Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 513
Filtrar
1.
Glob Health Med ; 6(4): 236-243, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39219582

RESUMEN

The aim of this study was to explore the effects of low-frequency ultrasound (US) combined with microbubbles (MBs) on breast cancer xenografts and explain its underlying mechanisms. A total of 20 xenografted nude mice were randomly divided into four groups: a group treated with US plus MBs (the US + MBs group), a group treated with US alone (the US group), a group treated with MBs alone (the MBs group), and a control group. In different groups, mice were treated with different US and injection regimens on an alternate day, three times in total. Histological changes, apoptosis of cells, microvascular changes, and the apoptosis index (AI) and microvascular density (MVD) of the breast cancer xenograft were analyzed after the mice were sacrificed. Results indicated that the tumor volume in the US + MBs group was smaller than that in the other three groups (p < 0.001 for all). The rate of tumor growth inhibition in the US + MBs group was significantly higher than that in the US and MBs groups (p < 0.001 for both). There were no significant differences in histological changes among the four groups. However, the AI was higher in the US + MBs group than that in the other three groups while the MVD was lower (p < 0.001 for all). All in all, low-frequency US combined with MBs can effectively slow down the growth of breast cancer in nude mice. In summary, low-frequency US combined with MBs has a significant effect on breast cancer treatment. Cavitation, thermal effects, and mechanical effects all play a vital role in the inhibition of tumor growth.

2.
Environ Pollut ; : 124975, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293659

RESUMEN

Per- and polyfluorinated substances (PFAS) have been associated with numerous human diseases. Recent in vitro studies have implicated the association of PFAS with an increased risk of breast cancer in humans. This study aimed to assess the toxic effects of PFAS during the development of human breast cancer using a zebrafish xenograft model. Perfluorooctanoic acid (PFOA) was used as a PFAS chemical of interest for this study. Two common breast cancer cell lines, MCF-7 and MDA-MB-231, were used to represent the diversity of breast cancer phenotypes. Human preadipocytes were co-implanted with the breast cancer cells into the zebrafish embryos to optimize the microenvironment for tumor cells in vivo. With this modified model, we evaluated the potential effects of the PFOA on the metastatic potential of the two types of breast cancer cells. The presence of human preadipocytes resulted in an enhancement to the metastasis progress of the two types of cells, including the promotion of cell in vivo migration and proliferation, and the increased expression levels of metastatic biomarkers. The enhancement of MCF-7 proliferation by preadipocytes was observed after 2 days post injection (dpi) while the increase of MDA-MB-231 proliferation was seen after 6 dpi. The breast cancer metastatic biomarkers, cadherin 1 (cdh1), and small breast epithelial mucin (sbem) genes demonstrated significant down- and upregulations respectively, by the co-injection of preadipocytes. In the optimized xenograft model, the PFOA consistently promoted cell proliferation and migration and altered the metastatic biomarker expression in MCF-7, which suggested a metastatic effect of PFOA on MCF-7. However, those effects were not consistently observed in MDA-MB-231. The presence of the preadipocytes in the xenograft model may provide a necessary microenvironment for the progress of tumor cells in zebrafish embryos. The finding suggested that the impacts of PFOA exposure on different phenotypes of breast cancers may differ.

3.
Foods ; 13(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39123546

RESUMEN

This study investigated the impact of Valencia KK4-type peanut skin ethanolic extract (KK4-PSE) combined with cisplatin or 5-fluorouracil (5-FU) on HeLa cells in vitro and in xenograft models. At exposure times of 24, 48 and 72 h, KK4-PSE inhibited the growth of HeLa cells with a half maximal inhibitory concentration (IC50) of 79.43 ± 0.54, 55.55 ± 1.57 and 41.32 ± 0.74 µg/mL, respectively. Drug interactions evaluated by the Chou-Talalay method demonstrated that KK4-PSE enhanced antiproliferative activity of 5-FU against HeLa cells with combination index (CI) values of 0.49 (48 h) and 0.60 (72 h), indicating a synergistic effect, while KK4-PSE combined with cisplatin exhibited an additive effect (CI = 1.02) at 72 h, and an antagonistic effect at 24 and 48 h exposures (CI = 1.12 and 1.18, respectively). In nude mouse xenograft models, the combination of 5-FU and KK4-PSE markedly reduced HeLa tumor weights compared with the control and single agent treatments groups. The combination of KK4-PSE and 5-FU achieved greater tumor growth inhibition than that of the KK4-PSE-cisplatin combination. KK4-PSE mitigated hepatotoxicity induced by both cisplatin and 5-FU in nude mice. The spleen hyaloserositis was significantly reduced in the combination treatment of 5-FU and KK4-PSE. These results suggest that KK4-PSE has the potential to limit cervical cancer cell proliferation while reducing the toxicity of cisplatin and 5-FU.

4.
Cancer Biol Ther ; 25(1): 2382531, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-39206791

RESUMEN

Mouse orthotopic xenograft tumor models are commonly employed in studies investigating the mechanisms underlying the development and progression of tumors and their preclinical treatment. However, the unavailability of mature and visualized orthotopic xenograft models of nasopharyngeal carcinoma limits the development of treatment strategies for this cancer. The aim of this study was to provide a simple and reliable method for building an orthotopic xenograft model of nasopharyngeal carcinoma. Human nasopharyngeal carcinoma (C666-1-luc) cells, stably expressing the firefly luciferase gene, were injected subcutaneously into the right axilla of BALB/C nude mice. Four weeks later, the resulting subcutaneous tumors were cut into small blocks and grafted into the nasopharynx of immunodeficient BALB/C nude mice to induce tumor formation. Tumor growth was monitored by bioluminescence imaging and small animal magnetic resonance imaging (MRI). The expression of histological and immunological antigens associated with orthotopic xenograft nasopharyngeal carcinoma was analyzed by tissue section analysis and immunohistochemistry (IHC). A visualized orthotopic xenograft nasopharyngeal carcinoma model was successfully developed in this study. Luminescence signal detection, micro-MRI, and hematoxylin and eosin staining revealed the successful growth of tumors in the nasopharynx of the nude mice. Moreover, IHC analysis detected cytokeratin (CK), CK5/6, P40, and P63 expression in the orthotopic tumors, consistent with the reported expression of these antigens in human nasopharyngeal tumors. This study established a reproducible, visual, and less lethal orthotopic xenograft model of nasopharyngeal carcinoma, providing a platform for preclinical research.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Desnudos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Animales , Humanos , Carcinoma Nasofaríngeo/patología , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/diagnóstico por imagen , Ratones , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/diagnóstico por imagen , Neoplasias Nasofaríngeas/genética , Línea Celular Tumoral , Ratones Endogámicos BALB C , Carcinoma/patología , Carcinoma/genética , Carcinoma/metabolismo , Imagen por Resonancia Magnética/métodos , Ensayos Antitumor por Modelo de Xenoinjerto , Xenoinjertos , Mediciones Luminiscentes/métodos
5.
J Exp Clin Cancer Res ; 43(1): 191, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987793

RESUMEN

BACKGROUND: The potential involvement of circular RNAs (circRNAs) and N6-methyladenosine (m6A) modification in the progression of Wilms tumor (WT) has not been fully elucidated. This study investigates the regulatory mechanisms and clinical significance of m6A-modified circMARK2 and its role in WT progression. METHODS: We identified dysregulated circRNAs through deep sequencing and validated their expression by qRT-PCR in WT tissues. The biological functions of circMARK2 were assessed using clone formation, transwell migration, and orthotopic animal models. To dissect the underlying mechanisms, we employed RNA immunoprecipitation, RNA pull-down, dual-luciferase reporter assays, Western blotting, and immunofluorescence and immunohistochemical staining. RESULTS: CircMARK2, upregulated in WT tissues, was found to be m6A-modified and promoted cytoplasmic export. It facilitated WT progression by stabilizing LIN28B mRNA through the circMARK2/IGF2BP2 interaction. In vitro and in vivo studies demonstrated that circMARK2 enhances the malignant behavior of WT cells. Clinically, higher circMARK2 levels in tumor tissues of WT patients were linked to increased tumor aggressiveness and reduced survival rates. CONCLUSIONS: Our study provides the first comprehensive evidence that m6A-modified circMARK2 contributes to WT progression by enhancing LIN28B mRNA stability, promoting cellular aggressiveness. CircMARK2 emerges as a potential biomarker for prognosis and a promising target for therapeutic intervention in WT, underscoring the clinical relevance of m6A modification in pediatric renal cancer.


Asunto(s)
Adenosina , Progresión de la Enfermedad , ARN Circular , Proteínas de Unión al ARN , Tumor de Wilms , Animales , Femenino , Humanos , Masculino , Ratones , Adenosina/análogos & derivados , Adenosina/metabolismo , Línea Celular Tumoral , Citoplasma/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Pronóstico , ARN Circular/genética , ARN Circular/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Tumor de Wilms/metabolismo , Tumor de Wilms/genética , Tumor de Wilms/patología
6.
Mol Imaging Biol ; 26(3): 459-472, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811467

RESUMEN

PURPOSE: Our study aimed to accelerate the acquisition of four-dimensional (4D) spectral-spatial electron paramagnetic resonance (EPR) imaging for mouse tumor models. This advancement in EPR imaging should reduce the acquisition time of spectroscopic mapping while reducing quality degradation for mouse tumor models. PROCEDURES: EPR spectra under magnetic field gradients, called spectral projections, were partially measured. Additional spectral projections were later computationally synthesized from the measured spectral projections. Four-dimensional spectral-spatial images were reconstructed from the post-processed spectral projections using the algebraic reconstruction technique (ART) and assessed in terms of their image qualities. We applied this approach to a sample solution and a mouse Hs766T xenograft model of human-derived pancreatic ductal adenocarcinoma cells to demonstrate the feasibility of our concept. The nitroxyl radical imaging agent 2H,15N-DCP was exogenously infused into the mouse xenograft model. RESULTS: The computation code of 4D spectral-spatial imaging was tested with numerically generated spectral projections. In the linewidth mapping of the sample solution, we achieved a relative standard uncertainty (standard deviation/| mean |) of 0.76 µT/45.38 µT = 0.017 on the peak-to-peak first-derivative EPR linewidth. The qualities of the linewidth maps and the effect of computational synthesis of spectral projections were examined. Finally, we obtained the three-dimensional linewidth map of 2H,15N-DCP in a Hs766T tumor-bearing leg in vivo. CONCLUSION: We achieved a 46.7% reduction in the acquisition time of 4D spectral-spatial EPR imaging without significantly degrading the image quality. A combination of ART and partial acquisition in three-dimensional raster magnetic field gradient settings in orthogonal coordinates is a novel approach. Our approach to 4D spectral-spatial EPR imaging can be applied to any subject, especially for samples with less variation in one direction.


Asunto(s)
Estudios de Factibilidad , Animales , Espectroscopía de Resonancia por Spin del Electrón/métodos , Humanos , Línea Celular Tumoral , Ratones , Modelos Animales de Enfermedad , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Procesamiento de Imagen Asistido por Computador/métodos
7.
Int J Mol Sci ; 25(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38791432

RESUMEN

Glioblastoma multiforme (GBM) is a very aggressive and lethal primary brain cancer in adults. The multifaceted nature of GBM pathogenesis, rising from complex interactions between cells and the tumor microenvironment (TME), has posed great treatment challenges. Despite significant scientific efforts, the prognosis for GBM remains very poor, even after intensive treatment with surgery, radiation, and chemotherapy. Efficient GBM management still requires the invention of innovative treatment strategies. There is a strong necessity to complete cancer in vitro studies and in vivo studies to properly evaluate the mechanisms of tumor progression within the complex TME. In recent years, the animal models used to study GBM tumors have evolved, achieving highly invasive GBM models able to provide key information on the molecular mechanisms of GBM onset. At present, the most commonly used animal models in GBM research are represented by mammalian models, such as mouse and canine ones. However, the latter present several limitations, such as high cost and time-consuming management, making them inappropriate for large-scale anticancer drug evaluation. In recent years, the zebrafish (Danio rerio) model has emerged as a valuable tool for studying GBM. It has shown great promise in preclinical studies due to numerous advantages, such as its small size, its ability to generate a large cohort of genetically identical offspring, and its rapid development, permitting more time- and cost-effective management and high-throughput drug screening when compared to mammalian models. Moreover, due to its transparent nature in early developmental stages and genetic and anatomical similarities with humans, it allows for translatable brain cancer research and related genetic screening and drug discovery. For this reason, the aim of the present review is to highlight the potential of relevant transgenic and xenograft zebrafish models and to compare them to the traditionally used animal models in GBM research.


Asunto(s)
Neoplasias Encefálicas , Modelos Animales de Enfermedad , Glioblastoma , Pez Cebra , Animales , Glioblastoma/patología , Glioblastoma/genética , Humanos , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Microambiente Tumoral
8.
Cancers (Basel) ; 16(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38730671

RESUMEN

Background: Despite multimodality therapies, the prognosis of patients with malignant brain tumors remains extremely poor. One of the major obstacles that hinders development of effective therapies is the limited availability of clinically relevant and biologically accurate (CRBA) mouse models. Methods: We have developed a freehand surgical technique that allows for rapid and safe injection of fresh human brain tumor specimens directly into the matching locations (cerebrum, cerebellum, or brainstem) in the brains of SCID mice. Results: Using this technique, we successfully developed 188 PDOX models from 408 brain tumor patient samples (both high-and low-grade) with a success rate of 72.3% in high-grade glioma, 64.2% in medulloblastoma, 50% in ATRT, 33.8% in ependymoma, and 11.6% in low-grade gliomas. Detailed characterization confirmed their replication of the histopathological and genetic abnormalities of the original patient tumors. Conclusions: The protocol is easy to follow, without a sterotactic frame, in order to generate large cohorts of tumor-bearing mice to meet the needs of biological studies and preclinical drug testing.

9.
Bioelectron Med ; 10(1): 10, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38594769

RESUMEN

BACKGROUND: Glioblastoma (GBM) presents as an aggressive brain cancer, notorious for its recurrence and resistance to conventional treatments. This study aimed to assess the efficacy of the EMulate Therapeutics Voyager®, a non-invasive, non-thermal, non-ionizing, battery-operated, portable experimental medical device, in treating GBM. Using ultra-low radiofrequency energy (ulRFE) to modulate intracellular activity, previous preliminary results in patients have been encouraging. Now, with a focus on murine models, our investigation seeks to elucidate the device's mechanistic impacts, further optimizing its therapeutic potential and understanding its limitations. METHODS: The device employs a silicone over molded coil to deliver oscillating magnetic fields, which are believed to interact with and disrupt cellular targets. These fields are derived from the magnetic fluctuations of solvated molecules. Xenograft and syngeneic murine models were chosen for the study. Mice were injected with U-87 MG or GL261 glioma cells in their flanks and were subsequently treated with one of two ulRFE cognates: A1A, inspired by paclitaxel, or A2, based on murine siRNA targeting CTLA4 + PD1. A separate group of untreated mice was maintained as controls. RESULTS: Mice that underwent treatments with either A1A or A2 exhibited significantly reduced tumor sizes when compared to the untreated cohort. CONCLUSION: The EMulate Therapeutics Voyager® demonstrates promising potential in inhibiting glioma cells in vivo through its unique ulRFE technology and should be further studied in terms of biological effects in vitro and in vivo.

10.
Biomater Adv ; 160: 213833, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38564997

RESUMEN

Conventional chemotherapy and poor targeted delivery in brain cancer resulting to poor treatment and develop resistance to anticancer drugs. Meanwhile, it is quite challenging to diagnose/detection of brain tumor at early stage of cancer which resulting in severity of the disease. Despite extensive research, effective treatment with real-time imaging still remains completely unavailable, yet. In this study, two brain cancer cell specific moieties i.e., AS1411 aptamer and RGD are decorated on the surface of chitosan-PLGA nanoparticles to improve targeted co-delivery of docetaxel (DTX) and upconversion nanoparticles (UCNP) for effective brain tumor therapy and real-time imaging. The nanoparticles were developed by a slightly modified emulsion/solvent evaporation method. This investigation also translates the successful synthesis of TPGS-chitosan, TPGS-RGD and TPGS-AS1411 aptamer conjugates for making PLGA nanoparticle as a potential tool of the targeted co-delivery of DTX and UCNP to the brain cancer cells. The developed nanoparticles have shown an average particle size <200 nm, spherical in shape, high encapsulation of DTX and UCNP in the core of nanoparticles, and sustained release of DTX up to 72 h in phosphate buffer saline (pH 7.4). AS1411 aptamer and RGD functionalized theranostic chitosan-PLGA nanoparticles containing DTX and UCNP (DUCPN-RGD-AS1411) have achieved greater cellular uptake, 89-fold improved cytotoxicity, enhanced cancer cell arrest even at lower drug conc., improved bioavailability with higher mean residence time of DTX in systemic circulation and brain tissues. Moreover, DUCPN-RGD-AS1411 have greatly facilitated cellular internalization and higher accumulation of UCNP in brain tissues. Additionally, DUCPN-RGD-AS1411 demonstrated a significant suppression in tumor growth in brain-tumor bearing xenograft BALB/c nude mice with no impressive sign of toxicities. DUCPN-RGD-AS1411 has great potential to be utilized as an effective and safe theranostic tool for brain cancer and other life-threatening cancer therapies.


Asunto(s)
Aptámeros de Nucleótidos , Neoplasias Encefálicas , Quitosano , Docetaxel , Oligodesoxirribonucleótidos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Animales , Humanos , Ratones , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Aptámeros de Nucleótidos/administración & dosificación , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacocinética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Quitosano/química , Docetaxel/farmacocinética , Docetaxel/administración & dosificación , Docetaxel/farmacología , Docetaxel/uso terapéutico , Nanopartículas/química , Oligopéptidos/química , Oligopéptidos/administración & dosificación , Oligopéptidos/farmacocinética , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Nanomedicina Teranóstica/métodos
11.
Exp Cell Res ; 438(1): 114033, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38593916

RESUMEN

Regardless of the clinical response and improved patient survival observed following treatment with BRAFi like Vemurafenib (Vem), rapid development of resistance still remains as a major obstacle in melanoma therapy. In this context, we developed and characterized two acquired Vem-resistant melanoma cell lines, A375V and SK-MEL-28V, and an intrinsically Vem-resistant cell line, RPMI-7951. Altered morphology and growth rate of the resistant cell lines displayed spindle-shaped cells with filopodia formation and enhanced proliferation rate as compared to parental cells. Further in vitro characterization in 2D models confirmed the emergence of a resistant phenotype in melanoma cells. To mimic the in vivo tumor microenvironment, spheroids were developed for both parental and resistant cell lines to recognize materialization of invadopodia structures demonstrating elevated invasiveness and proliferation of resistant cells-based spheroids, especially A375V. Importantly, we validated A375V cell line in vivo to prove its tumorigenicity and drug resistance in tumor xenograft model. Taken together, our established clinically relevant Vem-resistant tumor model could be beneficial to elucidate drug resistance mechanisms, screen and identify novel anticancer therapies to overcome BRAFi resistance in melanoma.


Asunto(s)
Proliferación Celular , Resistencia a Antineoplásicos , Melanoma , Proteínas Proto-Oncogénicas B-raf , Vemurafenib , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/genética , Vemurafenib/farmacología , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Inhibidores de Proteínas Quinasas/farmacología , Microambiente Tumoral/efectos de los fármacos , Antineoplásicos/farmacología , Ratones Desnudos
12.
Methods Mol Biol ; 2806: 75-90, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38676797

RESUMEN

The development of clinically relevant and reliable models of central nervous system tumors has been instrumental in advancing the field of Neuro-Oncology. The orthotopic intracranial injection is widely used to study the growth, invasion, and spread of tumors in a controlled environment. Orthotopic models are performed to examine tumor cells isolated from a specific region in a patient in the same site or location in an animal model. Orthotopic brain tumor models are also utilized for preclinical testing of therapeutics as they closely recapitulate the behavior of such cancer and the brain environment of patients. Below, we describe our experiences in the development of murine models of pediatric brain tumors including diffuse midline glioma (DMG), glioblastoma (GBM), and medulloblastoma. The method provides an overview of intracranial stereotactic injections in mice.


Asunto(s)
Neoplasias Encefálicas , Modelos Animales de Enfermedad , Animales , Humanos , Ratones , Neoplasias Encefálicas/patología , Niño , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Meduloblastoma/patología , Glioma/patología , Glioblastoma/patología , Xenoinjertos
13.
Molecules ; 29(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474561

RESUMEN

Berberis species have a long history of use in traditional Chinese medicine, Ayurvedic medicine, and Western herbal medicine. The aim of this study was the quantification of the main isoquinoline alkaloids in extracts obtained from various Berberis species by HPLC, in vitro and in silico determination of anti-cholinesterase activity, and in vitro and in vivo investigations of the cytotoxic activity of the investigated plant extracts and alkaloid standards. In particular, Berberis species whose activity had not been previously investigated were selected for the study. In the most investigated Berberis extracts, a high content of berberine and palmatine was determined. Alkaloid standards and most of the investigated plant extracts exhibit significant anti-cholinesterase activity. Molecular docking results confirmed that both alkaloids are more favourable for forming complexes with acetylcholinesterase compared to butyrylcholinesterase. The kinetic results obtained by HPLC-DAD indicated that berberine noncompetitively inhibited acetylcholinesterase, while butyrylcholinesterase was inhibited in a mixed mode. In turn, palmatine exhibited a mixed inhibition of acetylcholinesterase. The cytotoxic activity of berberine and palmatine standards and plant extracts were investigated against the human melanoma cell line (A375). The highest cytotoxicity was determined for extract obtained from Berberis pruinosa cortex. The cytotoxic properties of the extract were also determined in the in vivo investigations using the Danio rerio larvae xenograft model. The obtained results confirmed a significant effect of the Berberis pruinosa cortex extract on the number of cancer cells in a living organism. Our results showed that extracts obtained from Berberis species, especially the Berberis pruinosa cortex extract, can be recommended for further in vivo experiments in order to confirm the possibility of their application in the treatment of neurodegenerative diseases and human melanoma.


Asunto(s)
Alcaloides , Antineoplásicos , Berberina , Berberis , Melanoma , Humanos , Berberina/farmacología , Acetilcolinesterasa , Butirilcolinesterasa , Inhibidores de la Colinesterasa/farmacología , Simulación del Acoplamiento Molecular , Alcaloides/farmacología , Extractos Vegetales/farmacología
14.
Cancer Med ; 13(4): e7081, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38457217

RESUMEN

BACKGROUND: The intra- and inter-tumoral heterogeneity of gliomas and the complex tumor microenvironment make accurate treatment of gliomas challenging. At present, research on gliomas mainly relies on cell lines, stem cell tumor spheres, and xenotransplantation models. The similarity between traditional tumor models and patients with glioma is very low. AIMS: In this study, we aimed to address the limitations of traditional tumor models by generating patient-derived glioma organoids using two methods that summarized the cell diversity, histological features, gene expression, and mutant profiles of their respective parent tumors and assess the feasibility of organoids for personalized treatment. MATERIALS AND METHODS: We compared the organoids generated using two methods through growth analysis, immunohistological analysis, genetic testing, and the establishment of xenograft models. RESULTS: Both types of organoids exhibited rapid infiltration when transplanted into the brains of adult immunodeficient mice. However, organoids formed using the microtumor method demonstrated more similar cellular characteristics and tissue structures to the parent tumors. Furthermore, the microtumor method allowed for faster culture times and more convenient operational procedures compared to the Matrigel method. DISCUSSION: Patient-derived glioma organoids, especially those generated through the microtumor method, present a promising avenue for personalized treatment strategies. Their capacity to faithfully mimic the cellular and molecular characteristics of gliomas provides a valuable platform for elucidating tumor biology and evaluating therapeutic modalities. CONCLUSION: The success rates of the Matrigel and microtumor methods were 45.5% and 60.5%, respectively. The microtumor method had a higher success rate, shorter establishment time, more convenient passage and cryopreservation methods, better simulation of the cellular and histological characteristics of the parent tumor, and a high genetic guarantee.


Asunto(s)
Glioma , Adulto , Humanos , Animales , Ratones , Glioma/patología , Técnicas de Cultivo de Célula/métodos , Organoides/metabolismo , Organoides/patología , Células Madre Neoplásicas , Microambiente Tumoral
15.
J Fluoresc ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502405

RESUMEN

PURPOSE: Green Fluorescent Protein is widely used as a cellular marker tool, but its potential influence on cells has been questioned. Although the potential off-target effects of GFP on tumor cells have been studied to some extent, the findings at the molecular level are insufficient to explain the effect of GFP expression on the tumorigenic capacity of cancer cells. Here, we aimed to investigate the effect of GFP expression on the tumorigenicity of PC3 prostate cancer cells. METHODS: Using GFP-expressing and wild-type PC-3 cells, xenograft models were generated in athymic BALB/C mice. To identify differentially expressed proteins, the change in cells proteome was investigated by label-free quantification with nano-high performance liquid chromatography to tandem mass spectrometry (nHPLC-MS/MS). Proteins that showed significantly altered expression levels were evaluated using the bioinformatics tools. RESULTS: Unlike the wild-type PC-3 cells, GFP-expressing cells failed to develop tumor. Comparative proteome analysis of GFP-expressing cells with WT PC-3 cells revealed a total of 216 differentially regulated proteins, of which 98 were upregulated and 117 were downregulated. CONCLUSION: Upon GFP expression, differential changes in several pathways including the immune system, translational machinery, energy metabolism, elements of cytoskeletal and VEGF signaling pathway were observed. Therefore, care should be taken into account to prevent reporting deceitful mechanisms generated from studies utilizing GFP.

16.
Sci Rep ; 14(1): 6515, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499634

RESUMEN

Human pancreatic ductal adenocarcinoma (PDAC) is a highly malignant and lethal tumor of the exocrine pancreas. Cannabinoids extracted from the hemp plant Cannabis sativa have been suggested as a potential therapeutic agent in several human tumors. However, the anti-tumor effect of cannabinoids on human PDAC is not entirely clarified. In this study, the anti-proliferative and apoptotic effect of cannabinoid solution (THC:CBD at 1:6) at a dose of 1, 5, and 10 mg/kg body weight compared to the negative control (sesame oil) and positive control (5-fluorouracil) was investigated in human PDAC xenograft nude mice model. The findings showed that cannabinoids significantly decreased the mitotic cells and mitotic/apoptotic ratio, meanwhile dramatically increased the apoptotic cells. Parallelly, cannabinoids significantly downregulated Ki-67 and PCNA expression levels. Interestingly, cannabinoids upregulated BAX, BAX/BCL-2 ratio, and Caspase-3, meanwhile, downregulated BCL-2 expression level and could not change Caspase-8 expression level. These findings suggest that cannabinoid solution (THC:CBD at 1:6) could inhibit proliferation and induce apoptosis in human PDAC xenograft models. Cannabinoids, including THC:CBD, should be further studied for use as the potent PDCA therapeutic agent in humans.


Asunto(s)
Cannabinoides , Cannabis , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Ratones , Humanos , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Ratones Desnudos , Xenoinjertos , Proteína X Asociada a bcl-2 , Carcinoma Ductal Pancreático/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2
17.
Int Immunopharmacol ; 132: 111959, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38554442

RESUMEN

Triple-negative breast cancer (TNBC) is a subtype of breast cancer that is difficult to treat due to a lack of targeted therapies. In this study, we aimed to investigate whether a natural flavonoid compound called ononin could be effective in treating TNBC by triggering ferroptosis in MDA-MB-231 and 4 T1 cell lines, and MDA-MB-231-xenograft nude mice model. Ononin inhibited TNBC through ferroptosis, which was determined by MTT assay, flow cytometry, RT-PCR, immunofluorescence, transmission electron microscopy, histological analysis, western blot and bioluminescence assay. Our results showed that treatment with ononin led to increased levels of malondialdehyde and reactive oxygen species and decreased activity of superoxide dismutase, which are indicatives of ferroptosis. We also found that ononin downregulated two key markers of ferroptosis, SLC7A11 and Nrf2, at both the transcriptional and translational level. Additionally, the administration of ononin resulted in a notable decrease in tumor size and weight in the mouse model. Furthermore, it was observed to enhance the rate of apoptosis in TNBC cells. Importantly, ononin did not induce any histological changes in the kidney, liver, and heart. Taken together, our findings suggest that ononin could be a promising therapeutic strategy for TNBC, and that it works by disrupting the Nrf2/SLC7A11 axis through ferroptosis. These results are encouraging and may lead to the development of new treatments for this challenging cancer subtype.


Asunto(s)
Ferroptosis , Ratones Desnudos , Factor 2 Relacionado con NF-E2 , Neoplasias de la Mama Triple Negativas , Ensayos Antitumor por Modelo de Xenoinjerto , Ferroptosis/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Animales , Humanos , Femenino , Línea Celular Tumoral , Factor 2 Relacionado con NF-E2/metabolismo , Ratones , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Ratones Endogámicos BALB C , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos
18.
Diagn Pathol ; 19(1): 48, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431604

RESUMEN

BACKGROUND: Patients with hypopharyngeal carcinoma (HPC) have a poor prognosis mainly because of lymphatic metastasis. This research aimed to determine the PKM2 role in lymphatic metastasis in HPC and the underlying molecular mechanism contributing to this phenomenon. METHODS: PKM2 in HPC was studied for its expression and its likelihood of overall survival using TCGA dataset. Western blotting, qRT-PCR, and IHC were employed to confirm PKM2 expression. Methods including gain- and loss-of-function were used to examine the PKM2 role in HPC metastasis in vitro and in vivo. In vitro and in vivo studies also confirmed lymphatic metastasis's mechanism. RESULTS: Prominent PKM2 overexpression was seen in patients with lymphatic metastasis of HPC, and there was an inherent relationship between a high PKM2 level and poor prognosis. In vitro research showed that knocking down PKM2 decreased tumor cell invasion, migration, and proliferation while promoting apoptosis and inhibiting epithelial-mesenchymal transition, but overexpressing PKM2 had the reverse effect. Animal studies suggested that PKM2 may facilitate tumor development and lymphatic metastasis. CONCLUSIONS: Our findings suggest that PKM2 may be a tumor's promoter gene of lymphatic metastasis, which may promote lymphatic metastasis of HPC by regulating epithelial-mesenchymal transition. PKM2 may be a biomarker of metastatic potential, ultimately providing a basis for exploring new therapeutic targets.


Asunto(s)
Carcinoma , Neoplasias Hipofaríngeas , Piruvato Quinasa , Animales , Humanos , Carcinoma/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Metástasis Linfática/genética , Pronóstico , Piruvato Quinasa/metabolismo , Neoplasias Hipofaríngeas/metabolismo , Neoplasias Hipofaríngeas/patología
19.
Cancer Biol Ther ; 25(1): 2323765, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38465622

RESUMEN

Adipocyte is a unique and versatile component of bone marrow microenvironment (BMM). However, the dynamic evolution of Bone Marrow (BM) adipocytes from the diagnosis of B cell Acute Lymphoblastic Leukemia (B-ALL) to the post-treatment state, and how they affect the progression of leukemia, remains inadequately explicated. Primary patient-derived xenograft models (PDXs) and stromal cell co-culture system are employed in this study. We show that the dynamic evolution of BM adipocytes from initial diagnosis of B-ALL to the post-chemotherapy phase, transitioning from cellular depletion in the initial leukemia niche to a fully restored state upon remission. Increased BM adipocytes retards engraftment of B-ALL cells in PDX models and inhibits cells growth of B-ALL in vitro. Mechanistically, the proliferation arrest of B-ALL cells in the context of adipocytes-enrichment niche, might attribute to the presence of adiponectin secreted by adipocytes themselves and the absence of cytokines secreted by mesenchymal stem cell (MSCs). In summary, our findings offer a novel perspective for further in-depth understanding of the dynamic balance between BMM and B-ALL.


Asunto(s)
Leucemia , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Médula Ósea , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Células del Estroma , Adipocitos , Células de la Médula Ósea , Microambiente Tumoral
20.
Gastric Cancer ; 27(3): 506-518, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38386237

RESUMEN

BACKGROUND: Advanced gastric cancer (GC) has a poor prognosis. This study aimed to identify novel GC-related genes as potential therapeutic targets. METHODS: Killer cell lectin-like receptor G2 (KLRG2) was identified as a candidate gene by transcriptome analysis of metastatic GC tissues. Small interfering RNA-mediated KLRG2 knockdown in human GC cell lines was used to investigate KLRG2 involvement in signaling pathways and functional behaviors in vitro and in vivo. Clinicopathological data were analyzed in patients stratified according to tumor KLRG2 mRNA expression. RESULTS: KLRG2 knockdown in GC cells decreased cell proliferation, migration, and invasion; caused cell cycle arrest in G2/M phase; induced apoptosis via caspase activation; suppressed JAK/STAT and MAPK-ERK1/2 pathway activities; and upregulated p53 and p38 MAPK activities. In mouse xenograft models of peritoneal metastasis, the number and weight of disseminated GC nodules were decreased by KLRG2 knockdown. High tumor levels of KLRG2 mRNA were significantly associated with lower 5-year overall survival (OS) and relapse-free survival (RFS) rates in patients with Stage I-III GC (5-year OS rate: 64.4% vs. 80.0%, P = 0.009; 5-year RFS rate: 62.8% vs. 78.1%, P = 0.030). CONCLUSIONS: KLRG2 knockdown attenuated the malignant phenotypes of GC cells via downregulation of JAK/STAT and MAPK-ERK1/2 pathway activity and upregulation of p38 MAPK and p53. Targeted suppression of KLRG2 may serve as a new treatment approach for GC.


Asunto(s)
Quinasas Janus , Neoplasias Gástricas , Humanos , Animales , Ratones , Quinasas Janus/genética , Quinasas Janus/metabolismo , Transducción de Señal , Neoplasias Gástricas/patología , Sistema de Señalización de MAP Quinasas , Proteína p53 Supresora de Tumor/genética , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Proliferación Celular/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , ARN Mensajero/metabolismo , Receptores Similares a Lectina de Células NK/genética , Receptores Similares a Lectina de Células NK/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA