Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
J Gastrointest Oncol ; 15(4): 1712-1722, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39279983

RESUMEN

Background: Hepatocellular carcinoma (HCC) ranks prominently in cancer-related mortality globally. Surgery remains the main therapeutic option for the treatment of HCC, but high post-operative recurrence rate makes prognostic prediction challenging. The quest for a reliable model to predict HCC recurrence continues to enhance prognosis. We aim to develop a nomogram with multiple factors to accurately estimate the risk of post-operative recurrence in patients with HCC. Methods: A single-center retrospective study on 262 patients who underwent partial hepatectomy for HCC at the Eastern Hepatobiliary Surgery Hospital from May 2010 to April 2013 was conducted where immunohistochemistry assessed Yes-associated protein (YAP) expression in HCC. In the training cohort, a nomogram that incorporated YAP expression and clinicopathological features was constructed to predict 2-, 3-, and 5-year recurrence-free survival (RFS). The performance of the nomogram was assessed with respect to discrimination calibration, and clinical usefulness with external validation. Results: A total of 262 patients who underwent partial hepatectomy for HCC at the Eastern Hepatobiliary Surgery Hospital were included in our study. HCC patients with high YAP expression exhibited significantly higher recurrence and reduced overall survival (OS) rates compared to those with low YAP expression (P<0.001). YAP was significantly associated with alpha-fetoprotein (AFP) (P=0.03), microvascular invasion (MVI) (P<0.001), and tumor differentiation grade (P<0.001). In the training cohort, factors like YAP expression, hepatitis B surface antigen (HBsAg), hepatitis B virus deoxyribonucleic acid (HBV-DNA), Child-Pugh stage, tumor size, MVI, and tumor differentiation were identified as key elements for the predictive model. Two YAP-centric Nomograms were developed, with one focused on predicting postoperative OS and the other on RFS. The calibration curve further confirmed the model's accuracy in the training cohort. The validation cohort confirmed the model's predictive accuracy. Conclusions: The proposed nomogram combining the YAP, a predictor of HCC progression, and clinical features achieved more-accurate prognostic prediction for patients with HCC after partial hepatectomy, which may help clinicians implement more appropriate interventions.

2.
Immunol Res ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287912

RESUMEN

Asthma is featured by persistent airway inflammation. Long noncoding RNAs (lncRNAs) are reported to play critical roles in asthma. However, the function of Opa interacting protein 5-antisense 1 (OIP5-AS1) in pyroptosis during the development of asthma remains unexplored. The blood samples of asthma patients (n = 32) as well as the baseline characteristics of asthma patients or healthy people were collected. An in vivo model of asthma was established using house dust mites (HDM). To mimic asthma in vitro, BEAS-2B cells were treated with HDM. Cell pyroptosis and apoptosis were examined by flow cytometry. The levels of interleukin-1 beta (IL-1ß) and interleukin-18 (IL-18) were detected by enzyme-linked immunosorbent assay (ELISA). The binding among messenger RNAs (mRNAs) was assessed by chromatin immunoprecipitation (ChIP), dual luciferase report assay, RNA immunoprecipitation (RIP), co-immunoprecipitation (Co-IP), and RNA pull-down assay, respectively. The cellular localization was observed by fluorescence in situ hybridization (FISH) staining. The level of OIP5-AS1 was upregulated in asthma patients. HDM induced pyroptosis and increased the levels of IL-18, IL-1ß, and lactate dehydrogenase (LDH) in BEAS-2B cells, which was obviously reversed by OIP5-AS1 knockdown. Consistently, the expressions of NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), c-caspase 1, and pyroptosis-related gasdermin D-1 (GSDMD-1) in BEAS-2B cells were upregulated by HDM treatment, while these phenomena were partially abolished by silencing of OIP5-AS1. Moreover, HDM promoted the progression of asthma in vivo, which was rescued by the downregulation of OIP5-AS1. OIP5-AS1 silencing decreased HDM-induced cell pyroptosis by inactivation of NLRP3. More importantly, OIP5-AS1 promoted the mRNA stability of yes-associated protein (YAP) via binding with eukaryotic translation initiation factor 4A3 (EIF4A3), and OIP5-AS1 was transcriptionally upregulated by doublesex and mab-3 related transcription factor 3 (DMRT3). DMRT3-mediated OIP5-AS1 aggravated the progression of asthma by mediation of the EIF4A3/YAP axis, which might provide a new therapeutic strategy against asthma.

3.
Biochem Biophys Res Commun ; 733: 150450, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39067248

RESUMEN

BACKGROUND: Mechano-growth factor (MGF), which is a growth factor produced specifically in response to mechanical stimuli, with potential of tissue repair and regeneration. Our previous research has shown that MGF plays a crucial role in repair of damaged periodontal ligaments by promoting differentiation of periodontal ligament stem cells (PDLSCs). However, the molecular mechanism is not fully understood. This study aimed to investigated the regulatory effect of MGF on differentiation of PDLSCs and its molecular mechanism. METHODS: Initially, we investigated how MGF impacts cell growth and differentiation, and the relationship with the activation of Fyn-p-YAPY357 and LATS1-p-YAPS127. Then, inhibitors were used to interfere Fyn phosphorylation to verify the role of Fyn-p-YAP Y357 signal after MGF stimulation; moreover, siRNA was used to downregulate YAP expression to clarify the function of YAP in PDLSCs proliferation and differentiation. Finally, after C3 was used to inhibit the RhoA expression, we explored the role of RhoA in the Fyn-p-YAP Y357 signaling pathway in PDLSCs proliferation and differentiation. RESULTS: Our study revealed that MGF plays a regulatory role in promoting PDLSCs proliferation and fibrogenic differentiation by inducing Fyn-YAPY357 phosphorylation but not LATS1-YAP S127 phosphorylation. Moreover, the results indicated that Fyn could not activate YAP directly but rather activated YAP through RhoA in response to MGF stimulation. CONCLUSION: The research findings indicated that the Fyn-RhoA-p-YAPY357 pathway is significant in facilitating the proliferation and fibrogenic differentiation of PDLSCs by MGF. Providing new ideas for the study of MGF in promoting periodontal regenerative repair.

4.
J Orthop Translat ; 46: 79-90, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38817242

RESUMEN

Background: The cartilage stem/progenitor cells (CSPC) play a critical role in maintaining cartilage homeostasis. However, the effects of phenotypic fluctuations of CSPC on cartilage degeneration and the role of CSPC in the pathogenesis of OA is largely unknown. Methods: The cartilage samples of 3 non-OA and 10 OA patients were collected. Human CSPC (hCSPC) derived from these patients were isolated, identified, and evaluated for cellular functions. Additionally, chondrocytes derived from OA patients were isolated. The effect of Yes-associated protein (YAP) expression on hCSPC was investigated in vitro. The OA rat model was established by Hulth's method. Lentivirus-mediated YAP (Lv-YAP) or lentivirus-mediated YAP RNAi (Lv-YAP-RNAi) was injected intra-articularly to modulate YAP expression in rat joints. In addition, allogeneic rat CSPC (rCSPC) overexpressing or silencing YAP were transplanted by intra-articularly injection. We also evaluated the functions of rCSPC and the OA-related cartilage phenotype in the rat model. Finally, the transcriptome of OA rCSPC overexpressing YAP was examined to explore the potential downstream targets of YAP in rCSPC. Results: hCSPC derived from OA patients exhibited differential chondrogenesis capacity. Among them, a subset of hCSPC showed pronounced dysfunction, including impaired chondrogenic differentiation, inhibition of proliferation and migration, and downregulation of lubricin. Additionally, YAP was lowly expressed in quiescent non-OA hCSPC, upregulated in activated OA hCSPC, but significantly downregulated in dysfunctional OA hCSPC. Notably, the overexpression of YAP in OA hCSPC improved the proliferation, lubricin production, cell migration, and senescence, while silencing YAP had the opposite effect. In vivo, upregulation of YAP in the joint delayed OA progression and improved the cartilage regeneration capacity of rCSPC. Using transcriptomic analysis, we found that YAP may regulate rCSPC function by upregulating Baculoviral IAP repeat-containing 2 (BIRC2). Importantly, the knockdown of BIRC2 partly blocked the regulation of YAP on the CSPC function. Conclusion: Dysfunction of CSPC compromises the intrinsic repair capacity of cartilage and impairs cartilage homeostasis in OA. Notably, the transcriptional co-activator YAP plays a critical role in maintaining CSPC function through potential target gene BIRC2. The Translational Potential of this Article: In this study, we observed targeting the YAP-BIRC2 axis improved the CSPC function and restored the cartilage homeostasis in OA. This study provides a potential stem cell-modifying OA therapy.

5.
Int Immunopharmacol ; 134: 112248, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38749332

RESUMEN

Psoriasis, characterized by aberrant epidermal keratinocyte proliferation and differentiation, is a chronic inflammatory immune-related skin disease. Diosmetin (Dios), derived from citrus fruits, exhibits anti-inflammatory and anti-proliferative properties. In this study, IL-17A-induced HaCaT cell model and Imiquimod (IMQ)-induced mouse model were utilized to investigate the effects of Dios against psoriasis. The morphology and biomarkers of psoriasis were regarded as the preliminary evaluation including PASI score, skin thickness, H&E staining, EdU staining and inflammatory factors. Transcriptomics analysis revealed PGC-1α as a key target for Dios in ameliorating psoriasis. Specifically, Dios, through PGC-1α, suppressed YAP-mediated proliferation and inflammatory responses in psoriatic keratinocytes. In conclusion, Dios shows promise in psoriasis treatment and holds potential for development as targeted medications for application in psoriasis.


Asunto(s)
Proliferación Celular , Imiquimod , Queratinocitos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Psoriasis , Transducción de Señal , Psoriasis/tratamiento farmacológico , Psoriasis/inmunología , Animales , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Ratones , Flavonoides/farmacología , Flavonoides/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Proteínas Señalizadoras YAP/metabolismo , Modelos Animales de Enfermedad , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Células HaCaT , Línea Celular , Ratones Endogámicos BALB C , Interleucina-17/metabolismo , Masculino , Inflamación/tratamiento farmacológico
6.
J Clin Transl Hepatol ; 12(4): 357-370, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38638379

RESUMEN

Background and Aims: Hepatic ischemia-reperfusion injury (HIRI) is a prevalent complication of liver transplantation, partial hepatectomy, and severe infection, necessitating the development of more effective clinical strategies. Receptor activity-modifying protein 1 (RAMP1), a member of the G protein-coupled receptor adapter family, has been implicated in numerous physiological and pathological processes. The study aimed to investigate the pathogenesis of RAMP1 in HIRI. Methods: We established a 70% liver ischemia-reperfusion model in RAMP1 knockout (KO) and wild-type mice. Liver and blood samples were collected after 0, 6, and 24 h of hypoxia/reperfusion. Liver histological and serological analyses were performed to evaluate liver damage. We also conducted in-vitro and in-vivo experiments to explore the molecular mechanism underlying RAMP1 function. Results: Liver injury was exacerbated in RAMP1-KO mice compared with the sham group, as evidenced by increased cell death and elevated serum transaminase and inflammation levels. HIRI was promoted in RAMP1-KO mice via the induction of hepatocyte apoptosis and inhibition of proliferation. The absence of RAMP1 led to increased activation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway and yes-associated protein (YAP) phosphorylation, ultimately promoting apoptosis. SCH772984, an ERK/MAPK phosphorylation inhibitor, and PY-60, a YAP phosphorylation inhibitor, reduced apoptosis in in-vitro and in-vivo experiments. Conclusions: Our findings suggest that RAMP1 protects against HIRI by inhibiting ERK and YAP phosphorylation signal transduction, highlighting its potential as a therapeutic target for HIRI and providing a new avenue for intervention.

7.
Apoptosis ; 29(7-8): 1198-1210, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38553612

RESUMEN

A number of studies have confirmed that Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ)-transcriptional enhanced associate domain (TEAD) activity is the driver of cancer development. However, the role and mechanism of the YAP/TAZ-TEAD pathway in cervical intraepithelial neoplasia (CIN) remain to be clarified. Therefore, this study was designed to observe the effect of YAP/TAZ-TEAD activity on the development of CIN and provide new ideas for the diagnosis and treatment of CIN. Firstly, cervical tissues were collected from CIN patients in different stages [CIN grade 1 (CIN1) tissue, CIN grade 2/3 (CIN 2/3) and squamous cell carcinoma (SCC)] and healthy volunteers. Next, the expression levels of YAP, TAZ and TEAD in cervical tissues and cells were observed by immunohistochemistry, qRT-PCR and western blot. Besides, Z172 and Z183 cells were transfected with siRNA-YAP/TAZ (si-YAP/TAZ) and YAP/TAZ overexpression vector (YAP-5SA). Also, Z172 cells were co-transfected with YAP-5SA and si-TEAD2/4. Subsequently, the stemness characteristics, glycolysis level and malignant transformation of cells in each group were observed by sphere-formation assay, commercial kit, MTT, Transwell, scratch experiment, xenotransplantation and western blot.The expression of YAP, TAZ and TEAD increased significantly in cervical cancer tissue and cell line at the stage of CIN2/3 and SCC. When YAP/TAZ was knocked down, the stemness characteristics, glycolysis level and malignant transformation of cancer cells were notably inhibited; while activating YAP/TAZ exhibited a completely opposite result. In addition, activating YAP/TAZ and knocking down the TEAD expression at the same time significant weakened the effect of activated YAP/TAZ signal on precancerous cells and reduced inhibitory effect of knocking down TEAD alone. YAP/TAZ-TEAD signal activates the characteristics and Warburg effect of cancer stem cells, thereby promoting the malignant transformation of CIN.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Transformación Celular Neoplásica , Células Madre Neoplásicas , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Displasia del Cuello del Útero , Neoplasias del Cuello Uterino , Proteínas Señalizadoras YAP , Humanos , Femenino , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Displasia del Cuello del Útero/patología , Displasia del Cuello del Útero/genética , Displasia del Cuello del Útero/metabolismo , Animales , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción de Dominio TEA/metabolismo , Línea Celular Tumoral , Ratones , Efecto Warburg en Oncología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proliferación Celular/genética , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología
8.
Expert Opin Investig Drugs ; 33(3): 171-182, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38372666

RESUMEN

INTRODUCTION: Targeted therapy is used to treat lung adenocarcinoma caused by epidermal growth factor receptor (EGFR) mutations in the tyrosine kinase domain and rare subtypes (<5%) of non-small cell lung cancer. These subtypes include fusion oncoproteins like anaplastic lymphoma kinase (ALK), ROS1, rearranged during transfection (RET), and other receptor tyrosine kinases (RTKs). The use of diverse selective oral inhibitors, including those targeting rat sarcoma viral oncogene homolog (KRAS) mutations, has significantly improved clinical responses, extending progression-free and overall survival. AREAS COVERED: Resistance remains a critical issue in lung adenocarcinoma, notably in EGFR mutant, echinoderm microtubule associated protein-like 4 (EML4)-ALK fusion, and KRAS mutant tumors, often associated with epithelial-to-mesenchymal transition (EMT). EXPERT OPINION: Despite advancements in next generation EGFR inhibitors and EML4-ALK therapies with enhanced brain penetrance and identifying resistance mutations, overcoming resistance has not been abated. Various strategies are being explored to overcome this issue to achieve prolonged cancer remission and delay resistance. Targeting yes-associated protein (YAP) and the mechanisms associated with YAP activation through Hippo-dependent or independent pathways, is desirable. Additionally, the exploration of liquid-liquid phase separation in fusion oncoproteins forming condensates in the cytoplasm for oncogenic signaling is a promising field for the development of new treatments.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/uso terapéutico , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/uso terapéutico , Adenocarcinoma del Pulmón/tratamiento farmacológico , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/uso terapéutico , Mutación , Receptores ErbB/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
9.
Curr Eye Res ; 49(5): 524-532, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38305219

RESUMEN

PURPOSE: Diabetic retinopathy (DR) is a major cause of irreversible blindness in the working-age population. Neovascularization is an important hallmark of advanced DR. There is evidence that Yes-associated protein (YAP)/transcriptional co-activator with a PDZ binding domain (TAZ) plays an important role in angiogenesis and that its activity is regulated by vascular endothelial growth factor (VEGF). Therefore, the aim of this study was to investigate the effect of YAP/TAZ-VEGF crosstalk on the angiogenic capacity of human retinal microvascular endothelial cells (hRECs) in a high-glucose environment. METHODS: The expression of YAP and TAZ of hRECs under normal conditions, hypertonic conditions and high glucose were observed. YAP overexpression (OE-YAP), YAP silencing (sh-YAP), VEGF overexpression (OE-VEGF) and VEGF silencing (sh-VEGF) plasmids were constructed. Cell counting kit-8 assay was performed to detect cells proliferation ability, transwell assay to detect cells migration ability, and tube formation assay to detect tube formation ability. The protein expression of YAP, TAZ, VEGF, matrix metalloproteinase (MMP)-8, MMP-13, vessel endothelium (VE)-cadherin and alpha smooth muscle actin (α-SMA) was measured by western blot. RESULTS: The proliferation of hRECs was significantly higher in the high glucose group compared with the normal group, as well as the protein expression of YAP and TAZ (p < 0.01). YAP and VEGF promoted the proliferation, migration and tube formation of hRECs in the high glucose environment (p < 0.01), and increased the expression of TAZ, VEGF, MMP-8, MMP-13 and α-SMA while reducing the expression of VE-cadherin (p < 0.01). Knockdown of YAP effectively reversed the above promoting effects of OE-VEGF (p < 0.01) and overexpression of YAP significantly reversed the inhibition effects of sh-VEGF on above cell function (p < 0.01). CONCLUSION: In a high-glucose environment, YAP/TAZ can significantly promote the proliferation, migration and tube formation ability of hRECs, and the mechanism may be related to the regulation of VEGF expression.


Asunto(s)
Angiogénesis , Retinopatía Diabética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Factor A de Crecimiento Endotelial Vascular , Proteínas Señalizadoras YAP , Humanos , Angiogénesis/metabolismo , Proliferación Celular , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Glucosa/farmacología , Glucosa/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 13 de la Matriz/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Retina/metabolismo , Retina/patología
10.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38396812

RESUMEN

Contact inhibition (CI) represents a crucial tumor-suppressive mechanism responsible for controlling the unbridled growth of cells, thus preventing the formation of cancerous tissues. CI can be further categorized into two distinct yet interrelated components: CI of locomotion (CIL) and CI of proliferation (CIP). These two components of CI have historically been viewed as separate processes, but emerging research suggests that they may be regulated by both distinct and shared pathways. Specifically, recent studies have indicated that both CIP and CIL utilize mechanotransduction pathways, a process that involves cells sensing and responding to mechanical forces. This review article describes the role of mechanotransduction in CI, shedding light on how mechanical forces regulate CIL and CIP. Emphasis is placed on filamin A (FLNA)-mediated mechanotransduction, elucidating how FLNA senses mechanical forces and translates them into crucial biochemical signals that regulate cell locomotion and proliferation. In addition to FLNA, trans-acting factors (TAFs), which are proteins or regulatory RNAs capable of directly or indirectly binding to specific DNA sequences in distant genes to regulate gene expression, emerge as sensitive players in both the mechanotransduction and signaling pathways of CI. This article presents methods for identifying these TAF proteins and profiling the associated changes in chromatin structure, offering valuable insights into CI and other biological functions mediated by mechanotransduction. Finally, it addresses unanswered research questions in these fields and delineates their possible future directions.


Asunto(s)
Inhibición de Contacto , Mecanotransducción Celular , Mecanotransducción Celular/fisiología , Transducción de Señal , Locomoción , Proliferación Celular
11.
Zhongguo Zhong Yao Za Zhi ; 49(1): 151-161, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38403348

RESUMEN

Jiedu Huoxue Decoction(JDHX), first recorded in the Correction on Errors in Medical Works by WANG Qing-ren, is an effective formula screened out from ancient formulas by the traditional Chinese medicine(TCM) master ZHANG Qi to treat acute kidney injury(AKI) caused by heat, toxicity, stasis, and stagnation. This paper elucidated the therapeutic effect of JDHX on AKI and probed into the potential mechanism from ferroptosis. Thirty-two male C57BL/6 mice were randomized into four groups(n=8): normal, model, and low-and high-dose JDHX. Since the clinical treatment of AKI depends on supportive or alternative therapies and there is no specific drug, this study did not include a positive drug group. The low dose of JDHX corresponded to half of clinically equivalent dose, while the high dose corresponded to the clinically equivalent dose. Mice were administrated with JDHX by gavage daily for 7 consecutive days, while those in the normal group and the model group were administered with the corresponding volume of distilled water. On day 5 of drug administration, mice in other groups except the normal group were injected intraperitoneally with cisplatin solution at a dose of 20 mg·kg~(-1) to induce AKI, and the normal group was injected with saline. All of the mice were sacrificed 72 h after modeling, blood and kidney samples were collected for subsequent analysis. The levels of serum creatine(Scr) and blood urea nitrogen(BUN) were measured by the commercial kits. The expression level of kidney injury molecule 1(KIM-1) in the serum was measured by enzyme-linked immunosorbent assay. Hematoxylin-eosin(HE) staining, periodic acid-Schiff(PAS) staining, and Prussian blue staining were employed to observe the pathological changes, glycogen deposition, and iron deposition, respectively, in the renal tissue. In addition, the levels of glutathione(GSH), superoxide dismutase(SOD), and catalase(CAT) in the renal tissue were examined by biochemical colorimetry. Western blot was performed to determine the protein levels of acyl-CoA synthetase long chain family member 4(ACSL4), lysophosphatidylcholine acyltransferase 3(LPCAT3), and Yes-associated protein(YAP, a key molecule in the Hippo pathway) in the renal tissue. Immunohistochemistry was then employed to detect the location and expression of YAP in the renal tissue. Real-time fluorescence quantitative polymerase chain reaction(qRT-PCR) was performed to measure the mRNA levels of ACSL4 and glutathione peroxidase 4(GPX4). Compared with the normal group, the model group showed elevated serum levels of Scr, BUN, and KIM-1. In the AKI model group, the tubular epithelial cells underwent atrophy and necrotic detachment, disappearance of brush border, and some tubules became protein tubules or experienced vacuole-like degeneration. In addition, this group presented widening of the interstitium or even edema, increased renal tubule injury score, and obvious glycogen and iron deposition in parts of the renal tissue. Moreover, the model group had lower GSH, SOD, and CAT levels, higher ASCL4 and LPCAT3 levels, and lower GPX4 expression and higher YAP expression than the normal group. Compared with the model group, high dose of JDHX effectively protected renal function, lowered the levels of Scr, BUN and KIM-1, alleviated renal pathological injury, reduced glycogen and iron deposition, and elevated the GSH, SOD, and CAT levels in the renal tissue. Furthermore, JDHX down-regulated the protein levels of ACSL4, LPCAT3, and YAP and up-regulated the level of GPX4, compared with the model group. In conclusion, JDHX can protect mice from cisplatin-induced AKI by inhibiting ferroptosis via regulating the YAP/ACSL4 signaling pathway.


Asunto(s)
Lesión Renal Aguda , Ferroptosis , Ratones , Masculino , Animales , Cisplatino/efectos adversos , Ratones Endogámicos C57BL , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/genética , Glucógeno , Superóxido Dismutasa , Hierro , 1-Acilglicerofosfocolina O-Aciltransferasa
12.
Acta Biomater ; 173: 93-108, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37977292

RESUMEN

Cells cultured on stiff 2D substrates exert high intracellular force, resulting in mechanical deformation of their nuclei. This nuclear deformation (ND) plays a crucial role in the transport of Yes Associated Protein (YAP) from the cytoplasm to the nucleus. However, cells in vivo are in soft 3D environment with potentially much lower intracellular forces. Whether and how cells may deform their nuclei in 3D for YAP localization remains unclear. Here, by culturing human colon cancer associated fibroblasts (CAFs) on 2D, 2.5D, and 3D substrates, we differentiated the effects of stiffness, force, and ND on YAP localization. We found that nuclear translocation of YAP depends on the degree of ND irrespective of dimensionality, stiffness and total force. ND induced by the perinuclear force, not the total force, and nuclear membrane curvature correlate strongly with YAP activation. Immunostained slices of human tumors further supported the association between ND and YAP nuclear localization, suggesting ND as a potential biomarker for YAP activation in tumors. Additionally, we conducted quantitative analysis of the force dynamics of CAFs on 2D substrates to construct a stochastic model of YAP kinetics. This model revealed that the probability of YAP nuclear translocation, as well as the residence time in the nucleus follow a power law. This study provides valuable insights into the regulatory mechanisms governing YAP dynamics and highlights the significance of threshold activation in YAP localization. STATEMENT OF SIGNIFICANCE: Yes Associated Protein (YAP), a transcription cofactor, has been identified as one of the drivers of cancer progression. High tumor stiffness is attributed to driving YAP to the nucleus, wherein it activates pro-metastatic genes. Here we show, using cancer associated fibroblasts, that YAP translocation to the nucleus depends on the degree of nuclear deformation, irrespective of stiffness. We also identified that perinuclear force induced membrane curvature correlates strongly with YAP nuclear transport. A novel stochastic model of YAP kinetics unveiled a power law relationship between the activation threshold and persistence time of YAP in the nucleus. Overall, this study provides novel insights into the regulatory mechanisms governing YAP dynamics and the probability of activation that is of immense clinical significance.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Humanos , Proteínas Señalizadoras YAP , Procesamiento Proteico-Postraduccional , Citoplasma/metabolismo , Neoplasias/metabolismo , Fibroblastos/metabolismo
13.
Microorganisms ; 11(12)2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38138101

RESUMEN

The incidence of oral cancer has recently been increasing worldwide, particularly among young individuals and women. The primary risk factors for head and neck cancers, including oral and pharyngeal cancers, are smoking, alcohol consumption, poor oral hygiene, and repeated exposure to mechanical stimuli. However, approximately one-third of the patients with oral and pharyngeal cancers are neither smokers nor drinkers, which points to the existence of other mechanisms. Recently, human microbes have been linked to various diseases, including cancer. Oral pathogens, especially periodontal pathobionts, are reported to play a role in the development of colon and other types of cancer. In this study, we employed a series of bioinformatics analyses to pinpoint Fusobacterium nucleatum as the predominant oral bacterial species in oral and pharyngeal cancer tissue samples. We successfully isolated Fn. polymorphum from the saliva of patients with oral cancer and demonstrated that Fn. polymorphum indeed promoted oral squamous cell carcinoma development by activating YAP in a mouse tongue cancer model. Our research offers scientific evidence for the role of the oral microbiome in oral cancer progression and provides insights that would help in devising preventative strategies against oral cancer, potentially by altering oral bacterial profiles.

14.
Int J Mol Sci ; 24(24)2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38139151

RESUMEN

The yes-associated protein (YAP) of the Hippo pathway regulates a variety of target genes involved in cell proliferation, survival, and inflammation. YAP and transcription activator with a PDZ-binding motif (TAZ) proteins act as mediators of the inflammatory response. Still, their role in atopic dermatitis (AD)-particularly, the association with the nuclear factor kappa-B and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathways-is not fully understood. In this study, we found that YAP, is upregulated in AD patients and NC/Nga mouse model of AD. In addition, inhibition of YAP significantly reduced epidermal cell proliferation by 58% and mast cell numbers by 51% and attenuated the upregulation of both Th1- and Th2-associated cytokines. Among the JAK-STAT family proteins, the expressions of JAK1 and JAK2 and those of STAT1, STAT2, and STAT3 were also downregulated. These findings may explain the role of YAP in AD and suggest YAP inhibitors as promising therapeutic agents for AD.


Asunto(s)
Dermatitis Atópica , Vía de Señalización Hippo , Animales , Ratones , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Señalizadoras YAP , Factores de Transcripción/metabolismo , Quinasas Janus/metabolismo
15.
Chin Clin Oncol ; 12(5): 52, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37964544

RESUMEN

BACKGROUND: Retinoblastoma (RB) is a retinal cancer most commonly occurred in young children. Cisplatin and etoposide had been confirmed as chemotherapy drugs in the treatment of RB, even though the phenomenon of chemotherapeutic resistance has been occurring in clinical treatment frequently. RB has been reported to be a tumor with reduced expression of yes-associated protein (YAP). However, the role of YAP protein and its correlation with the chemotherapy effect in RB still remains unknown. METHODS: Here we used human RB cell lines Y79 and RB3823 to construct YAP over-expression cell lines for exploring the specific role of YAP. In vitro, a series of techniques and methods were used to identify the biological role of YAP in RB, such as Agilent Seahorse assay, lipid peroxidation assay, intracellular reactive oxygen species (ROS) measurement, flow cytometry apoptosis assay, and other basic experimental techniques, among others. RESULTS: The cell growth and cytology experimental results found YAP can inhibit the proliferation of RB cells and promote their apoptosis (Y79 32.71% vs. 3.75%; RB3823 40.32% vs. 6.73%). The mitochondrial fuel flex test, lipid peroxide and ROS measurement confirmed that YAP over-expression could promote mitochondrial fatty-acids ß-oxidation and lipid peroxidation in RB cells. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis for the expression of lipid peroxidation related factors imply that YAP over-expression caused ferroptosis in RB cell lines. In addition, YAP transcription specific activator PY-60 (10 µM) further improved the sensitivity of cisplatin/etoposide. CONCLUSIONS: Our research results found the expression of YAP inhibits cell proliferation and promoted lipid peroxidation induced ferroptosis in RB. Interestingly, the mitochondrial oxidative phosphorylation shows an increased fatty acid dependency and decreased glucose dependency. As a result, this phenomenon improved the sensitivity of RB to cisplatin/etoposide chemotherapy in vitro. Our finding provides a potential therapeutic target for RB chemotherapy.


Asunto(s)
Ferroptosis , MicroARNs , Neoplasias de la Retina , Retinoblastoma , Niño , Humanos , Preescolar , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/genética , Retinoblastoma/metabolismo , Etopósido/farmacología , Etopósido/uso terapéutico , Cisplatino/farmacología , Cisplatino/uso terapéutico , Peroxidación de Lípido , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/farmacología , Especies Reactivas de Oxígeno/uso terapéutico , Línea Celular Tumoral , Neoplasias de la Retina/tratamiento farmacológico , Neoplasias de la Retina/genética , Neoplasias de la Retina/patología , Proliferación Celular , Lípidos/farmacología , Lípidos/uso terapéutico , MicroARNs/metabolismo , Regulación Neoplásica de la Expresión Génica
16.
Int J Mol Sci ; 24(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37895068

RESUMEN

Recent studies have demonstrated that fascial fibroblasts are susceptible to mechanical stimuli, leading to the remodeling of the extracellular matrix (ECM). Moreover, the extensive literature on Yes-associated protein (YAP) has shown its role in cell mechanics, linking cell properties, such as shape, adhesion, and size, to the expression of specific genes. The aim of this study was to investigate the presence of YAP in deep fascia and its activation after a mechanical stimulus was induced via a focal extracorporeal shockwave (fESW) treatment. Thoracolumbar fascia (TLF) samples were collected from eight patients (age: 30-70 years; four males and four females) who had undergone spine elective surgical procedures at the Orthopedic Clinic of University of Padova. YAP was measured in both tissue and TLF-derived fibroblasts through immunoblotting. COL1A1 and HABP2 gene expression were also evaluated in fibroblasts 2, 24, and 48 h after the fESW treatment. YAP was expressed in all the examined tissues. The ratio between the active/inactive forms (YAP/p-YAP) of the protein significantly increased in fascial fibroblasts after mechanical stimulation compared to untreated cells (p = 0.0022). Furthermore, COL1A1 and HABP2 gene expression levels were increased upon treatment. These findings demonstrate that YAP is expressed in the deep fascia of the thoracolumbar region, suggesting its involvement in fascial mechanotransduction processes, remodeling, regeneration, and fibrogenesis. This study indicates, for the first time, that YAP is a "new player" in the mechanobiology of deep fascia.


Asunto(s)
Mecanotransducción Celular , Proteínas Señalizadoras YAP , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fascia/fisiología , Fibroblastos/metabolismo
17.
Cell Commun Signal ; 21(1): 308, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37904190

RESUMEN

BACKGROUND: Integrins are closely related to mechanical conduction and play a crucial role in the osteogenesis of human mesenchymal stem cells. Here we wondered whether tensile stress could influence cell differentiation through integrin αVß3. METHODS: We inhibited the function of integrin αVß3 of human mesenchymal stem cells by treating with c(RGDyk). Using cytochalasin D and verteporfin to inhibit polymerization of microfilament and function of nuclear Yes-associated protein (YAP), respectively. For each application, mesenchymal stem cells were loaded by cyclic tensile stress of 10% at 0.5 Hz for 2 h daily. Mesenchymal stem cells were harvested on day 7 post-treatment. Western blotting and quantitative RT-PCR were used to detect the expression of alkaline phosphatase (ALP), RUNX2, ß-actin, integrin αVß3, talin-1, vinculin, FAK, and nuclear YAP. Immunofluorescence staining detected vinculin, actin filaments, and YAP nuclear localization. RESULTS: Cyclic tensile stress could increase the expression of ALP and RUNX2. Inhibition of integrin αVß3 activation led to rearrangement of actin filaments and downregulated the expression of ALP, RUNX2 and promoted YAP nuclear localization. When microfilament polymerization was inhibited, ALP, RUNX2, and nuclear YAP nuclear localization decreased. Inhibition of YAP nuclear localization could reduce the expression of ALP and RUNX2. CONCLUSIONS: Cyclic tensile stress promotes early osteogenesis of human mesenchymal stem cells via the integrin αVß3-actin filaments axis. YAP nuclear localization participates in this process of human mesenchymal stem cells. Video Abstract.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Humanos , Citoesqueleto de Actina/metabolismo , Diferenciación Celular , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Integrina alfaVbeta3/metabolismo , Células Madre Mesenquimatosas/metabolismo , Vinculina/metabolismo
18.
Biochem Biophys Res Commun ; 681: 120-126, 2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-37774569

RESUMEN

Mechanisms underlying the growth and survival of non-small cell lung cancer (NSCLC) cells positive for activating mutations of the epidermal growth factor receptor gene (EGFR) have remained unclear. We here examined the functional relation between such mutant forms of EGFR and Yes-associated protein (YAP), a transcriptional coactivator of the Hippo signaling pathway that regulates cell proliferation and survival. Under the condition of serum deprivation, epidermal growth factor (EGF) induced activation of YAP in NSCLC cell lines positive for mutated EGFR but not in those wild type (WT) for EGFR. Similar EGF-induced activation of YAP was apparent in A549 lung cancer cells forcibly expressing mutant EGFR but not in those overexpressing the WT receptor. Furthermore, EGF induced apoptotic cell death in serum-deprived A549 cells overexpressing the WT form of EGFR but not in those expressing mutant EGFR, and knockdown of YAP rendered the latter cells sensitive to this effect of EGF. Our results thus suggest that activation of YAP mediates resistance of EGFR-mutated NSCLC cells to EGF-induced apoptosis and thereby contributes specifically to the survival of such cells.

19.
Int J Mol Sci ; 24(15)2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37569866

RESUMEN

Biomechanical forces are of fundamental importance in biology, diseases, and medicine. Mechanobiology is an emerging interdisciplinary field that studies how biological mechanisms are regulated by biomechanical forces and how physical principles can be leveraged to innovate new therapeutic strategies. This article reviews state-of-the-art mechanobiology knowledge about the yes-associated protein (YAP), a key mechanosensitive protein, and its roles in the development of drug resistance in human cancer. Specifically, the article discusses three topics: how YAP is mechanically regulated in living cells; the molecular mechanobiology mechanisms by which YAP, along with other functional pathways, influences drug resistance of cancer cells (particularly lung cancer cells); and finally, how the mechanical regulation of YAP can influence drug resistance and vice versa. By integrating these topics, we present a unified framework that has the potential to bring theoretical insights into the design of novel mechanomedicines and advance next-generation cancer therapies to suppress tumor progression and metastasis.


Asunto(s)
Neoplasias Pulmonares , Factores de Transcripción , Humanos , Fenómenos Biomecánicos , Factores de Transcripción/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Resistencia a Antineoplásicos
20.
Cell Signal ; 108: 110727, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37257765

RESUMEN

BACKGROUND: Acute-on-chronic liver failure (ACLF) is a syndrome with both high prevalence and mortality. However, the underlying mechanisms remain elusive and there is no effective therapeutic approach available. Here we aim to uncover novel molecular mechanisms of ACLF and identify potential therapeutic targets. METHOD: We performed integrative analysis of 3 transcriptomic datasets and subsequent bioinformatic analysis aiming for potential genes of significance in ACLF development, identifying a critical role of IGF2BP3/HIF1A signaling in development of ACLF. Expression of molecules in IGF2BP3/HIF1A pathway and hepatocyte reprogramming markers in clinical samples were then determined by western blot and quantitative PCR. N6-methyladenosine (m6A) RNA modification of HIF1A was analyzed by m6A dot assay and PCR following m6A-antibody precipitation. The molecular mechanisms among IGFBP3, HIF1α and YAP1 were further validated by gene overexpression and knockdown experiments in HepG2 and Hep3B cells. Cell phenotypes of hepatocyte reprogramming were determined by EdU staining, sphere formation assay and immunoblotting of relevant markers. RESULTS: Our data demonstrated that IGF2BP3 recognized m6A modification in HIF1A mRNA as an m6A reader, thereby promoting expression of HIF1A by increasing RNA stability. HIF1A activated Rho GTPases (RhoA) and suppressed phosphorylation of YAP via inhibiting LATS1/2, promoting translocation of non-phosphorylated YAP into the nucleus, resulting in fetal liver programme and ultimate hepatic injury in ACLF patients. CONCLUSION: We reveal a novel molecular mechanism that IGF2BP3/HIF1A/YAP signaling promotes hepatocyte reprogramming, causing hepatic injury in ACLF. Our study provides potential targets for treatment of ACLF.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Humanos , Insuficiencia Hepática Crónica Agudizada/metabolismo , Hepatocitos/metabolismo , Transducción de Señal , ARN Mensajero/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA