Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014992

RESUMEN

Salmonella is a diverse and ubiquitous group of bacteria and a major zoonotic pathogen implicated in several foodborne disease outbreaks worldwide. With more than 2500 distinct serotypes, this pathogen has evolved to survive in a wide spectrum of environments and across multiple hosts. The primary and most common source of transmission is through contaminated food or water. Although the main sources have been primarily linked to animal-related food products, outbreaks due to the consumption of contaminated plant-related food products have increased in the last few years. The perceived ability of Salmonella to trigger defensive mechanisms following pre-exposure to sublethal acid conditions, namely acid adaptation, has renewed a decade-long attention. The impact of acid adaptation on the subsequent resistance against lethal factors of the same or multiple stresses has been underscored by multiple studies. Α plethora of studies have been published, aiming to outline the factors that- alone or in combination- can impact this phenomenon and to unravel the complex networking mechanisms underlying its induction. This review aims to provide a current and updated insight into the factors and mechanisms that rule this phenomenon.

2.
Microorganisms ; 12(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38930513

RESUMEN

Pathogens that adapt to environmental stress can develop an increased tolerance to some physical or chemical antimicrobial treatments. The main objective of this study was to determine if acid adaptation increased the tolerance of Escherichia coli O157:H7 to high voltage atmospheric cold plasma (HVACP) in raw pineapple juice. Samples (10 mL) of juice were inoculated with non-acid-adapted (NAA) or acid-adapted (AA) E. coli to obtain a viable count of ~7.00 log10 CFU/mL. The samples were exposed to HVACP (70 kV) for 1-7 min, with inoculated non-HVACP-treated juice serving as a control. Juice samples were analyzed for survivors at 0.1 h and after 24 h of refrigeration (4 °C). Samples analyzed after 24 h exhibited significant decreases in viable NAA cells with sub-lethal injury detected in both NAA and AA survivors (p < 0.05). No NAA survivor in juice exposed to HVACP for 5 or 7 min was detected after 24 h. However, the number of AA survivors was 3.33 and 3.09 log10 CFU/mL in juice treated for 5 and 7 min, respectively (p < 0.05). These results indicate that acid adaptation increases the tolerance of E. coli to HVACP in pineapple juice. The potentially higher tolerance of AA E. coli O157:H7 to HVACP should be considered in developing safe juice processing parameters for this novel non-thermal technology.

3.
Appl Environ Microbiol ; 89(11): e0060223, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37874288

RESUMEN

IMPORTANCE: Based on the U.S. Food and Drug Administration regulations, E. coli O157:H7 is a pertinent pathogen in high acid juices that needs to be inactivated during the pasteurization process. The results of this study suggest that the effect of acid adaptation should be considered in the selection of HPP parameters for E. coli O157:H7 inactivation to ensure that pasteurization objectives are achieved.


Asunto(s)
Brassica rapa , Escherichia coli O157 , Escherichia coli O157/fisiología , Microbiología de Alimentos , Contaminación de Alimentos/análisis , Ácidos/farmacología , Carne , Recuento de Colonia Microbiana
4.
J Food Prot ; 86(8): 100116, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37321452

RESUMEN

The fruit and vegetable juice industry has shown a growing trend in minimally processed juices. A frequent technology used in the production of functional juices is cold pressure, which refers to the application of high pressure processing (HPP) at low temperatures to inactivate foodborne pathogens. HPP juice manufacturers are required to demonstrate a 5-log reduction of the pertinent microorganism to comply with FDA Juice HACCP. However, there is no consensus on validation study approaches for bacterial strain selection or their preparation. Individual bacterial strains were grown using three different growth conditions: neutral, cold-adapted, and acid-adapted. Approximately 6.0-7.0 log CFU/mL of the matrix-adapted bacterial strains were inoculated individually into buffered peptone water (BPW) at pH 3.50 ± 0.10 (HCl adjusted) and treated at sublethal pressures of 500 MPa for Escherichia coli O157:H7 and 200 MPa for Salmonella spp. and Listeria monocytogenes (180 s, 4°C). Analyses were conducted at 0, 24, and 48 h (4°C storage) post-HPP on nonselective media. E. coli O157:H7 exhibited greater barotolerance than Salmonella spp. and L. monocytogenes. In neutral growth conditions, E. coli O157:H7 strain TW14359 demonstrated the greatest resistance (2.94 ± 0.64 log reduction), and E. coli O157:H7 strain SEA13B88 was significantly more sensitive (P < 0.05). Salmonella isolates, neutral and acid-adapted, expressed similar barotolerance to one another. Cold-adapted S. Cubana and S. Montevideo showed greater resistance compared to other cold-adapted strains. Acid-adapted L. monocytogenes strain MAD328 had <1.00 ± 0.23 log reduction while acid-adapted L. monocytogenes strains CDC and Scott A were significantly more sensitive (P < 0.05) with reductions of 2.13 ± 0.48 and 3.43 ± 0.50 log CFU/mL, respectively. These results suggested, under the conditions tested, bacterial strain and preparation methods influence HPP efficacy and should be considered when conducting validation studies.


Asunto(s)
Escherichia coli O157 , Listeria monocytogenes , Recuento de Colonia Microbiana , Salmonella , Frutas , Microbiología de Alimentos
5.
Cell Rep ; 42(6): 112601, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37270778

RESUMEN

Acidic environments reduce the intracellular pH (pHi) of most cells to levels that are sub-optimal for growth and cellular functions. Yet, cancers maintain an alkaline cytoplasm despite low extracellular pH (pHe). Raised pHi is thought to be beneficial for tumor progression and invasiveness. However, the transport mechanisms underpinning this adaptation have not been studied systematically. Here, we characterize the pHe-pHi relationship in 66 colorectal cancer cell lines and identify the acid-loading anion exchanger 2 (AE2, SLC4A2) as a regulator of resting pHi. Cells adapt to chronic extracellular acidosis by degrading AE2 protein, which raises pHi and reduces acid sensitivity of growth. Acidity inhibits mTOR signaling, which stimulates lysosomal function and AE2 degradation, a process reversed by bafilomycin A1. We identify AE2 degradation as a mechanism for maintaining a conducive pHi in tumors. As an adaptive mechanism, inhibiting lysosomal degradation of AE2 is a potential therapeutic target.


Asunto(s)
Antiportadores de Cloruro-Bicarbonato , Proteínas de Transporte de Membrana , Neoplasias , Proteínas de Transporte de Anión/metabolismo , Antiportadores/metabolismo , Línea Celular , Antiportadores de Cloruro-Bicarbonato/química , Antiportadores de Cloruro-Bicarbonato/metabolismo , Citoplasma/metabolismo , Concentración de Iones de Hidrógeno , Neoplasias/metabolismo , Humanos
6.
Access Microbiol ; 4(9): acmi000455, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36415544

RESUMEN

Increasing proton concentration in the environment represents a potentially lethal stress for single-celled microorganisms. To survive in an acidifying environment, the foodborne pathogen Listeria monocytogenes quickly activates the alternative sigma factor B (σB), resulting in upregulation of the general stress response (GSR) regulon. Activation of σB is regulated by the stressosome, a multi-protein sensory complex involved in stress detection and signal transduction. In this study, we used L. monocytogenes strains harbouring two stressosome mutants to investigate the role of this complex in triggering expression of known amino acid-based resistance mechanisms in response to low pH. We found that expression of glutamate decarboxylase (gadD3) and arginine and agmatine deiminases (arcA and aguA1, respectively) were upregulated upon acid shock (pH 5 for 15 min) in a stressosome-dependent manner. In contrast, transcription of the arg operons (argGH and argCJBDF), which encode enzymes for the l-arginine biosynthesis pathway, were upregulated upon acid shock in a stressosome-independent manner. Finally, we found that transcription of argR, which encodes a transcriptional regulator of the arc and arg operons, was largely unaffected by acidic shock. Thus, our findings suggest that the stressosome plays a role in activating amino acid-based pH homeostatic mechanisms in L. monocytogenes . Additionally, we show that genes encoding the l-arginine biosynthesis pathway are highly upregulated under acidic conditions, suggesting that intracellular arginine can help withstand environmental acidification in this pathogen.

7.
Cancers (Basel) ; 14(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36230869

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies, with a low overall survival rate of less than 10% and limited therapeutic options. Fluctuations in tumor microenvironment pH are a hallmark of PDAC development and progression. Many ion channels are bona fide cellular sensors of changes in pH. Yet, the interplay between the acidic tumor microenvironment and ion channel regulation in PDAC is poorly understood. In this study, we show that acid adaption increases PANC-1 cell migration but attenuates proliferation and spheroid growth, which are restored upon recovery. Moreover, acid adaptation and recovery conditions favor the plasma membrane localization of the pH-sensitive calcium (Ca2+) channel transient receptor potential C1 (TRPC1), TRPC1-mediated Ca2+ influx, channel interaction with the PI3K p85α subunit and calmodulin (CaM), and AKT and ERK1/2 activation. Knockdown (KD) of TRPC1 suppresses cell migration, proliferation, and spheroid growth, notably in acid-recovered cells. KD of TRPC1 causes the accumulation of cells in G0/G1 and G2/M phases, along with reduced expression of CDK6, -2, and -1, and cyclin A, and increased expression of p21CIP1. TRPC1 silencing decreases the basal Ca2+ influx in acid-adapted and -recovered cells, but not in normal pH conditions, and Ca2+ chelation reduces cell migration and proliferation solely in acid adaptation and recovery conditions. In conclusion, acid adaptation and recovery reinforce the involvement of TRPC1 in migration, proliferation, and cell cycle progression by permitting Ca2+ entry and forming a complex with the PI3K p85α subunit and CaM.

8.
Microorganisms ; 10(7)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35889027

RESUMEN

Biltong is a dry beef product that is manufactured without a heat lethality step, raising concerns of whether effective microbial pathogen reduction can occur during biltong processing. Raw beef inoculated with 4-strain cocktails of either E. coli O157:H7, Listeria monocytogenes, or Staphylococcus aureus, and processed with a standard biltong process, were shown to incur a >5-log reduction in 6−8 days after marination by vacuum-tumbling for 30 min in vinegar, salt, spices (coriander, pepper) when dried at 23.9 °C (75 °F) at 55% relative humidity (RH). Pathogenic challenge strains were acid-adapted in media containing 1% glucose to ensure that the process was sufficiently robust to inhibit acid tolerant strains. Internal water activity (Aw) reached < 0.85 at 5-log reduction levels, ensuring that conditions were lower than that which would support bacterial growth, or toxin production by S. aureus should it be internalized during vacuum tumbling. This was further confirmed by ELISA testing for staphylococcal enterotoxins A and B (SEA, SEB) after marination and again after 10 days of drying whereby levels were lower than initial post-marination levels. Comparison of log reduction curves obtained for E. coli O157:H7, L. monocytogenes, S. aureus, and Salmonella (prior study) showed that microbial reduction was not significantly different (p < 0.05) demonstrating that even without a heat lethality step, the biltong process we examined produces a safe beef product according to USDA-FSIS guidelines.

9.
Front Microbiol ; 13: 829719, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35722283

RESUMEN

Bacterial wilt, caused by the plant pathogen Ralstonia solanacearum, occurs more severely in acidified soil according to previous reports. However, R. solanacearum cannot grow well in acidic environments under barren nutrient culture conditions, especially when the pH is lower than 5. With the worsening acidification of farmland, further determination of how R. solanacearum adapts to the long-term acidic environment is worthwhile. In this study, experimental evolution was applied to evaluate the adaptability and mechanism of the R. solanacearum experimental population responding to long-term acid stress. We chose the CQPS-1 strain as the ancestor, and minimal medium (MM medium) with different pH values as the culture environment to simulate poor soil. After 1500 generations of serial passage experiments in pH 4.9 MM, acid-adapted experimental strains (denoted as C49 strains) were obtained, showing significantly higher growth rates than the growth rates of control experimental strains (serial passage experiment in pH 6.5 MM, denoted as C65 strains). Competition experiments showed that the competitive indices (CIs) of all selected clones from C49 strains were superior to the ancestor in acidic environment competitiveness. Based on the genome variation analysis and functional verification, we confirmed that loss of function in the phcA gene was associated with the acid fitness gain of R. solanacearum, which meant that the inactivation of the PhcA regulator caused by gene mutation mediated the population expansion of R. solanacearum when growing in an acidic stress environment. Moreover, the swimming motility of acid evolution strains and the phcA deletion mutant was significantly enhanced compared to CQPS-1. This work provided evidence for understanding the adaptive strategy of R. solanacearum to the long-term acidic environment.

10.
Food Res Int ; 157: 111364, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35761625

RESUMEN

Alicyclobacillus acidoterrestris causes the spoilage of pasteurized acidic fruit juice, seriouslydecreasing quality and posing a significant safety concern. We previously discovered that acid adaptation could induce stress adaptive responses of A. acidoterrestris, however, the underlying mechanisms of this induction have not been fully elucidated. In this work, the effects of acid adaptation (pH = 3.0, 1 h) on intracellular pH (pHi) and the morphophysiological properties of A. acidoterrestris under lethal heat and acid stresses were investigated, and gene expression profiles after acid adaptation were measured by transcriptomic analysis. The results showed that acid adaptation increased the pHi of A. acidoterrestris cells in response to lethal stresses, enhanced membrane integrity, decreased surface shrinkage and roughness, and altered the Fourier transform infrared spectra profiles. After acid adaptation of A. acidoterrestris, 517 differentially expressed genes (DEGs) were detected. Consistent with resistance phenotypes, DEGs included genes related to cell surface modification and pHi homeostasis. Specifically, the barrier function of cell membrane was strengthened during acid adaptation by increasing fatty acid (FA) chain length, promoting unsaturated FA biosynthesis, and maintaining balanced synthesis of zwitterionic and acidic phospholipids. To reduce excessive intracellular protons, cells upregulated glutamate decarboxylation, urease system, and branched-chain amino acid synthesis. Additionally, the nucleotide salvage pathway was activated, and homologous recombination, UvrD-mediated transcription-coupled, and ribonucleotide excision repair pathways were applied to repair DNA lesions. Sporulation metabolism was also induced. The findings of this study provide insight into the multiple layers of acid adaptive response strategies of A. acidoterrestris, with implications for the formulation of improved control measures in the fruit juice industry.


Asunto(s)
Alicyclobacillus , Calor , Jugos de Frutas y Vegetales
11.
J Food Prot ; 84(12): 2229-2236, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34197590

RESUMEN

ABSTRACT: Given the importance of strain variability to predictive microbiology and risk assessment, this study aimed to quantify the magnitude of strain variability in growth and thermal inactivation kinetics behaviors after acid adaptation. Thirty-three Listeria monocytogenes strains were exposed to acid-adapted tryptic soy broth supplemented with yeast extract (TSBYE; pH 5.5) and non-acid-adapted TSBYE (pH 7.0) for 20 h. Next, the growth parameters of these adapted and nonadapted strains that grew in nonbuffered TSBYE at 25°C were estimated. The tested strains were inactivated at 60°C in nonbuffered broth to obtain the heat resistance parameters. The results revealed that strain variability was present in the growth and thermal inactivation characteristics. The maximum specific growth rate ranged from 0.21 to 0.44 h-1 and from 0.20 to 0.45 h-1 after acid and nonacid adaptation, respectively. The lag times were from 0.69 to 2.56 h and from 0.24 to 3.36 h for acid-adapted and non-acid-adapted cells, respectively. The apparent D-values at 60°C of the pathogen ranged between 0.56 and 3.93 min and between 0.52 and 3.63 min for the presence and absence of acid adaptation condition, respectively. Acid adaptation significantly (P < 0.05) increased the magnitude of strain variability in the thermal inactivation characteristics of L. monocytogenes, with the coefficient of variation increasing to 0.17, whereas acid adaptation did not significantly (P ≥ 0.05) influence the variabilities in the growth parameters of the tested strains. Furthermore, the subsequent growth behaviors of all strains did not exhibit significant (P > 0.05) changes after exposure to acidic broth. However, the thermal resistance of most (25 of 33) of the tested strains increased (P < 0.05) after growing in acid-adapted broth. The relevant data generated in the present study can be used to describe the strain variability in predictive microbiology and to deeply understand the behavioral responses of different strains to acid adaptation.


Asunto(s)
Listeria monocytogenes , Ácidos , Adaptación Fisiológica , Recuento de Colonia Microbiana , Microbiología de Alimentos , Concentración de Iones de Hidrógeno
12.
Food Microbiol ; 95: 103680, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33397612

RESUMEN

The innate and inducible resistance of six Salmonella strains (4/74, FS8, FS115, P167807, ATCC 13076, WT) in mayonnaise at 5 °C following adaptation to different pH/undissociated acetic acid (UAA) combinations (15mM/pH5.0, 35mM/pH5.5, 45mM/pH6.0) was investigated. The inherent and acid-induced responses were strain-dependent. Two strains (ATCC 13076, WT), albeit not the most resistant innately, exhibited the most prominent adaptive potential. Limited/no adaptability was observed regarding the rest strains, though being more resistant inherently. The individual effect of pH and UAA adaptation in the phenotypic and transcriptomic profiles of ATCC 13076 and WT was further examined. The type (pH, UAA) and magnitude of stress intensity affected their responses. Variations in the type and magnitude of stress intensity also determined the relative gene expression of four genes (adiA, cadB, rpoS, ompR) implicated in Salmonella acid resistance mechanisms. adiA and cadB were overexpressed following adaptation to some treatments; rpoS and ompR were downregulated following adaptation to 15mM/pH5.0 and 35mM/pH5.5, respectively. Nonetheless, the transcriptomic profiles did not always correlate with the corresponding phenotypes. In conclusion, strain variations in Salmonella are extensive. The ability of the strains to adapt and induce resistant phenotypes and acid resistance-related genes is affected by the type and magnitude of the stress applied during adaptation.


Asunto(s)
Ácido Acético/metabolismo , Condimentos/microbiología , Salmonella/fisiología , Ácido Acético/química , Adaptación Fisiológica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Condimentos/análisis , Microbiología de Alimentos , Almacenamiento de Alimentos , Concentración de Iones de Hidrógeno , Refrigeración , Salmonella/genética
13.
Gut Pathog ; 12(1): 52, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33292490

RESUMEN

BACKGROUND: Acid treatment is commonly used for controlling or killing pathogenic microorganisms on medical devices and environments; however, inadequate acid treatment may cause acid tolerance response (ATR) and offer cross-protection against environmental stresses, including antimicrobials. This study aimed to characterise an Escherichia coli strain that can survive in the acidic gastrointestinal environment. RESULTS: We developed an acid-tolerant E. coli O157:H7 ATCC 43889 (ATCC 43889) strain that can survive at pH 2.75 via cell adaptation in low pH conditions. We also performed RNA sequencing and qRT-PCR to compare differentially expressed transcripts between acid-adapted and non-adapted cells. Genes related to stress resistance, including kdpA and bshA were upregulated in the acid-adapted ATCC 43889 strain. Furthermore, the polymyxin resistance gene arnA was upregulated in the acid-adapted cells, and resistance against polymyxin B and colistin (polymyxin E) was observed. As polymyxins are important antibiotics, effective against multidrug-resistant gram-negative bacterial infections, the emergence of polymyxin resistance in acid-adapted E. coli is a serious public health concern. CONCLUSION: The transcriptomic and phenotypic changes analysed in this study during the adaptation of E. coli to acid environments can provide useful information for developing intervention technologies and mitigating the risk associated with the emergence and spread of antimicrobial resistance.

14.
Cancers (Basel) ; 12(8)2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32764426

RESUMEN

The acidic pH of the tumor microenvironment plays a critical role in driving cancer development toward a more aggressive phenotype, but the underlying mechanisms are unclear. To this end, phenotypic and genotypic changes induced by adaptation of cancer cells to chronic acidosis have been studied. However, the generality of acid adaptation patterns across cell models and their correlation to the molecular phenotypes and aggressiveness of human cancers are essentially unknown. Here, we define an acid adaptation expression response shared across three cancer cell models, dominated by metabolic rewiring, extracellular matrix remodeling, and altered cell cycle regulation and DNA damage response. We find that many genes which are upregulated by acid adaptation are significantly correlated to patient survival, and more generally, that there are clear correlations between acid adaptation expression response and gene expression change between normal and tumor tissues, for a large subset of cancer patients. Our data support the notion that tumor microenvironment acidity is one of the key factors driving the selection of aggressive cancer cells in human patient tumors, yet it also induces a growth-limiting genotype that likely limits cancer cell growth until the cells are released from acidosis, for instance during invasion.

15.
Int J Food Microbiol ; 329: 108665, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32497789

RESUMEN

Simultaneous treatment with 222-nm KrCl excilamp and mild heating (EX-MH) at 45, 50 and 55 °C showed synergistic bactericidal effects on non-acid and acid adapted cells of Escherichia coli O157:H7 and Salmonella Typhimurium in apple juice. In particular, acid-adapted pathogens exhibited increased resistance to EX-MH compared to pathogenic bacteria that were not acid-adapted. Also, elucidation of the synergistic bactericidal mechanism of EX-MH was performed through several assays and this mechanism was described as follows: (i) when KrCl excilamp (EX) and mild heating (MH) are applied simultaneously, MH reversibly inactivates the antioxidant enzyme, superoxide dismutase (SOD), thereby increasing accumulation of reactive oxygen species (ROS) generated by EX and thus inducing synergistic ROS generation, (ii) ROS production induces lipid peroxidation occurrence in the cell membrane, (iii) this lipid peroxidation occurrence in the cell membrane induces synergistic destruction of cell membrane, resulting in synergistic cell death. While EX-MH of 45, 50, or 55 °C reduced E. coli O157:H7 (the pathogen most resistant to EX-MH) in apple juice by 5-log, the qualities such as color (L*, a*, and b*), total phenolic compounds (TPC), and DPPH free radical scavenging activity of apple juice did not change significantly (P > 0.05). This study not only suggests the applicability of EX-MH to the apple juice industry, but also can be used as baseline data for future relevant research.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli O157/efectos de los fármacos , Microbiología de Alimentos/métodos , Jugos de Frutas y Vegetales/microbiología , Calefacción , Viabilidad Microbiana , Salmonella typhimurium/efectos de los fármacos , Bebidas/microbiología , Cloro/farmacología , Recuento de Colonia Microbiana , Criptón/química , Criptón/farmacología , Malus/microbiología
16.
Microorganisms ; 8(5)2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32466307

RESUMEN

In the US, dried beef products (beef jerky) are a popular snack product in which the manufacture often requires the use of a heat lethality step to provide adequate reduction of pathogens of concern (i.e., 5-log reduction of Salmonella as recommended by the United States Department of Agriculture Food Safety and Inspection Service (USDA-FSIS)). Biltong, a South African-style dried beef product, is manufactured with low heat and humidity. Our objectives were to examine processes for the manufacture of biltong that achieves a 5-log reduction of Salmonella without a heat lethality step and with, or without, the use of additional antimicrobials. Beef pieces (1.9 cm × 5.1 cm × 7.6 cm) were inoculated with a 5-serovar mixture of Salmonella (Salmonella Thompson 120, Salmonella Heidelberg F5038BG1, Salmonella Hadar MF60404, Salmonella Enteritidis H3527, and Salmonella Typhimurium H3380), dipped in antimicrobial solutions (lactic acid, acidified calcium sulfate, sodium acid sulfate) or water (no additional antimicrobial), and marinaded while vacuum tumbling and/or while held overnight at 5 °C. After marination, beef pieces were hung in an oven set at 22.2 °C (72 °F), 23.9 °C (75 °F), or 25 °C (77 °F) depending on the process, and maintained at 55% relative humidity. Beef samples were enumerated for Salmonella after inoculation, after dip treatment, after marination, and after 2, 4, 6, and 8 days of drying. Water activity was generally <0.85 by the end of 6-8 days of drying and weight loss was as high as 60%. Trials also examined salt concentration (1.7%, 2.2%, 2.7%) and marinade vinegar composition (2%, 3%, 4%) in the raw formulation. Nearly all approaches achieved 5-log10 reduction of Salmonella and was attributed to the manner of microbial enumeration eliminating the effects of microbial concentration on dried beef due to moisture loss. All trials were run as multiple replications and statistical analysis of treatments were determined by repeated measures analysis of variance (RM-ANOVA) to determine significant differences (p < 0.05). We believe this is the first published report of a biltong process achieving >5.0 log10 reduction of Salmonella which is a process validation requirement of USDA-FSIS for the sale of dried beef in the USA.

17.
Front Oncol ; 10: 304, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32211331

RESUMEN

Early ducts of breast tumors are unequivocally acidic. High rates of glycolysis combined with poor perfusion lead to a congestion of acidic metabolites in the tumor microenvironment, and pre-malignant cells must adapt to this acidosis to thrive. Adaptation to acidosis selects cancer cells that can thrive in harsh conditions and are capable of outgrowing the normal or non-adapted neighbors. This selection is usually accompanied by phenotypic change. Epithelial mesenchymal transition (EMT) is one of the most important switches correlated to malignant tumor cell phenotype and has been shown to be induced by tumor acidosis. New evidence shows that the EMT switch is not a binary system and occurs on a spectrum of transition states. During confirmation of the EMT phenotype, our results demonstrated a partial EMT phenotype in our acid-adapted cell population. Using RNA sequencing and network analysis we found 10 dysregulated network motifs in acid-adapted breast cancer cells playing a role in EMT. Our further integrative analysis of RNA sequencing and SILAC proteomics resulted in recognition of S100B and S100A6 proteins at both the RNA and protein level. Higher expression of S100B and S100A6 was validated in vitro by Immunocytochemistry. We further validated our finding both in vitro and in patients' samples by IHC analysis of Tissue Microarray (TMA). Correlation analysis of S100A6 and LAMP2b as marker of acidosis in each patient from Moffitt TMA approved the acid related role of S100A6 in breast cancer patients. Also, DCIS patients with higher expression of S100A6 showed lower survival compared to lower expression. We propose essential roles of acid adaptation in cancer cells EMT process through S100 proteins such as S100A6 that can be used as therapeutic strategy targeting both acid-adapted and malignant phenotypes.

18.
Microorganisms ; 8(3)2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121173

RESUMEN

Process validation studies often require the inoculation of select foodborne pathogens into targeted foods to determine the lethality of the process or antimicrobial ingredients, and quantitative recovery of surviving inoculum bacteria helps to make those assessments. Such processes introduce various stressors on the inoculated challenge microorganisms whereby traditional selective media are too harsh to enumerate the remaining viable and injured population quantitatively. Innate antibiotic resistance of challenge organisms has often been used to establish simple selective media (i.e., Tryptic Soy Agar/TSA + antibiotics) for recovering inoculated strains, but sometimes antibiotic resistant background microorganisms are higher than desired. Salmonella Thompson 120, Salmonella Heidelberg F5038BG1, Salmonella Hadar MF60404, Salmonella Enteritidis H3527, and Salmonella Typhimurium H3380 were characterized for antibiotic resistance and acid adaptation in Tryptic Soy Broth containing 0%, 0.25%, or 1.0% glucose. Sodium pyruvate was evaluated for recovery after stress but no enhancing effect was observed, possibly because the strains were acid-adapted. Selenite Cystine Broth, traditionally used as a selective enrichment broth, was used as the basis for Selenite Cystine Agar (SCA) in combination with three antibiotics to which our Salmonella are resistant. Serovars of Salmonella, both individually and in mixtures, were enumerated on TSA, SCA, Xylose Lysine Desoxycholate (XLD), and Hektoen Enteric (HE) selective agars (all containing the same antibiotics) after conditions of nutrient starvation, desiccation, acid stress, and thermal stress. The data show that quantitative enumeration of our Salmonella serovars on SCA was not significantly different (p > 0.05) than those achieved on TSA for all tested stress categories. Levels of Salmonella enumerated on XLD and/or HE were significantly different (p < 0.05) than on TSA and SCA and often more than 1-2-log lower, consistent with the inhibition of injured cells. These data confirm that SCA (+ antibiotics) is a suitable selective medium for enumeration of these acid-adapted Salmonella serovars as challenge organisms recovered from various conditions of stress.

19.
Appl Environ Microbiol ; 85(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31076436

RESUMEN

Bacterial adaptation is characterized by a lag phase during which cells do not multiply or modify their physiology to cope with the constraints of their environment. Our aim was to determine a sequence of events during the lag phase of growth at low temperature and pH for three Bacillus cereus strains. The onsets of expression of two genes, one of which is essential for stress adaptation (cshA, coding for a RNA helicase) and one of which is involved in the transition between lag phase and exponential phase (abrB, coding for a transition regulator), were determined using fluorescent transcriptional reporter systems. Regardless of the stressing conditions and the tested strains, the cshA promoter was active very early, while the biomass increased and always did so before the first cell division. At 12°C and pH 7.0, the onset of cshA promoter activity occurred at between 3 h and 7 h, while the bacterial counts started to increase at between 12 h and 13 h. At pH 5.0 and at 20°C or 30°C, the onset of cshA promoter activity occurred before 1 h and earlier than at pH 7.0. In contrast, the onset of abrB promoter activity depended on the strain and the stressing conditions. In the ATCC 14579 strain, the onset of abrB promoter activity always started at between 30 min and 3 h, before biomass increased and cell division occurred. For the other strains, it took place along with the first cell division at 12°C but did so much later during growth under the other tested conditions.IMPORTANCE The spore-forming bacterium B. cereus is a major cause of foodborne outbreaks in Europe. Some B. cereus strains can grow at low temperatures and low pH in many processed foods. Modeling of the bacterial lag time is hampered by a lack of knowledge of the timing of events occurring during this phase. In this context, the identification of lag phase markers, not currently available, could be a real advance for the better prediction of lag time duration. Currently, no molecular markers of this phase are available. By determining that cshA was always expressed early during the lag phase, we provide a molecular marker of the early adaptation process of B. cereus cells when exposed to low temperature and pH.


Asunto(s)
Bacillus cereus/genética , Proteínas Bacterianas/genética , Expresión Génica , Proteínas de la Membrana/genética , Adaptación Fisiológica/genética , Bacillus cereus/crecimiento & desarrollo , Bacillus cereus/fisiología , Proteínas Bacterianas/metabolismo , Frío , Marcadores Genéticos , Concentración de Iones de Hidrógeno , Proteínas de la Membrana/metabolismo
20.
J Appl Microbiol ; 126(5): 1480-1495, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30767340

RESUMEN

AIMS: Coagulase-negative Staphylococcus xylosus strains are used as starter organisms for sausage fermentation. As those strains have to cope with low pH-values during fermentation, the aim of this study was to identify the acid adaptation mechanisms of S. xylosus TMW 2.1523 previously isolated from salami. METHODS AND RESULTS: A comparative proteomic study between two different acid tolerant mutants was performed. Therefore, both S. xylosus mutants were grown pH-static under acid stress (pH 5·1) and reference conditions (pH 7·0). Proteomic data were supported by metabolite and cell membrane lipid analysis. Staphylococcus xylosus acid stress adaptation is mainly characterized by a metabolic change towards neutral metabolites, enhanced urease activity, reduced ATP consumption, an increase in membrane fluidity and changes in the membrane thickness. CONCLUSION: This study corroborates mechanisms as previously described for other Gram-positive bacteria. Additionally, the adjustment of membrane structure and composition in S. xylosus TMW 2.1523 play a prominent role in its acid adaptation. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates for the first time changes in the membrane lipid composition due to acid stress adaptation in staphylococci.


Asunto(s)
Proteínas Bacterianas , Proteínas de la Membrana , Proteoma , Staphylococcus , Proteínas Bacterianas/análisis , Proteínas Bacterianas/metabolismo , Fermentación , Microbiología de Alimentos , Concentración de Iones de Hidrógeno , Productos de la Carne/microbiología , Proteínas de la Membrana/análisis , Proteínas de la Membrana/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Proteoma/fisiología , Staphylococcus/química , Staphylococcus/metabolismo , Staphylococcus/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA