Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Toxicol Appl Pharmacol ; : 117107, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39288838

RESUMEN

To investigate the difference in the development and neurobehavior between aluminum chloride (AlCl3) and nano-alumina (AlNPs) in adult zebrafish and the role of triggering receptor expressed on myeloid cells (TREM2) in this process. Zebrafish embryos were randomly administered with control, negative control, TREM2 knockdown, AlCl3, TREM2 knockdown + AlCl3, AlNPs, and TREM2 knockdown + AlNPs, wherein AlCl3 and AlNPs were 50 mg/L and TREM2 knockdown was achieved by microinjecting lentiviral-containing TREM2 inhibitors into the yolk sac. We assessed development, neurobehavior, histopathology, ultrastructural structure, neurotransmitters (AChE, DA), SOD, genes of TREM2 and neurodevelopment (α1-tubulin, syn2a, mbp), and AD-related proteins and genes. AlCl3 significantly lowered the malformation rate than AlNPs, and further increased rates of malformation and mortality following TREM2 knockdown. The locomotor ability, learning and memory were similar between AlCl3 and AlNPs. TREM2 deficiency further exacerbated their impairment in panic reflex, microglia decrease, and nerve fibers thickening and tangling. AlCl3, rather than AlNPs, significantly elevated AChE activity and p-tau content while decreasing TREM2 and syn2a levels than the control. TREM2 loss further aggravated impairment in the AChE and SOD activity, and psen1 and p-tau levels. Therefore, AlCl3 induces greater developmental toxicity but equivalent neurobehavior toxicity than AlNPs, while their toxicity was intensified by TREM2 deficiency.

2.
Iran J Med Sci ; 49(7): 441-449, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39114632

RESUMEN

Background: Alzheimer's disease (AD) is a neurodegenerative condition characterized by gradual cognitive impairment, including loss of synapses and nerve cells involved in learning, memory, and habit formation processes. Bone Marrow Mesenchymal Stem Cells (BM-MSCs) are multipotent cells. Because of their self-renewable, differentiation, and immunomodulatory capabilities, they are commonly used to treat many disorders. Hence, the current study intends to examine the effect of BM-MSCs transplantation on Aluminum chloride (AlCl3)-induced cognitive problems, an experimental model resembling AD's hallmarks in rats. Methods: The study was conducted in 2022 at The Biomedical Laboratory Faculty of Medicine, Andalas University, Indonesia. Adult male Wistar rats (three groups: negative control; no intervention+treatment with PBS; positive control: AlCl3+treatment with aqua dest; AlCl3+BM-MSCs: AlCl3+treatment with BM-MSCs, n=5 each) were treated daily with AlCl3 orally for five days. Stem cells were intraperitoneally injected into rats at a dose of 1x106 cells/rat. The same quantity of phosphate-buffered saline was given to the control group. One month after stem cell injection, the rat brain tissue was removed and placed in the film bottles that had been created. The expression of neural progenitor cell markers, including nestin and sex-determining Y-box 2 (SOX-2), was analyzed using real-time polymerase chain reaction (RT-PCR). Rats' cognitive and functional memory were examined using Y-maze. Data were analyzed using SPSS software (version 26.0) with a one-way analysis of variance (ANOVA) test. Results: The gene expression of nestin (29.74±0.42), SOX-2 (31.44±0.67), and percent alternation of Y-maze (67.04±2.28) increased in the AlCl3+BM-MSCs group compared to that in the positive control group. RT-PCR analysis indicated that nestin (P<0.001) and SOX-2 (P<0.001) were significantly enhanced in the AlCl3+BM-MSCs group compared to the positive control group. This group also indicated an increased percent alternation of Y-maze (P<0.001) in the AlCl3+BM-MSCs group compared to the positive control group. Conclusion: Due to its potential effects on cell therapy, BM-MSCs were found effective in a rat model of AD on the impairment of the rats' behavior and increased expression of neural progenitor cell markers.


Asunto(s)
Cloruro de Aluminio , Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Células Madre Mesenquimatosas , Nestina , Ratas Wistar , Factores de Transcripción SOXB1 , Animales , Cloruro de Aluminio/farmacología , Ratas , Masculino , Enfermedad de Alzheimer/terapia , Nestina/genética , Trasplante de Células Madre Mesenquimatosas/métodos , Compuestos de Aluminio/farmacología , Aprendizaje Espacial/efectos de los fármacos , Aprendizaje Espacial/fisiología , Cloruros , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología
3.
Cureus ; 16(6): e63021, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39050311

RESUMEN

In this report, we present the case of a 20-year-old male with childhood-onset hyperhidrosis affecting his fingers and palm flexor surfaces. Dermatological examination revealed café-au-lait macules, palm and sole involvement, and axillary freckling. A starch-iodine test confirmed localized sweating. Neuroimaging identified neurofibromatosis type 1 (NF1) with subcutaneous nodules and dural ectasia in the thoracic spine. The patient was diagnosed with hyperhidrosis and NF1 based on diagnostic criteria, and he responded well to 20% aluminum chloride for treatment of hyperhidrosis. This case represents a unique occurrence of hyperhidrosis with NF1 in Saudi Arabia. Comprehensive evaluation, including systemic assessment, radiology, and starch-iodine testing, aids in diagnosis and understanding of the underlying mechanisms of this disorder, which remains unexplained.

4.
Vaccines (Basel) ; 12(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38932410

RESUMEN

Particulate aluminum salts have long occupied a central place worldwide as inexpensive immunostimulatory adjuvants that enable induction of protective immunity for vaccines. Despite their huge benefits and safety, the particulate structures of aluminum salts require transportation and storage at temperatures between 2 °C and 8 °C, and they all have exquisite sensitivity to damage caused by freezing. Here, we propose to solve the critical freezing vulnerability of particulate aluminum salt adjuvants by introducing soluble aluminum salts as adjuvants. The solubility properties of fresh and frozen aluminum chloride and aluminum triacetate, each buffered optimally with sodium acetate, were demonstrated with visual observations and with UV-vis scattering analyses. Two proteins, A244 gp120 and CRM197, adjuvanted either with soluble aluminum chloride or soluble aluminum triacetate, each buffered by sodium acetate at pH 6.5-7.4, elicited murine immune responses that were equivalent to those obtained with Alhydrogel®, a commercial particulate aluminum hydroxide adjuvant. The discovery of the adjuvanticity of soluble aluminum salts might require the creation of a new adjuvant mechanism for aluminum salts in general. However, soluble aluminum salts might provide a practical substitute for particulate aluminum salts as vaccine adjuvants, thereby avoiding the risk of inactivation of vaccines due to accidental freezing of aluminum salt particles.

5.
Cell Biochem Biophys ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907938

RESUMEN

Humans are constantly exposed to aluminum (Al), an environmental toxicant, and its accumulation in the glomerular could lead to acute kidney disease. Biologically synthesized gold nanoparticles (AuNPs) have been employed in the management of kidney disorders. This study assessed the modulatory effect of AuNPs mediated by Hibiscus sabdariffa (HS) on aluminum chloride (AlCl3)-induced nephrotoxicity in rats. Experimental rats were randomly distributed into six groups of seven animals each. Aluminum chloride (100 mg/kg bw) was orally given to the rats for 42 days to induce nephrotoxicity. Treatment with silymarin and HS-AuNPs lasted for 14 days. Serum kidney function, tissue arginase level and oxidative stress biomarkers, as well as tissue gene expression of inducible nitric oxide synthase (iNOS), lipocalin 2 (LCN2) and interleukin-1 beta (IL-1ß) were evaluated. Exposure of AlCl3 to the rats produced a marked (p < 0.05) increase in the levels of serum urea and creatinine in comparison with the control. Similarly, tissue arginase and malondialdehyde (MDA) levels were also increased while a reduction in the activity of superoxide dismutase (SOD) and the levels of reduced glutathione (GSH) and nitric oxide (NO) were noted in the AlCl3-induced rats. Aluminum chloride also upregulated the mRNA expression of iNOS, LCN2 and IL-1ß in the rats. These biochemical alterations were, however, attenuated by the administration of HS-AuNPs but the 5 mg/kg HS-AuNPs exhibited better anti-nephrotoxic activity than the 10 mg/kg dose, and could, thus serve as a potential dose for managing renal diseases.

6.
Comput Struct Biotechnol J ; 23: 2230-2239, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38827230

RESUMEN

Alzheimer's disease (AD) is an age-related neurodegenerative disorder. Transgenic and pharmacological AD models are extensively studied to understand AD mechanisms and drug discovery. However, they are time-consuming and relatively costly, which hinders the discovery of potential anti-AD therapeutics. Here, we established a new model of AD in larval zebrafish by co-treatment with aluminum chloride (AlCl3) and D-galactose (D-gal) for 72 h. In particular, exposure to 150 µM AlCl3 + 40 mg/mL D-gal, 200 µM AlCl3 + 30 mg/mL D-gal, or 200 µM AlCl3 + 40 mg/mL D-gal successfully induced AD-like symptoms and aging features. Co-treatment with AlCl3 and D-gal caused significant learning and memory deficits, as well as impaired response ability and locomotor capacity in the plus-maze and light/dark test. Moreover, increased acetylcholinesterase and ß-galactosidase activities, ß-amyloid 1-42 deposition, reduced telomerase activity, elevated interleukin 1 beta mRNA expression, and enhanced reactive oxygen species production were also observed. In conclusion, our zebrafish model is simple, rapid, effective and affordable, incorporating key features of AD and aging, thus may become a unique and powerful tool for high-throughput screening of anti-AD compounds in vivo.

7.
Sci Rep ; 14(1): 12128, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802555

RESUMEN

This study aims to research on the mechanical and frost resistance properties of pressed concrete blocks mixed with the polymeric aluminum chloride (PAC) waste residue. Experimental studies on the activity index of volcanic ash, mechanical property, frost resistance and microstructure of pressed concrete blocks mixed with PAC waste residue were carried out. The results show that the activity index of volcanic ash of PAC waste residue reaches 74.96% at a particle size of 0.075 mm or less and a curing age of 28 days. Based on results of mechanical property tests, the optimum dosage of PAC waste residue is 15%, at which time the compressive and bending strength only decreases by 14.57% and 15.84%. Based on results of frost resistance tests, the optimum dosage of PAC waste residue for pressed concrete blocks is 10%. After 50 freeze-thaw cycles, when the dosage of PAC waste residue is 10%, the strength loss rate is only 3.04%. XRD and SEM tests show that PAC waste residue participates in chemical reactions. With a small amount of PAC waste residue, the structure of the specimen remains dense and therefore the strength decreases less.

8.
Avicenna J Med Biotechnol ; 16(2): 81-87, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38618511

RESUMEN

Background: Mesenchymal Stem Cells (MSCs) have the ability to self-renew and proliferate which gives them healing properties in various tissues. Aluminium chloride (AlCl3) is a chemical compound with harmful effects on health; oxidative stress caused by Aluminium has been reported previously. Crocin, a major component of Crocus sativus (saffron), has antioxidant properties and has shown therapeutic potential. Researchers have been looking for ways to reduce the harmful effects of AlCl3. Methods: To investigate whether crocin can reduce AlCl3 cytotoxicity, rat Bone Marrow Mesenchymal Stem Cells (BM-MSCs) were isolated, cultured and divided into four experimental groups. The first group was the control, which was untreated cells. The second and third groups were treated with crocin (50, 100, 250, 500 µM) and AlCl3 (20, 25, 30 mM) for 24 hr. The fourth group was pre-treated with crocin (250, 500 µM) for 24 hr and then treated with AlCl3 (20 mM) overnight. Cytotoxicity was assessed using the MTT assay. Mineralization was evaluated by alizarin red staining. Sox-2 and E-cadherin expression were measured using real-time PCR. Results: The results showed that AlCl3 caused cytotoxicity on BM-MSCs and decreased the mRNA expression of Sox-2 and E-cadherin, which are important for the maintenance of self-renewal and proliferation of BM-MSCs. In contrast, crocin protected the self-renewal characteristic of BM-MSCs by increasing Sox-2 expression and also preserved the proliferative effects on BM-MSCs by upregulating E-cadherin expression (***p≤0.001). Conclusion: Overall, the study suggests that crocin can protect BM-MSCs from AlCl3-induced cytotoxicity by upregulate Sox-2 expression and E-cadherin expression. This suggests that crocin may be a potential therapeutic agent for the treatment of AlCl3-induced toxicity.

9.
JBRA Assist Reprod ; 28(2): 284-288, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640350

RESUMEN

OBJECTIVE: Aluminum is a widely used metal in homes and industries. Xylopia aethiopica is an important medicinal plant with antioxidant properties. The objective of this study is to investigate the ameliorative potential of Xylopia aethiopica on aluminum-induced ovarian toxicity in Wistar rat. METHODS: Twenty-five rats were randomized into five groups with five rats per group. Group 1 received only distilled water; Group 2: received 150mg/kg of aluminum chloride; Group 3: received 150mg/kg aluminum chloride with 100/kg Xylopia aethiopica seed extracts; Group 4: received 150mg/kg aluminum chloride with 50 mg/kg Xylopia aethiopica seed extracts, and Group 5: received 150mg/kg aluminum chloride with 50mg/Kg zinc sulphate. For twenty-one days, all administrations were done orally. The rats were then sacrificed following chloroform anesthesia. The ovaries were harvested for histological examination. RESULTS: The data were analyzed on IBM SPSS software version 21 and the differences in mean values were considered significant at p<0.05. Xylopia aethiopica extracts significantly (p<0.05) reversed the detrimental effects of aluminum chloride on luteinizing hormone, follicle stimulating hormone, progesterone and estradiol. The histological analysis of the ovaries showed a significant improvement in rats treated with Xylopia aethiopica extract and zinc sulphate. However, Xylopia aethiopica was more effective in a dose-dependent manner. CONCLUSIONS: This study suggests that Xylopia aethiopica has ameliorative potential on aluminum-induced toxicity in the ovaries of adult female Wistar Rats.


Asunto(s)
Ovario , Extractos Vegetales , Ratas Wistar , Xylopia , Animales , Femenino , Extractos Vegetales/farmacología , Ratas , Ovario/efectos de los fármacos , Ovario/patología , Xylopia/química , Cloruro de Aluminio/toxicidad , Estradiol , Aluminio/toxicidad , Hormona Folículo Estimulante/sangre
10.
Heliyon ; 10(7): e29282, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38623244

RESUMEN

Due to its effectiveness and ease of application, the process of flocculation and coagulation is often used for pollution removal in wastewater treatment. Most of these coagulants precipitate and accumulate in waste activated sludge (WAS), and could negatively affect sludge treatments, as observed for anaerobic digestion. Nowadays, wastewater treatment plants (WWTPs) are widely discussed because of the current paradigm shift from linear to circular economy, and the treatments performed at the facility should be planned to avoid or reduce adverse effects on other processes. The aim of this study was to compare the impact of poly aluminum chloride (PAC) and aluminum sulfate (AS) on WAS anaerobic digestion, by feeding replicate serum reactors with different levels of coagulant (5, 10 and 20 mg Al/g TS). Reactors without the addition of any coagulants represented the control group. Results revealed that Al-based coagulants inhibited methane production, which decreased as the coagulant addition increased. The inhibition was much more severe in AS-conditioned reactors, showing average reductions in methane yield from 14.4 to 31.7%, compared to the control (167.76 ± 1.88 mL CH4/g VS). Analytical analysis, FTIR and SEM investigations revealed that the addition of coagulants affected the initial conditions of the anaerobic reactors, penalizing the solubilization, hydrolysis and acidogenesis phases. Furthermore, the massive formation of H2S in AS-conditioned reactors played a key role in the suppression of methane phase. On the other hand, the use of coagulant can promote the accumulation and recovery of nutrient in WAS, especially in terms of phosphorus. Our findings will expand research knowledge in this field and guide stakeholders in the choice of coagulants at full scale plant. Future research should focus on reducing the effect of coagulants on methane production by modifying or testing new types of flocculants.

11.
Toxicol Mech Methods ; 34(6): 703-716, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38465425

RESUMEN

Aluminum (Al) overexposure damages various organ systems, especially the nervous system. Regularly administered aluminum chloride (AlCl3) to rats causes dementia and pathophysiological alterations linked to Alzheimer's disease (AD). Taxifolin's neuroprotective effects against AlCl3-induced neurotoxicity in vitro and in vivo studies were studied. Taxifolin (0.1, 0.3, 1, 3, and 10 µM) was tested against AlCl3 (5 mM)-induced neurotoxicity in C6 and SH-SY5Y cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Additionally, neural morphology was examined by confocal microscopy. Additionally, taxifolin's mode of binding with the co-receptor of toll-like receptor 4 (TLR4), human myeloid differentiation-2 (hMD-2) was investigated. AlCl3 (25 mg/kg/d, i.p.) was administered to rats for 14 d, and from the eighth day, taxifolin (1, 2, and 5 mg/kg/d, i.p.) was given along with AlCl3. This study assessed memory impairment using the Morris water maze, plus maze, and pole tests. This study also performed measurement of oxidant (malondialdehyde [MDA] and nitrite), antioxidant (reduced glutathione), and inflammatory (myeloperoxidase [MPO] activity, TLR4 expression) parameters in rats' brain in addition to histopathology. The docking score for taxifolin with hMD-2 was found to be -4.38 kcal/mol. Taxifolin treatment reduced the neurotoxicity brought on by AlCl3 in both C6 and SH-SY5Y cells. Treatment with 10 µM taxifolin restored AlCl3-induced altered cell morphology. AlCl3 administration caused memory loss, oxidative stress, inflammation (increased MPO activity and TLR4 expression), and brain atrophy. Taxifolin treatment significantly improved the AlCl3-induced memory impairment. Taxifolin treatment also mitigated the histopathological and neurochemical consequences of repeated AlCl3 administration in rats. Thus, taxifolin may protect the brain against AD.


Asunto(s)
Cloruro de Aluminio , Encéfalo , Fármacos Neuroprotectores , Quercetina , Receptor Toll-Like 4 , Animales , Humanos , Masculino , Ratas , Cloruro de Aluminio/toxicidad , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/metabolismo , Línea Celular Tumoral , Demencia/inducido químicamente , Demencia/tratamiento farmacológico , Demencia/prevención & control , Demencia/patología , Relación Dosis-Respuesta a Droga , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Quercetina/análogos & derivados , Quercetina/farmacología , Quercetina/uso terapéutico , Ratas Wistar , Receptor Toll-Like 4/metabolismo
12.
Molecules ; 29(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474607

RESUMEN

In the literature, the chemical composition of Rhododendron tomentosum is mainly represented by the study of isoprenoid compounds of essential oil. In contrast, the study of the content of flavonoids will contribute to the expansion of pharmacological action and the use of the medicinal plant for medical purposes. The paper deals with the technology of extracts from Rh. tomentosum shoots using ethanol of various concentrations and purified water as an extractant. Extracts from Rh. tomentosum were obtained by a modified method that combined the effects of ultrasound and temperature to maximize the extraction of biologically active substances from the raw material. Using the method of high-performance thin-layer chromatography in a system with solvents ethyl acetate/formic acid/water (15:1:1), the following substances have been separated and identified in all the extracts obtained: rutin, hyperoside, quercetin, and chlorogenic acid. The total polyphenol content (TPC) and total flavonoid content (TFC) were estimated using spectrophotometric methods involving the Folin-Ciocalteu (F-C) reagent and the complexation reaction with aluminum chloride, respectively. A correlation analysis was conducted between antioxidant activity and the polyphenolic substance content. Following the DPPH assay, regression analysis shows that phenolic compounds contribute to about 80% (r2 = 0.8028, p < 0.05) of radical scavenging properties in the extract of Rh. tomentosum. The extract of Rh. tomentosum obtained by ethanol 30% inhibits the growth of test cultures of microorganisms in 1:1 and 1:2 dilutions of the clinical strains #211 Staphylococcus aureus and #222 Enterococcus spp. and the reference strain Pseudomonas aeruginosa ATCC 10145.


Asunto(s)
Antiinfecciosos , Rhododendron , Antioxidantes/química , Polifenoles , Flavonoides/farmacología , Rhododendron/química , Extractos Vegetales/química , Antiinfecciosos/análisis , Etanol , Agua
13.
Cureus ; 16(2): e53401, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38435167

RESUMEN

Apocrine chromhidrosis is a rare disease that is characterized by colored sweating. Here, we present a rare case that was successfully treated for this condition. A 32-year-old woman presented with dark blue discharge from her cheeks. She was diagnosed with apocrine chromhidrosis and was treated successfully with botulinum toxin type A.

14.
Water Res ; 255: 121446, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489963

RESUMEN

Inorganic coagulants (aluminum and iron salt) are widely used to improve sludge dewaterability, resulting in numerous residues in dewatered sludge. Composting refers to the controlled microbial process that converts organic wastes into fertilizer, and coagulant residues in dewatered sludge can affect subsequent compost efficiency and resource recycling, which remains unclear. This work investigated the effects of two typical metal salt coagulants (poly aluminum chloride [PAC] and poly ferric sulfate [PFS]) conditioning on sludge compost. Our results revealed that PAC conditioning inhibited composting with decreased peak temperature, microbial richness, enzymatic reaction intensities, and compost quality, associated with decreased pH and microbial toxicity of aluminum. Nevertheless, PFS conditioning selectively enriched Pseudoxanthomonas sp. and resulted in more fertile compost with increased peak temperature, enzymatic reaction intensities, and humification degree. Spectroscopy and mass difference analyses indicated that PFS conditioning enhanced reaction intensities of labile biopolymers at the thermophilic stage, mainly comprising hydrolyzation (H2O), dehydrogenation (-H2, -H4), oxidation (+O1H2), and other reactions (i.e., +CH2, C2H4O1, C2H6O1). Unlike the common composting process primarily conducts humification at the cooling stage, PFS conditioning changed the main occurrence stage to the thermophilic stage. Non-targeted metabolomics revealed that indole (a humification intermediate) is responsible for the increased humification degree and indoleacetic acid content in the PFS-conditioned compost, which then promoted compost quality. Plant growth experiments further confirmed that the dissolved organic matter (DOM) in PFS-conditioned compost produced the maximum plant biomass. This study provided molecular-level evidence that PFS conditioning can promote humification and compost fertility during sludge composting, enabling chemical conditioning optimization for sustainable management of sludge.

15.
Small ; 20(29): e2310352, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38368257

RESUMEN

Extensive research has focused on developing wide-bandgap metal compound-based passivating contacts as alternatives to conventional doped-silicon-layer-based passivating contacts to mitigate parasitic absorption losses in crystalline silicon (c-Si) solar cells. Herein, thermally-evaporated aluminum halides (AlX)-based electron-selective passivating contacts for c-Si solar cells are investigated. A low contact resistivity of 60.5 and 38.4 mΩ cm2 is obtained on the AlClx/n-type c-Si (n-Si) and AlFx/n-Si heterocontacts, respectively, thanks to the low work function of AlX. Power conversion efficiencies (PCEs) of 19.1% and 19.6% are achieved on proof-of-concept n-Si solar cells featuring a full-area AlClx/Al and AlFx/Al passivating contact, respectively. By further implementing an ultrathin SiO2 passivation interlayer and a pre-annealing treatment, the electron selectivity (especially the surface passivation) of AlX is significantly enhanced. Accordingly, a remarkable PCE of 21% is achieved on n-Si solar cells featuring a full-area SiO2/AlFx/Al rear contact. AlFx-based electron-selective passivating contacts exhibit good thermal stability up to ≈400 °C and better long-term environmental stability. This work demonstrates the potential of AlFx-based electron-selective passivating contact for solar cells.

16.
Sci Total Environ ; 915: 170128, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38242464

RESUMEN

Studies have revealed neurotoxicity, hepatotoxicity, and developmental and reproductive toxicity in mice exposed to aluminum. However, relatively few studies have been conducted to clarify the mechanism underlying the impact of embryonic exposure to aluminum on the development of the male reproductive system in offspring. Pregnant mice were administered aluminum chloride (AlCl3) by gavage from day 12.5 of gestation until birth. Our findings demonstrated that embryonic exposure to AlCl3 disrupted testicular development and spermatogenesis by impairing testicular architecture, reducing sperm count, and upregulating the expression of tight junction (TJ) protein between Sertoli cells (SCs). Further in vitro studies revealed that treatment with AlCl3 stabilized TJ proteins Occludin and ZO-1 expression by inhibiting ERK signaling pathway activation, thereby upregulating Slc25a5 expression which induced ATP production leading to disruption of cytoskeletal protein homeostasis. Therefore, the study provided a new mechanistic insight into how AlCl3 exposure interfered with testicular development and spermatogenesis while suggesting that Slc25a5 might be a target affected by AlCl3 influencing cell metabolism.


Asunto(s)
Aluminio , Uniones Estrechas , Embarazo , Femenino , Masculino , Ratones , Animales , Cloruro de Aluminio , Aluminio/metabolismo , Uniones Estrechas/metabolismo , Semen , Testículo/metabolismo , Espermatogénesis , Proteínas de Uniones Estrechas/metabolismo
17.
Toxicol Res ; 40(1): 97-110, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38223678

RESUMEN

Aluminum is a widely used metal substance in daily life activities that has been shown to cause severe hepato-nephrotoxicity with long-term exposure. Natural dietary flavonoids are being utilized as a newer pharmaceutical approach against various acute and chronic diseases. Naringenin (NAR) has shown efficient therapeutic properties, including effects against metal toxicities. However, the protective efficacy of NAR on aluminum chloride (AlCl3)-induced hepato-renal toxicity needs investigation as aluminum has shown serious environmental toxicity and bioaccumulation behavior. In this study, mice were treated with AlCl3 (10 mg/kg b.w./day) to assess toxicities, and a group of mice were co-treated with NAR (10 mg/kg b.w./day) to assess the protective effects of NAR against hepato-nephrotoxicity. The levels of blood serum enzymes, oxidative stress biomarkers, inflammatory cytokines, and the apoptosis marker caspase-3 were measured using histological examinations. NAR treatment in AlCl3-treated mice resulted in maintained levels of liver and kidney function enzymes and lipid profiles. NAR treatment attenuated oxidative stress by regulating the levels of nitric oxide, advance oxidation of protein products, protein carbonylation, and lipid peroxidation. NAR also replenished reduced antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and reduced the levels of glutathione and oxidized glutathione. NAR regulated the levels of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α) and elevated the levels of anti-inflammatory cytokines (IL-4, IL-10, and IFN-γ). The histological study further confirmed the protective effects of NAR against AlCl3-induced hepato-renal alterations. NAR decreased the expression of caspase-3 as a mechanism of protective effects against apoptotic damage in the liver and kidney of AlCl3-treated mice. In summary, this study demonstrated the antioxidant and anti-inflammatory properties of NAR, leading to the suppression of AlCl3-triggered hepato-renal apoptosis and histological alterations. The results suggest that aluminum toxicity needs to be monitored in daily life usage, and supplementation of the natural dietary flavonoid naringenin may help maintain liver and kidney health.

18.
Magn Reson Chem ; 62(1): 61-68, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37937481

RESUMEN

The reaction of butyryl chloride with ethynylbenzene in the presence of AlCl3 afforded a mixture of the Z/E-isomers of 1-chloro-2-phenylhex-1-en-3-one. 1,2-Diphenylethyne under these conditions gave a novel polycarbocycle core, 6aH-benzo[a]fluorene. The chemical structure of 11-chloro-5,6-diphenyl-6a-propyl-6aH-benzo[a]fluorene was established by means of IE-MS, 1 H, 13 C NMR, COSY, HSQC, HMBC, and 2D INADEQUATE technique.

19.
Brain Res ; 1823: 148704, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38052316

RESUMEN

Alzheimer's disease (AD) is a chronic, progressive neurodegenerative condition marked by cognitive impairment. Although coconut oil has been shown to be potentially beneficial in reducing AD-related cognitive deficits, information on its mechanism of action is limited. Thus, we investigated the effects of coconut oil on spatial cognitive ability and non-cognitive functions in a rat model of AD induced by G-galactose (D-GAL) and aluminum chloride (AlCl3), and examined the changes in synaptic transmission, cholinergic activity, neurotrophic factors and oxidative stress in this process. The AD model was established by administering D-GAL and AlCl3 for 90 days, while also supplementing with coconut oil during this time. Cognitive and non-cognitive abilities of the rats were evaluated at the end of the 90-day supplementation period. In addition, biochemical markers related to the pathogenesis of the AD were measures in the hippocampus tissue. Exposure to D-GAL/AlCl3 resulted in a reduction in locomotor activity, an elevation in anxiety-like behavior, and an impairment of spatial learning and memory (P < 0.05). The aforementioned behavioral disturbances were observed to coincide with increased oxidative stress and cholinergic impairment, as well as reduced synaptic transmission and levels of neurotrophins in the hippocampus (P < 0.05). Interestingly, treatment with coconut oil attenuated all the neuropathological changes mentioned above (P < 0.05). These findings suggest that coconut oil shows protective effects against cognitive and non-cognitive impairment, AD pathology markers, oxidative stress, synaptic transmission, and cholinergic function in a D-GAL/AlCl3-induced AD rat model.


Asunto(s)
Enfermedad de Alzheimer , Trastornos del Conocimiento , Disfunción Cognitiva , Fármacos Neuroprotectores , Ratas , Animales , Aceite de Coco/farmacología , Cloruro de Aluminio/efectos adversos , Trastornos del Conocimiento/tratamiento farmacológico , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/patología , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Hipocampo , Estrés Oxidativo , Colinérgicos/farmacología , Modelos Animales de Enfermedad , Galactosa/toxicidad , Fármacos Neuroprotectores/uso terapéutico
20.
Sci Total Environ ; 905: 167207, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730033

RESUMEN

Flocculants play crucial roles in sludge treatment, while the specific impact of chemical and bio-flocculants on sludge anaerobic fermentation was unknown. This study unveiled the contrasting effects of chitosan (CTS) and poly­aluminum chloride (PAC) on volatile fatty acids (VFAs) generation during sludge fermentation. CTS supplementation resulted in 17.2 % increase in VFAs production, while PAC exposure led to 7.6 % reduction compared to the control. Further investigation revealed that CTS facilitated sludge solubilization and hydrolysis, thus providing sufficient organic substrates for VFAs generation. Additionally, environmental-friendly CTS exposure positively influenced the abundance and activity of functional anaerobes, as well as the expression of genes associated with VFAs biosynthesis. In contrast, PAC exposure resulted in the formation of larger sludge flocs, which hindered WAS solubilization and hydrolysis. Meanwhile, its potential microbial toxicity also impeded the microbial metabolic activity (i.e., genetic expressions), resulting in unsatisfactory VFAs production.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Fermentación , Aguas del Alcantarillado/química , Concentración de Iones de Hidrógeno , Ácidos Grasos Volátiles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA