, the aim of this study was, for the very first time, to map the prevalence of animal welfare courses in the university education of ecologists, wildlife biologists, and conservation managers in Europe, Canada, the USA, Australia, and New Zealand. A comprehensive assessment of 1548 universities was conducted, resulting in the identification of 596 relevant programs at the bachelor's and master's levels. Analysis of the curricula revealed that only 1% of the programs offered a formal course on animal welfare, while 65% provided courses on animal behaviour, 59% on animal physiology, and 34% on animal health. However, the majority of these courses were listed as electives rather than mandatory components of the programs. These results underscore the need for universities to incorporate more formal and obligatory education in animal welfare in order to better prepare future ecologists, wildlife biologists, and conservation managers for the challenges of working with wildlife.

13.
iScience ; 26(7): 107143, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37456852

RESUMEN

Beige adipocytes are inducible thermogenic adipocytes used for anti-obesity treatment. Beige adipocytes rapidly lose their thermogenic capacity once external cues are removed. However, long-term administration of stimulants, such as PPARγ and ß-adrenergic receptor agonists, is unsuitable due to various side effects. Here, we reported that PPARα pharmacological activation was the preferred target for maintaining induced beige adipocytes. Pemafibrate used in clinical practice for dyslipidemia was developed as a selective PPARα modulator (SPPARMα). Pemafibrate administration regulated the thermogenic capacity of induced beige adipocytes, repressed body weight gain, and ameliorated impaired glucose tolerance in diet-induced obese mouse models. The transcriptome analysis revealed that the E-twenty-six transcription factor ELK1 acted as a cofactor of PPARα. ELK1 was mobilized to the Ucp1 transcription regulatory region with PPARα and modulated its expression by pemafibrate. These results suggest that selective activation of PPARα by pemafibrate is advantageous to maintain the function of beige adipocytes.

14.
iScience ; 26(7): 107036, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37360692

RESUMEN

Human and mouse genetics have delivered numerous diabetogenic loci, but it is mainly through the use of animal models that the pathophysiological basis for their contribution to diabetes has been investigated. More than 20 years ago, we serendipidously identified a mouse strain that could serve as a model of obesity-prone type 2 diabetes, the BTBR (Black and Tan Brachyury) mouse (BTBR T+ Itpr3tf/J, 2018) carrying the Lepob mutation. We went on to discover that the BTBR-Lepob mouse is an excellent model of diabetic nephropathy and is now widely used by nephrologists in academia and the pharmaceutical industry. In this review, we describe the motivation for developing this animal model, the many genes identified and the insights about diabetes and diabetes complications derived from >100 studies conducted in this remarkable animal model.

15.
iScience ; 26(4): 106508, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37123221

RESUMEN

The zebrafish is a unique model to understand hematopoietic niches as hematopoietic stem/progenitor cells are maintained in the kidney. However, little is known about which cell types in the kidney play a role in hematopoietic niches. Here, we demonstrate that the sinusoidal endothelium is an essential and conserved niche component in the zebrafish kidney. Histological analysis revealed that runx1:mCherry + hematopoietic cells were predominantly detected in the dorsolateral region of the kidney where sinusoids are highly developed. Loss of Junctional adhesion molecule 1a (Jam1a), which is expressed in both sinusoidal endothelial cells and hematopoietic cells, resulted in a remarkable reduction in sinusoids and a defect in hematopoietic niches. We found that Jam1a regulates jagged-1a expression in vascular endothelial cells to form a sinusoidal structure in the kidney. Collectively, these data suggest that sinusoids are formed by Jam1a via endothelial Notch signaling to provide hematopoietic niches in the zebrafish kidney.

16.
iScience ; 26(4): 106455, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37020965

RESUMEN

Olfactory stimuli from food influence energy balance, preparing the body for digestion when food is consumed. Social chemosensory cues predict subsequent energetic changes required for social interactions and could be an additional sensory input influencing energy balance. We show that exposure to female chemostimuli increases metabolic rate in male mice and reduces body weight and adipose tissue expansion when mice are fed a high-fat diet. These responses are linked to detection of female chemostimuli via G-protein Gαo-expressing vomeronasal sensory neurons. Males with Gαo deleted in the olfactory system are fertile but do not show changes in body weight when paired with females and show severely blunted changes in energy expenditure when exposed to female bedding. These results establish that metabolic and reproductive responses to females can be partly uncoupled in male mice and that detection of female chemostimuli is a central regulator of energy metabolism and lipid storage.

17.
iScience ; 26(3): 106204, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36876128

RESUMEN

The dive response allows marine mammals to perform prolonged breath-hold dives to access rich marine prey resources. Via dynamic adjustments of peripheral vasoconstriction and bradycardia, oxygen consumption can be tailored to breath-hold duration, depth, exercise, and even expectations during dives. By investigating the heart rate of a trained harbor porpoise during a two-alternative forced choice task, where the animal is either acoustically masked or blindfolded, we test the hypothesis that sensory deprivation will lead to a stronger dive response to conserve oxygen when facing a more uncertain and smaller sensory umwelt. We show that the porpoise halves its diving heart rate (from 55 to 25 bpm) when blindfolded but presents no change in heart rate during masking of its echolocation. Therefore, visual stimuli may matter more to echolocating toothed whales than previously assumed, and sensory deprivation can be a major driver of the dive response, possibly as an anti-predator measure.

18.
iScience ; 26(3): 106266, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36915685

RESUMEN

Perception of sensory stimuli can be modulated by changes in internal state to drive contextually appropriate behavior. For example, dehydration is a threat to terrestrial animals, especially to Drosophila melanogaster due to their large surface area to volume ratio, particularly under the energy demands of flight. While hydrated D. melanogaster avoid water cues, while walking, dehydration leads to water-seeking behavior. We show that in tethered flight, hydrated flies ignore a water stimulus, whereas dehydrated flies track a water plume. Antennal occlusions eliminate odor and water plume tracking, whereas inactivation of moist sensing neurons in the antennae disrupts water tracking only upon starvation and dehydration. Elimination of the olfactory coreceptor eradicates odor tracking while leaving water-seeking behavior intact in dehydrated flies. Our results suggest that while similar hygrosensory receptors may be used for walking and in-flight hygrotaxis, the temporal dynamics of modulating the perception of water vary with behavioral state.

19.
iScience ; 26(1): 105858, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36636350

RESUMEN

Oxygen-dependent preservation has been proposed to protect liver grafts from ischemia-reperfusion injury (IRI), but its underlying mechanism remains elusive. Here, we proposed an oxygen-carrying sequential preservation (OCSP) method that combined oxygenated static cold storage (SCS) and normothermic mechanical perfusion. We demonstrated that OCSP, especially with high oxygen partial pressure level (500-650mmHg) during the oxygenated SCS phase, was associated with decreased IRI of liver grafts and improved rat survival after transplantation. A negative correlation between autophagy and endoplasmic reticulum stress response (ERSR) was found under OCSP and functional studies indicated OCSP suppressed ERSR-mediated cell apoptosis through autophagy activation. Further data showed that OCSP-induced autophagy activation and ERSR inhibition were oxygen-dependent. Finally, activated NFE2L2-HMOX1 signaling was found to induce autophagy under OCSP. Together, our findings indicate oxygen-dependent autophagy mitigates liver graft's IRI by ERSR suppression and modulates NFE2L2-HMOX1 signaling under OCSP, providing a theoretical basis for liver preservation using a composite-sequential mode.

20.
iScience ; 26(1): 105848, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36624847

RESUMEN

Brown adipose tissue (BAT) has the ability to burn calories as heat. Utilizing BAT thermogenesis is thus an attractive way to combat obesity. However, the transcriptional network resulting in the lipid synthesis to oxidation shift during thermogenesis is not completely understood. Here, we report the regulation of two master regulators of adipogenesis, peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα), during acute cold stress in BAT. We found PPARγ dissociates from DNA in a fifth of its binding sites and these include Cebpa enhancers, leading to decreased C/EBPα expression. This dissociation requires PPARγ binding to activating ligands and is thus modulated by diet. Meanwhile, PPARα also detaches from DNA, and co-activator PGC1α associates with ERRα as part of a transcriptional network regulating lipid metabolism. Subsequent global replacement of C/EBPα by C/EBPß and its associated transcriptional machinery is required for upregulation of structural lipid synthesis despite general upregulation of fatty acid oxidation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA