Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Fish Dis ; 47(9): e13979, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38879867

RESUMEN

The increasing significance of the aquaculture sector and commercially valuable species underscores the need to develop alternatives for controlling diseases such as Ichthyophthirius multifiliis-induced ichthyophthiriasis. This ciliated protozoan parasite threatens nearly all freshwater fish species, causing substantial losses in the fishery industry. Despite this, effective large-scale treatments are lacking, emphasizing the necessity of adopting preventive strategies. While the pathogenesis of ichthyophthiriasis and its immune stimulation allows for vaccination strategies, precise adjustments are crucial to ensure the production of an effective vaccine compound. Therefore, this study aimed to evaluate the impact of immunizing Astyanax lacustris with a genetic vaccine containing IAG52A from I. multifiliis and the molecular adjuvant IL-8 from A. lacustris. Transcript analysis in immunized A. lacustris indicated mRNA production in fish muscles, demonstrating an expression of this mRNA. Fish were divided into five groups, receiving different vaccine formulations, and all groups received a booster dose 14 days after the initial immunization. Samples from vaccinated fish showed increased IL-1ß mRNA expression in the spleen within 6 h post the second dose and after 14 days. In the head kidney, IL-1ß mRNA expression showed no significant difference at 6 and 24 h but an increase was noted in fish injected with IAG and IAG + IL-8 after 14 days. IL-8 mRNA expression in the spleen and kidney did not significantly differ from the control group. Histological analysis revealed no variation in leukocyte concentration at 6 and 24 h post-vaccination; however, after 14 days, the groups injected with IAG and IAG + IL-8 exhibited a higher leukocyte density at the application sites than the control. The obtained data suggest that the used vaccine is transcribed, indicating its potential to stimulate innate immune response parameters through mRNA cytokine expression and leukocyte migration.


Asunto(s)
Adyuvantes Inmunológicos , Infecciones por Cilióforos , Enfermedades de los Peces , Hymenostomatida , Vacunas de ADN , Animales , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/parasitología , Infecciones por Cilióforos/veterinaria , Infecciones por Cilióforos/prevención & control , Infecciones por Cilióforos/inmunología , Hymenostomatida/inmunología , Vacunas de ADN/inmunología , Vacunas de ADN/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Vacunación/veterinaria , Vacunas Antiprotozoos/inmunología , Vacunas Antiprotozoos/administración & dosificación , Characidae/inmunología , Interleucinas/inmunología
2.
Cryobiology ; 116: 104929, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38871206

RESUMEN

Primordial germ cells (PGCs) constitute an important cell lineage that directly impacts genetic dissemination and species conservation through the creation of cryobanks. In order to advance the field of animal genetic cryopreservation, this work aimed to recover intact PGCs cryopreserved in embryonic tissues during the segmentation phase for subsequent in vitro maintenance, using the yellow-tailed tetra (Astyanax altiparanae) as a model organism. For this, a total of 202 embryos were distributed in two experiments. In the first experiment, embryos in the segmentation phase were dissociated, and isolated PGCs were maintained in vitro. They were visualized using gfp-Pm-ddx4 3'UTR labeling. The second experiment aimed to vitrify PGCs using 3 cryoprotective agents or CPAs (dimethyl sulfoxide, ethylene glycol, and 1,2 propanediol) at 3 molarities (2, 3, and 4 M). The toxicity, somatic cell viability, and recovery of intact PGCs were evaluated. After cryopreservation and thawing, 2 M ethylene glycol produced intact PGCs and somatic cells (44 ± 11.52 % and 42.35 ± 0.33 %, respectively) post-thaw. The recovery of PGCs from frozen embryonic tissues was not possible without the use of CPAs. Thus, the vitrification of PGCs from an important developmental model and Neotropical species such as A. altiparanae was achieved, and the process of isolating and maintaining PGCs in a culture medium was successful. Therefore, to ensure the maintenance of genetic diversity, PGCs obtained during embryonic development in the segmentation phase between 25 and 28 somites were stored through vitrification for future applications in the reconstitution of species through germinal chimerism.


Asunto(s)
Criopreservación , Crioprotectores , Células Germinativas , Vitrificación , Animales , Criopreservación/métodos , Crioprotectores/farmacología , Células Germinativas/citología , Characidae/embriología , Supervivencia Celular , Glicol de Etileno/farmacología , Dimetilsulfóxido/farmacología , Embrión no Mamífero/citología
3.
Fish Shellfish Immunol ; 116: 12-18, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33965526

RESUMEN

Triploid induction is a promising biotechnique that could be used to enhance aquaculture yields in the near future. However, studies conducted with several fish species have demonstrated that the presence of an extra set of chromosomes may result in deleterious health effects. Furthermore, studies of fish immune responses still need to be conducted before these specimens can be readily commercialized. In the study presented herein, we evaluated the effects of triploid induction on hematology, erythrocyte morphometry and morphology, phagocytosis, and the expression levels of IL-1ß and TGF-ß using specimens of the Neotropical species, Astyanax altiparanae. In general, the cell counts of erythrocytes, leukocytes, and neutrophils in triploid fish were lower than those in diploid fish. The erythrocytes of triploid fish were larger than those found in diploid fish, but also demonstrated considerably higher frequencies of cellular and nuclear abnormalities. Although not statistically significant, triploid induction resulted in a phagocytic capacity (PC) 20% lower than that found with diploid fish. No notable differences were observed in phagocytic index (PI). Gene expression levels for the cytokine IL-1 were lower in tissues from the head kidney, liver, and spleen of triploid fish with respect to diploid fish. Gene expression levels of TGF-ß were lower only in the spleen of triploids compared to diploids. In conclusion, triploid induction resulted in A. altiparanae specimens with immune impairments and potentially lower resistances to disease and low-quality environments.


Asunto(s)
Characidae , Inmunidad Innata , Triploidía , Animales , Characidae/sangre , Characidae/genética , Characidae/inmunología , Eritrocitos , Femenino , Proteínas de Peces/genética , Pruebas Hematológicas , Interleucina-1beta/genética , Leucocitos/inmunología , Masculino , Fagocitosis , Saccharomyces cerevisiae , Factor de Crecimiento Transformador beta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA