Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
1.
Curr Res Food Sci ; 9: 100827, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39281341

RESUMEN

The exposure of advanced glycation end products (AGEs) can induce chronic inflammation, oxidative stress, and accelerated aging, contributing the onset and progression of many diseases especially diabetic complications. Therefore, the searching of antiglycative foods is of practical significance, which may serve as a strategy in the attenuation of AGEs-associated diseases. In this study, we evaluated the antiglycative potential of some beans and bean sprouts that were common in our daily life. The results revealed that sprouting enhanced the antiglycative activity of beans, with black soybean sprouts demonstrating the highest efficacy (4.92-fold higher than the unsprouted beans). To assess practical implications, we examined the antiglycative activity of black soybean sprouts in pork soup, a popular food model that incorporates sprouts. Our findings confirmed the inhibitory effect on a dose-dependent manner. Through open column fractionation, we identified isoflavones and soyasaponin Bb as the candidates responsible for these effects. Additionally, compare to the unsprouted black soybeans, we found significant increases in the levels of antioxidative properties (2.51-fold), total phenolics (7.28-fold), isoflavones, and soyasaponin Bb during the sprouting process. Further studies determined that genistein, genistin, and daidzin were the major antiglycative compounds in black soybean sprouts. Collectively, this study emphasizes the benefits of sprouted beans and offers foundation for the development of functional sprouting foods.

2.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39273113

RESUMEN

Sodium tungstate (Na2WO4) normalizes glucose metabolism in the liver and muscle, activating the Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. Because this pathway controls neuronal survival and differentiation, we investigated the effects of Na2WO4 in mouse Neuro2a and human SH-SY5Y neuroblastoma monolayer cell cultures. Na2WO4 promotes differentiation to cholinergic neurites via an increased G1/G0 cell cycle in response to the synergic activation of the Phosphatidylinositol 3-kinase (PI3K/Akt) and ERK1/2 signaling pathways. In Neuro2a cells, Na2WO4 increases protein synthesis by activating the mechanistic target of rapamycin (mTOR) and S6K kinases and GLUT3-mediated glucose uptake, providing the energy and protein synthesis needed for neurite outgrowth. Furthermore, Na2WO4 increased the expression of myocyte enhancer factor 2D (MEF2D), a member of a family of transcription factors involved in neuronal survival and plasticity, through a post-translational mechanism that increases its half-life. Site-directed mutations of residues involved in the sumoylation of the protein abrogated the positive effects of Na2WO4 on the MEF2D-dependent transcriptional activity. In addition, the neuroprotective effects of Na2WO4 were evaluated in the presence of advanced glycation end products (AGEs). AGEs diminished neurite differentiation owing to a reduction in the G1/G0 cell cycle, concomitant with lower expression of MEF2D and the GLUT3 transporter. These negative effects were corrected in both cell lines after incubation with Na2WO4. These findings support the role of Na2WO4 in neuronal plasticity, albeit further experiments using 3D cultures, and animal models will be needed to validate the therapeutic potential of the compound.


Asunto(s)
Proyección Neuronal , Fármacos Neuroprotectores , Compuestos de Tungsteno , Humanos , Proyección Neuronal/efectos de los fármacos , Animales , Línea Celular Tumoral , Compuestos de Tungsteno/farmacología , Ratones , Fármacos Neuroprotectores/farmacología , Neuroprotección/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Neuritas/metabolismo , Neuritas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos
3.
Front Chem ; 12: 1461284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139920
4.
Food Chem Toxicol ; 192: 114966, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39197527

RESUMEN

Advanced glycation end products (AGEs) are a spectrum of complex compounds widely found in processed foods and frequently consumed by humans. AGEs are implicated in impairing the intestinal barrier, but the underlying mechanisms remain unclear. This study investigated the effects of three types of AGEs on gene expression of tight junctions (TJs) in colorectal epithelial HT-29 cells, and observed minimal alterations in TJs expression. Given the important role of subepithelial macrophages in regulating the intestinal barrier, we explored whether AGEs affect the intestinal barrier via the involvement of macrophages. Notably, a significant downregulation of TJs expression was observed when supernatants from AGEs-treated RAW264.7 macrophage cells were transferred to HT-29 cells. Further investigations indicated that AGEs increased IL-6 levels in RAW264.7 cells, subsequently triggering STAT3 activation and suppressing TJs expression in HT-29 cells. The role of STAT3 activation was confirmed by observing enhanced TJs expression in HT-29 cells following pretreatment with an inhibitor of STAT3 activation prior to the transfer of the conditioned medium. These findings demonstrated that AGEs impaired the intestinal barrier via macrophage-mediated STAT3 activation, shedding light on the mechanisms underlying AGEs-induced intestinal barrier injury and related food safety risks.


Asunto(s)
Productos Finales de Glicación Avanzada , Mucosa Intestinal , Macrófagos , Factor de Transcripción STAT3 , Factor de Transcripción STAT3/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Animales , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Células HT29 , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Células RAW 264.7 , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética
5.
Biomedicines ; 12(8)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39200164

RESUMEN

Increased production of advanced glycation end products (AGEs) among reducing sugars (glucose, fructose, galactose, or ribose) and amino acids/proteins via non-enzymatic Maillard reaction can be found in lifestyle-related disease (LSRD), metabolic syndrome (MetS), and obesity and immune-related diseases. Increased serum levels of AGEs may induce aging, diabetic complications, cardiovascular diseases (CVD), neurodegenerative diseases (NDD), cancer, and inflamm-aging (inflammation with immunosenescence). The Maillard reaction can also occur among reducing sugars and lipoproteins or DNAs to alter their structure and induce immunogenicity/genotoxicity for carcinogenesis. AGEs, as danger-associated molecular pattern molecules (DAMPs), operate via binding to receptor for AGE (RAGE) or other scavenger receptors on cell surface to activate PI3K-Akt-, P38-MAPK-, ERK1/2-JNK-, and MyD88-induced NF-κB signaling pathways to mediate various pathological effects. Recently, the concept of "inflamm-aging" became more defined, and we have unveiled some interesting findings in relation to it. The purpose of the present review is to dissect the potential molecular basis of inflamm-aging in patients with diabetes and immune-mediated diseases caused by different AGEs.

6.
Biomedicines ; 12(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39200171

RESUMEN

This study explored the link between different types of glaucoma and cognitive function in a cohort of 620 Japanese patients. Participants were categorized into primary open-angle glaucoma (PG), exfoliation glaucoma (EG), and non-glaucomatous control groups. The findings revealed a significant decline in cognitive function as indicated by the Mini-Cog test in the EG group (mean ± SD: 4.0 ± 1, 95% CI: 3.9 to 4.2) compared to the PG group (4.4 ± 0.1, 4.3 to 4.5, p < 0.0001). Levels of fingertip measured advanced glycation end-products (AGEs) were significantly higher in the EG group (mean ± SD: 0.45 ± 0.006, 95% CI: 0.44 to 0.46) compared to the PG group (0.43 ± 0.004, 0.42 to 0.44, p = 0.0014). Although the multivariate analysis initially showed no direct association between glaucoma types and Mini-Cog scores, the EG group exhibited higher age and intraocular pressure (IOP) compared to the PG group. Further analysis revealed that high levels of AGEs were associated with cognitive decline and decreased mean visual fields in the EG group. Age was identified as a cofounding factor in these associations. An inverse correlation was observed between the accumulation of AGEs and skin carotenoid levels. Early detection of cognitive decline in glaucoma patients could enable timely intervention to preserve visual fields. Fingertip measurements of skin carotenoids and AGEs offer promising potential as non-invasive, straightforward diagnostic tools that could be widely adopted for monitoring ophthalmic and cognitive health in glaucoma patients.

7.
Int J Cancer ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39057841

RESUMEN

Advanced glycation end-products (AGEs), formed endogenously or obtained exogenously from diet, may contribute to chronic inflammation, intracellular signaling alterations, and pathogenesis of several chronic diseases including colorectal cancer (CRC). However, the role of AGEs in CRC survival is less known. The associations of pre-diagnostic circulating AGEs and their soluble receptor (sRAGE) with CRC-specific and overall mortality were estimated using multivariable-adjusted Cox proportional hazards regression among 1369 CRC cases in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Concentrations of major plasma AGEs, Nε-[carboxy-methyl]lysine (CML), Nε-[carboxy-ethyl]lysine (CEL) and Nδ-[5-hydro-5-methyl-4-imidazolon-2-yl]-ornithine (MG-H1), were measured using ultra-performance liquid chromatography mass-spectrometry. sRAGE was assessed by enzyme-linked immunosorbent assay. Over a mean follow-up period of 96 months, 693 deaths occurred of which 541 were due to CRC. Individual and combined AGEs were not statistically significantly associated with CRC-specific or overall mortality. However, there was a possible interaction by sex for CEL (Pinteraction = .05). Participants with higher sRAGE had a higher risk of dying from CRC (HRQ5vs.Q1 = 1.67, 95% CI: 1.21-2.30, Ptrend = .02) or any cause (HRQ5vs.Q1 = 1.38, 95% CI: 1.05-1.83, Ptrend = .09). These associations tended to be stronger among cases with diabetes (Pinteraction = .03) and pre-diabetes (Pinteraction <.01) before CRC diagnosis. Pre-diagnostic AGEs were not associated with CRC-specific and overall mortality in individuals with CRC. However, a positive association was observed for sRAGE. Our findings may stimulate further research on the role of AGEs and sRAGE in survival among cancer patients with special emphasis on potential effect modifications by sex and diabetes.

8.
Vitam Horm ; 125: 47-88, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38997172

RESUMEN

Glycation is a protein post-translational modification that can occur on lysine and arginine residues as a result of a non-enzymatic process known as the Maillard reaction. This modification is irreversible, so the only way it can be removed is by protein degradation and replacement. Small reactive carbonyl species, glyoxal and methylglyoxal, are the primary glycating agents and are elevated in several conditions associated with an increased risk of cardiovascular disease, including diabetes, rheumatoid arthritis, smoking, and aging. Thus, how protein glycation impacts the cardiomyocyte is of particular interest, to both understand how these conditions increase the risk of cardiovascular disease and how glycation might be targeted therapeutically. Glycation can affect the cardiomyocyte through extracellular mechanisms, including RAGE-based signaling, glycation of the extracellular matrix that modifies the mechanical environment, and signaling from the vasculature. Intracellular glycation of the cardiomyocyte can impact calcium handling, protein quality control and cell death pathways, as well as the cytoskeleton, resulting in a blunted contractility. While reducing protein glycation and its impact on the heart has been an active area of drug development, multiple clinical trials have had mixed results and these compounds have not been translated to the clinic-highlighting the challenges of modulating myocyte glycation. Here we will review protein glycation and its effects on the cardiomyocyte, therapeutic attempts to reverse these, and offer insight as to the future of glycation studies and patient treatment.


Asunto(s)
Productos Finales de Glicación Avanzada , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Glicosilación , Animales , Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal , Procesamiento Proteico-Postraduccional , Enfermedades Cardiovasculares/metabolismo
9.
Curr Res Toxicol ; 7: 100176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38975063

RESUMEN

Human-derived three-dimensional (3D) in vitro models are advanced human cell-based model for their complexity, relevance and application in toxicity testing. Intracellular accumulation of methylglyoxal (MGO), the most potent glycating agent in humans, mainly generated as a by-product of glycolysis, is associated with age-related diseases including neurodegenerative disorders. In our study, 3D human stem-cell-derived neuronal spheroids were set up and applied to evaluate cytotoxic effects after short-term (5 to 48 h) treatments with different MGO concentrations, including low levels, taking into consideration several biochemical endpoints. In MGO-treated neurospheroids, reduced cell growth proliferation and decreased cell viability occurred early from 5-10 µM, and their compactness diminished starting from 100 µM, apparently without affecting spheroid size. MGO markedly caused loss of the neuronal markers MAP-2 and NSE from 10-50 µM, decreased the detoxifying Glo1 enzyme from 50 µM, and activated NF-kB by nuclear translocation. The cytochemical evaluation of the 3D sections showed the presence of necrotic cells with loss of nuclei. Apoptotic cells were observed from 50 µM MGO after 48 h, and from 100 µM after 24 h. MGO (50-10 µM) also induced modifications of the cell-cell and cell-ECM interactions. These effects worsened at the higher concentrations (300-500 µM). In 3D neuronal spheroids, MGO tested concentrations comparable to human samples levels measured in MGO-associated diseases, altered neuronal key signalling endpoints relevant for the pathogenesis of neurodegenerative diseases and aging. The findings also demonstrated that the use of 3D neuronal spheroids of human origin can be useful in a strategy in vitro for testing MGO and other dicarbonyls evaluation.

10.
Vitam Horm ; 125: 1-29, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38997161

RESUMEN

Advanced glycation end products (AGEs) are a heterogeneous group of potentially harmful molecules that can form as a result of a non-enzymatic reaction between reducing sugars and proteins, lipids, or nucleic acids. The total body pool of AGEs reflects endogenously produced AGEs as well as exogeneous AGEs that come from sources such as diet and the environment. Engagement of AGEs with their cellular receptor, the receptor for advanced glycation end products (RAGE), which is expressed on the surface of various cell types, converts a brief pulse of cellular activation to sustained cellular dysfunction and tissue destruction. The AGEs/RAGE interaction triggers a cascade of intracellular signaling pathways such as mitogen-activated protein kinase/extracellular signal-regulated kinase, phosphoinositide 3-kinases, transforming growth factor beta, c-Jun N-terminal kinases (JNK), and nuclear factor kappa B, which leads to the production of pro-inflammatory cytokines, chemokines, adhesion molecules, and oxidative stress. All these events contribute to the progression of several chronic diseases. This chapter will provide a comprehensive understanding of the dynamic roles of AGEs in health and disease which is crucial to develop interventions that prevent and mitigate the deleterious effects of AGEs accumulation.


Asunto(s)
Productos Finales de Glicación Avanzada , Receptor para Productos Finales de Glicación Avanzada , Transducción de Señal , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Animales , Transducción de Señal/fisiología , Estrés Oxidativo/fisiología
11.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39000424

RESUMEN

Cardiomyocyte dysfunction and cardiovascular diseases (CVDs) can be classified as ischemic or non-ischemic. We consider the induction of cardiac tissue dysfunction by intracellular advanced glycation end-products (AGEs) in cardiomyocytes as a novel type of non-ischemic CVD. Various types of AGEs can be generated from saccharides (glucose and fructose) and their intermediate/non-enzymatic reaction byproducts. Recently, certain types of AGEs (Nε-carboxymethyl-lycine [CML], 2-ammnonio-6-[4-(hydroxymetyl)-3-oxidopyridinium-1-yl]-hexanoate-lysine [4-hydroxymethyl-OP-lysine, hydroxymethyl-OP-lysine], and Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine [MG-H1]) were identified and quantified in the ryanodine receptor 2 (RyR2) and F-actin-tropomyosin filament in the cardiomyocytes of mice or patients with diabetes and/or heart failure. Under these conditions, the excessive leakage of Ca2+ from glycated RyR2 and reduced contractile force from glycated F-actin-tropomyosin filaments induce cardiomyocyte dysfunction. CVDs are included in lifestyle-related diseases (LSRDs), which ancient people recognized and prevented using traditional medicines (e.g., Kampo medicines). Various natural compounds, such as quercetin, curcumin, and epigallocatechin-3-gallate, in these drugs can inhibit the generation of intracellular AGEs through mechanisms such as the carbonyl trap effect and glyoxalase 1 activation, potentially preventing CVDs caused by intracellular AGEs, such as CML, hydroxymethyl-OP, and MG-H1. These investigations showed that bioactive herbal extracts obtained from traditional medicine treatments may contain compounds that prevent CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Productos Finales de Glicación Avanzada , Miocitos Cardíacos , Productos Finales de Glicación Avanzada/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Humanos , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Ratones
12.
Nutrients ; 16(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39064772

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a major issue because it is closely associated with metabolic diseases. Advanced glycation end products (AGEs) are implicated as risk factors for steatosis during NAFLD progression. AGEs influence NAFLD progression through a receptor-independent pathway involving AGE cross-link formation and a receptor-dependent pathway that binds to receptors like receptors for advanced glycation end products (RAGE). The objectives of this study are to examine the effect of Lindera obtusiloba Blume (LO) on NAFLD promoted by Nε-(carboxymethyl)lysine (CML), one of the most common dietary AGEs. The anti-glycation effects of LO were evaluated by inhibiting the AGEs formation and AGEs-collagen cross-links breaking. The efficacy of LO against NAFLD promoted by CML was assessed using both in vitro and in vivo models. NAFLD was induced in mice by feeding a high-fat diet and orally administering CML over a period of 12 weeks, and the effects of LO on lipid metabolism and its regulatory mechanisms were investigated. LO showed the effect of inhibited AGEs formation and breakage, and collagen cross-linking. Fed a high-fat diet with administered CML by gavage, LO administration resulted in a reduction in body weight, fat mass, serum triglycerides, total cholesterol, and low-density lipoprotein cholesterol levels. LO reduced hepatic CML accumulation and RAGE expression in mice fed a high-fat diet and orally administered CML. LO alleviated hepatic steatosis accompanied by lipid accumulation and histological damage by suppressing the expression of sterol regulatory element-binding protein 1c, carbohydrate response element binding protein, fatty acid synthase, stearoyl-CoA desaturase1, tumor necrosis factor-α, and interleukin-1ß. LO alleviated the MAPK/NF-κB expression by attenuating CML and RAGE expression. Taken together, our results demonstrate that LO alleviates the progression of NAFLD by lowering the levels of AGEs by downregulating CML/RAGE expression.


Asunto(s)
Productos Finales de Glicación Avanzada , Lindera , Lisina , Enfermedad del Hígado Graso no Alcohólico , Receptor para Productos Finales de Glicación Avanzada , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Animales , Lisina/análogos & derivados , Productos Finales de Glicación Avanzada/metabolismo , Masculino , Ratones , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Lindera/química , Extractos Vegetales/farmacología , Ratones Endogámicos C57BL , Humanos , Dieta Alta en Grasa/efectos adversos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Metabolismo de los Lípidos/efectos de los fármacos , Modelos Animales de Enfermedad
13.
Sensors (Basel) ; 24(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38894145

RESUMEN

Advanced glycation end-products (AGEs) are complex compounds closely associated with several chronic diseases, especially diabetes mellitus (DM). Current methods for detecting AGEs are not suitable for screening large populations, or for long-term monitoring. This paper introduces a portable autofluorescence detection system that measures the concentration of AGEs in the skin based on the fluorescence characteristics of AGEs in biological tissues. The system employs a 395 nm laser LED to excite the fluorescence of AGEs, and uses a photodetector to capture the fluorescence intensity. A model correlating fluorescence intensity with AGEs concentration facilitates the detection of AGEs levels. To account for the variation in optical properties of different individuals' skin, the system includes a 520 nm light source for calibration. The system features a compact design, measuring only 60 mm × 50 mm × 20 mm, and is equipped with a miniature STM32 module for control and a battery for extended operation, making it easy for subjects to wear. To validate the system's effectiveness, it was tested on 14 volunteers to examine the correlation between AGEs and glycated hemoglobin, revealing a correlation coefficient of 0.49. Additionally, long-term monitoring of AGEs' fluorescence and blood sugar levels showed a correlation trend exceeding 0.95, indicating that AGEs reflect changes in blood sugar levels to some extent. Further, by constructing a multivariate predictive model, the study also found that AGEs levels are correlated with age, BMI, gender, and a physical activity index, providing new insights for predicting AGEs content and blood sugar levels. This research supports the early diagnosis and treatment of chronic diseases such as diabetes, and offers a potentially useful tool for future clinical applications.


Asunto(s)
Productos Finales de Glicación Avanzada , Humanos , Productos Finales de Glicación Avanzada/análisis , Femenino , Masculino , Adulto , Hemoglobina Glucada/análisis , Persona de Mediana Edad , Glucemia/análisis , Piel/química , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/sangre , Fluorescencia , Imagen Óptica/métodos , Imagen Óptica/instrumentación , Espectrometría de Fluorescencia/métodos
14.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891783

RESUMEN

Skin yellowness is a hallmark of dull or unhealthy skin, particularly among Asians. Previous research has indicated a link between skin glycation and skin yellowness. However, the specific glycated chemicals contributing to yellowish skin appearance have not been identified yet. Using HPLC-PDA-HRMS coupled with native and artificially glycated human epidermal explant skin, we identified intensely yellow colored glycated chromophores "(1R, 8aR) and (1S, 8aR)-4-(2-furyl)-7-[(2-furyl)-methylidene]-2-hydroxy-2H,7H,8AH-pyrano-[2,3-B]-pyran-3-one" (abbreviated as AGEY) from human skin samples for the first time. The abundance of AGEY was strongly correlated with skin yellowness in the multiple skin explant tissues. We further confirmed the presence of AGEY in cultured human keratinocytes and 3D reconstructed human epidermal (RHE) models. Additionally, we demonstrated that a combination of four cosmetic compounds with anti-glycation properties can inhibit the formation of AGEY and reduce yellowness in the RHE models. In conclusion, we have identified specific advanced glycation end products with an intense yellow color, namely AGEY, in human skin tissues for the first time. The series of study results highlighted the significant contribution of AGEY to the yellow appearance of the skin. Furthermore, we have identified a potential cosmetic solution to mitigate AGEY formation, leading to a reduction in yellowness in the in vitro RHE models.


Asunto(s)
Productos Finales de Glicación Avanzada , Queratinocitos , Piel , Humanos , Productos Finales de Glicación Avanzada/metabolismo , Piel/metabolismo , Queratinocitos/metabolismo , Queratinocitos/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Glicosilación , Epidermis/metabolismo , Cosméticos/química , Femenino , Adulto , Pigmentación de la Piel/efectos de los fármacos
15.
J Biol Chem ; 300(7): 107479, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38879006

RESUMEN

Glucoselysine (GL) is an unique advanced glycation end-product derived from fructose. The main source of fructose in vivo is the polyol pathway, and an increase in its activity leads to diabetic complications. Here, we aimed to demonstrate that GL can serve as an indicator of the polyol pathway activity. Additionally, we propose a novel approach for detecting GL in peripheral blood samples using liquid chromatography-tandem mass spectrometry and evaluate its clinical usefulness. We successfully circumvent interference from fructoselysine, which shares the same molecular weight as GL, by performing ultrafiltration and hydrolysis without reduction, successfully generating adequate peaks for quantification in serum. Furthermore, using immortalized aldose reductase KO mouse Schwann cells, we demonstrate that GL reflects the downstream activity of the polyol pathway and that GL produced intracellularly is released into the extracellular space. Clinical studies reveal that GL levels in patients with type 2 diabetes are significantly higher than those in healthy participants, while Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine (MG-H1) levels are significantly lower. Both GL and MG-H1 show higher values among patients with vascular complications; however, GL varies more markedly than MG-H1 as well as hemoglobin A1c, fasting plasma glucose, and estimated glomerular filtration rate. Furthermore, GL remains consistently stable under various existing drug treatments for type 2 diabetes, whereas MG-H1 is impacted. To the best of our knowledge, we provide important insights in predicting diabetic complications caused by enhanced polyol pathway activity via assessment of GL levels in peripheral blood samples from patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Productos Finales de Glicación Avanzada , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Animales , Productos Finales de Glicación Avanzada/metabolismo , Ratones , Masculino , Persona de Mediana Edad , Femenino , Lisina/metabolismo , Ornitina/metabolismo , Ornitina/sangre , Ornitina/análogos & derivados , Aldehído Reductasa/metabolismo , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/sangre , Polímeros/química , Anciano , Ratones Noqueados , Imidazoles
16.
Nutrients ; 16(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38931185

RESUMEN

Advanced glycation end products (AGEs) have been implicated in chronic diseases in adults, but their role in paediatric populations remains uncertain. This study, conducted on the Italian sample of the I.Family project, aimed to investigate the relationship between dietary and urinary fluorescent AGEs in children and adolescents. The secondary objective was to investigate the sources of dietary AGEs (dAGEs) and their association with dietary composition and anthropometric parameters. Dietary data were collected from 1048 participants via 24 h dietary recall in 2013/2014 to estimate dAGEs intake, while urinary fluorescent AGE levels were measured in 544 individuals. Participants were stratified based on dAGEs intake and compared with respect to urinary fluorescent AGE levels, anthropometric measurements, and dietary intake. The results showed no significant correlation between dietary and urinary fluorescent AGE levels, nor between dAGEs and anthropometric parameters. Notably, higher dAGEs were associated with a diet richer in protein (especially from meat sources) and fat and lower in carbohydrates. In addition, the consumption of ultra-processed foods was lower in participants with a higher DAGE intake. This study highlights the lack of a clear association between dietary and urinary fluorescent AGEs in children, but suggests a distinctive dietary pattern associated with increased dAGEs intake. Further investigation is warranted to elucidate the potential health implications of dAGEs in paediatric populations.


Asunto(s)
Dieta , Productos Finales de Glicación Avanzada , Humanos , Niño , Productos Finales de Glicación Avanzada/orina , Masculino , Femenino , Adolescente , Italia , Estudios Transversales , Antropometría , Productos Dietéticos Finales de Glicación Avanzada
17.
Adv Healthc Mater ; 13(21): e2302682, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38575148

RESUMEN

Diabetes mellitus (DM) has substantial global implications and contributes to vascular inflammation and the onset of atherosclerotic cardiovascular diseases. However, translating the findings from animal models to humans has inherent limitations, necessitating a novel platform. Therefore, herein, an arterial model is established using a microphysiological system. This model successfully replicates the stratified characteristics of human arteries by integrating collagen, endothelial cells (ECs), and vascular smooth muscle cells (VSMCs). Perfusion via a peristaltic pump shows dynamic characteristics distinct from those of static culture models. High glucose, advanced glycation end products (AGEs), and interleukin-1 beta are employed to stimulate diabetic conditions, resulting in notable cellular changes and different levels of cytokines and nitric oxide. Additionally, the interactions between the disease models and oxidized low-density lipoproteins (LDL) are examined. Finally, the potential therapeutic effects of metformin, atorvastatin, and diphenyleneiodonium are investigated. Metformin and diphenyleneiodonium mitigate high-glucose- and AGE-associated pathological changes, whereas atorvastatin affects only the morphology of ECs. Altogether, the arterial model represents a pivotal advancement, offering a robust and insightful platform for investigating cardiovascular diseases and their corresponding drug development.


Asunto(s)
Glucosa , Productos Finales de Glicación Avanzada , Interleucina-1beta , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Glucosa/metabolismo , Interleucina-1beta/metabolismo , Arterias/efectos de los fármacos , Arterias/metabolismo , Arterias/patología , Metformina/farmacología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Lipoproteínas LDL/metabolismo , Atorvastatina/farmacología , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Compuestos Onio
18.
Biomed Pharmacother ; 175: 116632, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663107

RESUMEN

The H1 receptor belongs to the family of rhodopsin-like G-protein-coupled receptors activated by the biogenic amine histamine. H1 receptor antagonists are widely used in the treatment of allergies. However, these drugs could have a much broader spectrum of activity, including hypoglycemic effects, which can broaden the spectrum of their use. The aim of the study was to evaluate the antiglycation potential of twelve H1 receptor antagonists (diphenhydramine, antazoline, promethazine, ketotifen, clemastine, pheniramine, cetirizine, levocetirizine, bilastine, fexofenadine, desloratadine, and loratadine). Bovine serum albumin (BSA) was glycated with sugars (glucose, fructose, galactose, and ribose) and aldehydes (glyoxal and methylglyoxal) in the presence of H1 blockers. The tested substances did not induce a significant decrease in the content of albumin glycation end-products, and the inhibition rate of glycoxidation was not influenced by the chemical structure or generation of H1 blockers. None of the tested H1 receptor antagonists exhibited strong antiglycation activity. Antiglycemic potential of H1 blockers could be attributed to their antioxidant and anti-inflammatory activity, as well as their effects on carbohydrate metabolism/metabolic balance at the systemic level.


Asunto(s)
Productos Finales de Glicación Avanzada , Antagonistas de los Receptores Histamínicos H1 , Simulación del Acoplamiento Molecular , Albúmina Sérica Bovina , Albúmina Sérica Bovina/metabolismo , Albúmina Sérica Bovina/química , Antagonistas de los Receptores Histamínicos H1/farmacología , Animales , Productos Finales de Glicación Avanzada/metabolismo , Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Glicosilación/efectos de los fármacos , Bovinos , Receptores Histamínicos H1/metabolismo
19.
Int J Biol Macromol ; 267(Pt 1): 131474, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599429

RESUMEN

Advanced glycation end products (AGEs) are produced non-enzymatically through the process of glycation. Increased AGEs production has been linked to several diseases including polycystic ovary syndrome (PCOS). PCOS contributes to the development of secondary comorbidities, such as diabetes, cardiovascular complications, infertility, etc. Consequently, research is going on AGEs-inhibiting phytochemicals for their potential to remediate and impede the progression of hyperglycaemia associated disorders. In this study human serum albumin is used as a model protein, as albumin is predominantly present in follicular fluid. This article focusses on the interaction and antiglycating potential of (-)-Epigallocatechin-3-gallate (EGCG) and vitamin D in combination using various techniques. The formation of the HSA-EGCG and HSA-vitamin D complex was confirmed by UV and fluorescence spectroscopy. Thermodynamic analysis verified the spontaneity of reaction, and presence of hydrogen bonds and van der Waals interactions. FRET confirms high possibility of energy transfer. Cumulative antiglycation resulted in almost 60 % prevention in AGEs formation, decreased alterations at lysine and arginine, and reduced protein carbonylation. Secondary and tertiary structural changes were analysed by circular dichroism, Raman spectroscopy and ANS binding assay. Type and size of aggregates were confirmed by Rayleigh and dynamic light scattering, ThT fluorescence, SEM and SDS-PAGE. Effect on cellular redox status, DNA integrity and cytotoxicity was analysed in lymphocytes using dichlorofluorescein (DCFH-DA), DAPI and MTT assay which depicted an enhancement in antioxidant level by cumulative treatment. These findings indicate that EGCG and vitamin D binds strongly to HSA and have antiglycation ability which enhances upon synergism.


Asunto(s)
Catequina , Catequina/análogos & derivados , Colecalciferol , Productos Finales de Glicación Avanzada , Unión Proteica , Albúmina Sérica Humana , Catequina/farmacología , Catequina/química , Catequina/metabolismo , Humanos , Productos Finales de Glicación Avanzada/metabolismo , Colecalciferol/farmacología , Colecalciferol/metabolismo , Colecalciferol/química , Albúmina Sérica Humana/metabolismo , Albúmina Sérica Humana/química , Simulación del Acoplamiento Molecular , Termodinámica , Simulación por Computador
20.
Int J Biol Macromol ; 268(Pt 2): 131609, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38621555

RESUMEN

Diabetes mellitus is characterized by hyperglycemia that makes insulin more prone to glycation and form advanced glycation end products (AGEs). Here, we report the effect of glyoxal (GO) on the formation of AGEs using human insulin as model protein and their structural modifications. The present investigation also reports the anti-AGE potential of Heliotropium bacciferum (Leaf) extracts. The phytochemical analysis of H. bacciferum revealed that free phenolic extract contains higher amount of total phenolic (3901.58 ± 17.06 mg GAE/100 g) and total flavonoid content (30.41 ± 0.32 mg QE/100 g) when compared to bound phenolic extract. Naringin and caffeic acid were identified as the major phenolic ingredients by UPLC-PAD method. Furthermore, bound phenolics extract showed significantly higher DPPH and superoxide radicals scavenging activity (IC50 17.53 ± 0.36 µg/mL and 0.306 ± 0.038 mg/ mL, respectively) (p ≤ 0.05). Besides, the bound phenolics extract also showed significant (p ≤ 0.05) chelating power (IC50 0.063) compared to free phenolic extract. In addition, bound phenolic extract could efficiently trap GO under physiological conditions. Spectroscopic investigation of GO-modified insulin illustrated changes in the tertiary structure of insulin and formation of AGEs. On the other hand, no significant alteration in secondary structure was observed by far UV-CD measurement. Furthermore, H. bacciferum extract inhibited α-glucosidase activity and AGEs formation implicated in diabetes. Molecular docking analysis depicted that GO bind with human insulin in both chains and forms a stable complex with TYR A: 14, LEU A:13, ASN B:3, SER A:12 amino acid residues with binding energy of - 2.53 kcal/mol. However, caffeic acid binds to ASN A:18 and GLU A:17 residues of insulin with lower binding energy of -4.67 kcal/mol, suggesting its higher affinity towards human insulin compared to GO. Our finding showed promising activity of H. bacciferum against AGEs and its complications. The major phenolics like caffeic acid, naringin and their derivatives could be exploited for the drug development for management of AGEs in diabetes.


Asunto(s)
Productos Finales de Glicación Avanzada , Inhibidores de Glicósido Hidrolasas , Heliotropium , Simulación del Acoplamiento Molecular , Extractos Vegetales , alfa-Glucosidasas , Productos Finales de Glicación Avanzada/metabolismo , alfa-Glucosidasas/química , alfa-Glucosidasas/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Humanos , Heliotropium/química , Análisis Espectral , Fenoles/química , Fenoles/farmacología , Insulina/metabolismo , Insulina/química , Flavonoides/farmacología , Flavonoides/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA