Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.636
Filtrar
1.
Methods Mol Biol ; 2852: 211-222, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39235747

RESUMEN

Unveiling the strategies of bacterial adaptation to stress constitute a challenging area of research. The understanding of mechanisms governing emergence of resistance to antimicrobials is of particular importance regarding the increasing threat of antibiotic resistance on public health worldwide. In the last decades, the fast democratization of sequencing technologies along with the development of dedicated bioinformatical tools to process data offered new opportunities to characterize genomic variations underlying bacterial adaptation. Thereby, research teams have now the possibility to dive deeper in the deciphering of bacterial adaptive mechanisms through the identification of specific genetic targets mediating survival to stress. In this chapter, we proposed a step-by-step bioinformatical pipeline enabling the identification of mutational events underlying biocidal stress adaptation associated with antimicrobial resistance development using Escherichia marmotae as an illustrative model.


Asunto(s)
Biología Computacional , Genoma Bacteriano , Genómica , Mutación , Genómica/métodos , Biología Computacional/métodos , Bacterias/genética , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
2.
BMC Med Genomics ; 17(1): 226, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243045

RESUMEN

BACKGROUND: Achondroplasia and mandibulofacial dysostosis with microcephaly (MFDM) are rare monogenic, dominant disorders, caused by gain-of-function fibroblast growth factor receptor 3 (FGFR3) gene variants and loss-of-function elongation factor Tu GTP binding domain-containing 2 (EFTUD2) gene variants, respectively. The coexistence of two distinct Mendelian disorders in a single individual is uncommon and challenges the traditional paradigm of a single genetic disorder explaining a patient's symptoms, opening new avenues for diagnosis and management. CASE PRESENTATION: We present a case of a female patient initially diagnosed with achondroplasia due to a maternally inherited pathogenic FGFR3 variant. She was referred to our genetic department due to her unusually small head circumference and short stature, which were both significantly below the expected range for achondroplasia. Additional features included distinctive facial characteristics, significant speech delay, conductive hearing loss, and epilepsy. Given the complexity of her phenotype, she was recruited to the DDD (Deciphering Developmental Disorders) study and the 100,000 Genomes project for further investigation. Subsequent identification of a complex EFTUD2 intragenic rearrangement confirmed an additional diagnosis of mandibulofacial dysostosis with microcephaly (MFDM). CONCLUSION: This report presents the first case of a dual molecular diagnosis of achondroplasia and mandibulofacial dysostosis with microcephaly in the same patient. This case underscores the complexity of genetic diagnoses and the potential for coexistence of multiple genetic syndromes in a single patient. This case expands our understanding of the molecular basis of dual Mendelian disorders and highlights the importance of considering the possibility of dual molecular diagnoses in patients with phenotypic features that are not fully accounted for by their primary diagnosis.


Asunto(s)
Acondroplasia , Disostosis Mandibulofacial , Microcefalia , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos , Ribonucleoproteína Nuclear Pequeña U5 , Humanos , Microcefalia/genética , Microcefalia/diagnóstico , Microcefalia/complicaciones , Femenino , Disostosis Mandibulofacial/genética , Acondroplasia/genética , Acondroplasia/complicaciones , Ribonucleoproteína Nuclear Pequeña U5/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Factores de Elongación de Péptidos/genética , Fenotipo
3.
Am J Hum Genet ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39260370

RESUMEN

To identify modifier loci underlying variation in body mass index (BMI) in persons with cystic fibrosis (pwCF), we performed a genome-wide association study (GWAS). Utilizing longitudinal height and weight data, along with demographic information and covariates from 4,393 pwCF, we calculated AvgBMIz representing the average of per-quarter BMI Z scores. The GWAS incorporated 9.8M single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) > 0.005 extracted from whole-genome sequencing (WGS) of each study subject. We observed genome-wide significant association with a variant in FTO (FaT mass and Obesity-associated gene; rs28567725; p value = 1.21e-08; MAF = 0.41, ß = 0.106; n = 4,393 individuals) and a variant within ADAMTS5 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 5; rs162500; p value = 2.11e-10; MAF = 0.005, ß = -0.768; n = 4,085 pancreatic-insufficient individuals). Notably, BMI-associated variants in ADAMTS5 occur on a haplotype that is much more common in African (AFR, MAF = 0.183) than European (EUR, MAF = 0.006) populations (1000 Genomes project). A polygenic risk score (PRS) calculated using 924 SNPs (excluding 17 in FTO) showed significant association with AvgBMIz (p value = 2.2e-16; r2 = 0.03). Association between variants in FTO and the PRS correlation reveals similarities in the genetic architecture of BMI in CF and the general population. Inclusion of Black individuals in whom the single-gene disorder CF is much less common but genomic diversity is greater facilitated detection of association with variants that are in LD with functional SNPs in ADAMTS5. Our results illustrate the importance of population diversity, particularly when attempting to identify variants that manifest only under certain physiologic conditions.

4.
J Genet Genomics ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39260683

RESUMEN

Sheep (Ovis aries), among the first domesticated species, are now globally widespread and exhibit remarkable adaptability to diverse environments. In this study, we perform whole-genome sequencing of 266 animals from 18 distinct Chinese sheep populations, each displaying unique phenotypes indicative of adaptation to varying environmental conditions. Integrating 131 environmental factors with single nucleotide polymorphism variations, we conduct a comprehensive genetic-environmental association analysis. This analysis identifies 35 key genes likely integral to the environmental adaptation of sheep. The functions of these genes include fat tail formation (HOXA10, HOXA11, JAZF1), wool characteristics (FER, FGF5, MITF, PDE4B), horn phenotypes (RXFP2), reproduction (HIBADH, TRIM71, C6H4orf22) and growth traits (ADGRL3, TRHDE). Notably, we observe a significant correlation between the frequency of missense mutations in the PAPSS2 and RXFP2 genes and variations in altitude. Our study reveals candidate genes for adaptive variation in sheep and demonstrates the diversity in the ways sheep adapt to their environment.

5.
Microbiol Resour Announc ; : e0077724, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264163

RESUMEN

Here, we report the coding-complete genomic sequences of two chicken caliciviruses from US poultry flocks in 2003 and 2004. They show the same genomic organization as that of other members of the Bavovirus genus and have the highest nucleotide identity (~88%) with strains from clinically normal chickens from Germany in 2004 and Netherlands in 2019.

6.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-39250077

RESUMEN

More people in the world depend on water buffalo for their livelihoods than on any other domesticated animals, but its genetics is still not extensively explored. The 1000 Buffalo Genomes Project (1000BGP) provides genetic resources for global buffalo population study and tools to breed more sustainable and productive buffaloes. Here we report the most contiguous swamp buffalo genome assembly (PCC_UOA_SB_1v2) with substantial resolution of telomeric and centromeric repeats, ∼4-fold more contiguous than the existing reference river buffalo assembly and exceeding a recently published male swamp buffalo genome. This assembly was used along with the current reference to align 140 water buffalo short-read sequences and produce a public genetic resource with an average of ∼41 million single nucleotide polymorphisms per swamp and river buffalo genome. Comparison of the swamp and river buffalo sequences showed ∼1.5% genetic differences, and estimated divergence time occurred 3.1 million years ago (95% CI, 2.6-4.9). The open science model employed in the 1000BGP provides a key genomic resource and tools for a species with global economic relevance.


Asunto(s)
Búfalos , Variación Genética , Genoma , Polimorfismo de Nucleótido Simple , Búfalos/genética , Animales , Ríos , Genómica/métodos , Filogenia
7.
Br Poult Sci ; : 1-6, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39257343

RESUMEN

1. Salmonella Gallinarum strains isolated from a southern Brazil fowl typhoid outbreak were subjected to phenotypic and genotypic analyses to identify genetic elements that could improve prevention and control strategies.2. Whole-genome sequencing revealed the presence of the aac(6')-Iaa gene, conferring aminoglycoside resistance, along with novel chromosomal point mutations, including the first detection of parE p.S451F in Salmonella Gallinarum.3. Additionally, IncFII(S) plasmid replicons, Salmonella pathogenicity islands and 105 virulence genes associated with cell adhesion, invasion and antimicrobial peptide resistance were identified.4. These findings shed light on the molecular mechanisms of fowl typhoid and provide crucial insights into emerging antimicrobial resistance and virulence factors.

8.
Am J Infect Control ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39218401

RESUMEN

BACKGROUND: Verona integron-encoded metallo-ß-lactamase-producing Pseudomonas aeruginosa (VIM-PA) outbreaks are frequently linked to contaminated sink-drains in the intensive care unit (ICU). This study aims to investigate a VIM-PA outbreak occurring at 4 ICUs in a Belgian university center. METHODS: Between 01/01/2019 and 30/07/2023, data were retrospectively retrieved. Whole-genome sequencing of VIM-PA was carried out for available isolates and the core genome multilocus sequencing typing (cgMLST) was used to confirm clonality. New case incidence was estimated by analyzing the weekly data of at-risk and VIM-PA-colonized patients, fitting a regression model. RESULTS: Fifty-one patients were colonized, among them, 32 (63%) were infected by VIM-PA, which contributed to 7 deaths. The outbreak investigation showed that 19 (47%) of the examined sink-drains grew at least once a VIM-PA. Two major clusters were observed by cgMLST: ST111 (59 clones with 40 clinical isolates), and ST17 (8 clones with 6 clinical isolates). The estimated incidence rate of new cases was significantly higher in one unit. CONCLUSIONS: A 5-year prolonged outbreak at the UZ Brussel ICUs was caused by only 2 VIM-PA clones, both linked to sink-drains, with minimal mutations occurring throughout the years. Statistical modeling found different incidence rates between units. Tailored interventions were hence prioritized.

9.
J Microbiol Biol Educ ; : e0011424, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258916

RESUMEN

Integrating whole genome sequencing (WGS) of the Mycobacterium tuberculosis complex into routine care, surveillance, and research in high tuberculosis burden settings remains challenging due to limited resources and skills. While technological platforms for scaling WGS are emerging, scaling wet lab and analytic components often depends on partnerships where such skills have been established. To address this, a virtual training program was developed. Over 12 weeks, 21 trainees from five Southern African institutes engaged in learning from curated theoretical content and interactive virtual meetings with experienced instructors. The training program, developed by a diverse team of experts in molecular biology, biomedical research, microbiology, and tuberculosis research, provided comprehensive coverage aligned with the latest advancements. Teaching strategies included interactive mentor-led sessions and real-time feedback, together with facilitated knowledge exchange and understanding. The virtual training program yielded several successes. Of note, trainees submitted three scientific articles for peer review, based on their acquired knowledge and its application in research. The program also fostered collaborations on Mycobacterium tuberculosis WGS among participants, showcasing the potential for networking and future joint projects. While the virtual training program encountered challenges related to the pandemic, limited resources, trainee engagement, and language barriers, these were creatively mitigated. To improve future training sessions, a platform assessing participant engagement and information retention is recommended. Wider collaborative efforts among experts and institutions in collating resources will lead to more comprehensive training programs. Addressing challenges such as internet connectivity issues and language barriers is crucial for ensuring inclusivity and enhancing the overall learning experience. In conclusion, the virtual training program successfully provided knowledge and skill training in WGS to trainees, leading to scientific article submissions and collaborations. Furthermore, content creators benefited from improved science communication and training opportunities.

10.
Artículo en Inglés | MEDLINE | ID: mdl-39264701

RESUMEN

Six bacterial strains, Mut1T, Mut2, Alt1, Alt2, Alt3T, and Alt4, were isolated from soil samples collected in parks in Gothenburg, Sweden, based on their ability to utilize the insoluble polysaccharides α-1,3-glucan (mutan; Mut strains) or the mixed-linkage α-1,3/α-1,6-glucan (alternan; Alt strains). Analysis of 16S rRNA gene sequences identified all strains as members of the genus Streptomyces. The genomes of the strains were sequenced and subsequent phylogenetic analyses identified Mut2 as a strain of Streptomyces laculatispora and Alt1, Alt2 and Alt4 as strains of Streptomyces poriferorum, while Mut1T and Alt3T were most closely related to the type strains Streptomyces drozdowiczii NBRC 101007T and Streptomyces atroolivaceus NRRL ISP-5137T, respectively. Comprehensive genomic and biochemical characterizations were conducted, highlighting typical features of Streptomyces, such as large genomes (8.0-9.6 Mb) with high G+C content (70.5-72.0%). All six strains also encode a wide repertoire of putative carbohydrate-active enzymes, indicating a capability to utilize various complex polysaccharides as carbon sources such as starch, mutan, and cellulose, which was confirmed experimentally. Based on phylogenetic and phenotypic characterization, our study suggests that strains Mut1T and Alt3T represent novel species in the genus Streptomyces for which the names Streptomyces castrisilvae sp. nov. and Streptomyces glycanivorans sp. nov. are proposed, with strains Mut1T (=DSM 117248T=CCUG 77596T) and Alt3T (=DSM 117252T=CCUG 77600T) representing the respective type strains.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Microbiología del Suelo , Streptomyces , Streptomyces/genética , Streptomyces/clasificación , Streptomyces/aislamiento & purificación , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Suecia , Glucanos/metabolismo , Genoma Bacteriano , Ácidos Grasos/metabolismo , Ubiquinona
12.
Emerg Microbes Infect ; : 2408322, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39305009

RESUMEN

Clostridioides difficile sequence type (ST) 35 has been found in humans and animals worldwide. However, its genomic epidemiology and clonal transmission have not been explored in detail. In this study, 176 C. difficile ST35 isolates from six countries were sequenced. Genomic diversity, clonal transmission and epidemiological data were analyzed. Sporulation and virulence capacities were measured. Four ribotypes (RT) were identified including RT046 (97.2%), RT656 (1.1%), RT427 (0.6%), and RT AI-78 (1.1%). Phylogenetic analysis of 176 ST35 genomes, along with 50 publicly available genomes, revealed two distinctive lineages without time-, region-, or source-dependent distribution. However, the distribution of antimicrobial resistance genes differed significantly between the two lineages. Nosocomial and communal transmission occurred in humans with the isolates differed by ≤ two core-genome single-nucleotide polymorphism (cgSNPs) and clonal circulation was found in pigs with the isolates differed by ≤ four cgSNPs. Notably, interspecies clonal transmission was identified among three patients with community acquired C. difficile infection and pigs with epidemiological links, differed by ≤ nine cgSNPs. Toxin B (TcdB) concentrations were significantly higher in human isolates compared to pig isolates, and ST35 isolates exhibited stronger sporulation capacities than other STs. Our study provided new genomic insights and epidemiological evidence of C. difficile ST35 intraspecies and interspecies clonal transmission, which can also be facilitated by its strong sporulation capacity.

13.
BMC Biol ; 22(1): 187, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218870

RESUMEN

BACKGROUND: Introgression has repeatedly been shown to play an important role in the adaptation of species to extreme environments, yet how introgression enables rodents with specialized subterranean lifestyle to acclimatize to high altitudes is still unclear. Myospalacinae is a group of subterranean rodents, among which the high-altitude plateau zokors (Eospalax baileyi) and the low-altitude Gansu zokors (E. cansus) are sympatrically distributed in the grassland ecosystems of the Qinghai-Tibet Plateau (QTP). Together, they provide a model for the study of the role of introgression in the adaptation of low-altitude subterranean rodents to high altitudes. RESULTS: Applying low-coverage whole-genome resequencing and population genetics analyses, we identified evidence of adaptive introgression from plateau zokors into Gansu zokors, which likely facilitated the adaptation of the latter to the high-altitude environment of the QTP. We identified positively selected genes with functions related to energy metabolism, cardiovascular system development, calcium ion transport, and response to hypoxia which likely made critical contributions to adaptation to the plateau environment in both plateau zokors and high-altitude populations of Gansu zokors. CONCLUSIONS: Introgression of genes associated with hypoxia adaptation from plateau zokors may have played a role in the adaptation of Gansu zokors to the plateau environment. Our study provides new insights into the understanding of adaptive evolution of species on the QTP and the importance of introgression in the adaptation of species to high-altitude environments.


Asunto(s)
Altitud , Introgresión Genética , Roedores , Animales , Roedores/genética , Roedores/fisiología , Tibet , Adaptación Fisiológica/genética , Ecosistema , Aclimatación/genética
14.
Expert Rev Anti Infect Ther ; : 1-17, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39219506

RESUMEN

INTRODUCTION: Tuberculosis (TB), particularly its drug-resistant forms (MDR-TB and XDR-TB), continues to pose a significant global health challenge. Despite advances in treatment and diagnosis, the evolving nature of drug resistance in Mycobacterium tuberculosis (MTB) complicates TB eradication efforts. This review delves into the complexities of anti-TB drug resistance, its mechanisms, and implications on healthcare strategies globally. AREAS COVERED: We explore the genetic underpinnings of resistance to both first-line and second-line anti-TB drugs, highlighting the role of mutations in key genes. The discussion extends to advanced diagnostic techniques, such as Whole-Genome Sequencing (WGS), CRISPR-based diagnostics and their impact on identifying and managing drug-resistant TB. Additionally, we discuss artificial intelligence applications, current treatment strategies, challenges in managing MDR-TB and XDR-TB, and the global disparities in TB treatment and control, translating to different therapeutic outcomes and have the potential to revolutionize our understanding and management of drug-resistant tuberculosis. EXPERT OPINION: The current landscape of anti-TB drug resistance demands an integrated approach combining advanced diagnostics, novel therapeutic strategies, and global collaborative efforts. Future research should focus on understanding polygenic resistance and developing personalized medicine approaches. Policymakers must prioritize equitable access to diagnosis and treatment, enhancing TB control strategies, and support ongoing research and augmented government funding to address this critical public health issue effectively.

15.
PeerJ ; 12: e18023, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224828

RESUMEN

Background: Hemorrhoids are common conditions at or around the anus, to which numerous people suffer worldwide. Previous research has suggested that microbes may play a role in the development of hemorrhoids, and the origins of these microbes have been preliminarily investigated. However, no detailed research on the microbes related to hemorrhoid patients has been conducted. This work aims to provide an initial investigation into the microbes related to hemorrhoid patients with high quality whole genome sequencing. Methods: Forty-nine bacterial strains were isolated from seven hemorrhoid patients. Third-generation nanopore sequencing was performed to obtain high quality whole genome sequences. The presence of plasmids, particularly new plasmids, along with antibiotic resistance genes, was investigated for these strains. Phylogenetic analysis and genome comparisons were performed. Results: Out of the 31 plasmids found in the strains, 15 new plasmids that have not been observed previously were discovered. Further structural analysis revealed new multidrug-resistant conjugative plasmids, virulent plasmids, and small, high-copy mobile plasmids that may play significant functional roles. These plasmids were found to harbor numerous integrases, transposases, and recombinases, suggesting their ability to quickly obtain genes to change functions. Analysis of antibiotic resistance genes revealed the presence of antibiotic resistant-integrons. Together with the surprising number of new plasmids identified, as well as the finding of transmission and modification events for plasmids in this work, we came to the suggestion that plasmids play a major role in genetic plasticity. Conclusion: This study reveals that the diversity of plasmids in human-associated microbes has been underestimated. With the decreasing cost of whole-genome sequencing, monitoring plasmids deserves increased attention in future surveillance efforts.


Asunto(s)
Bacterias , Hemorroides , Filogenia , Plásmidos , Humanos , Plásmidos/genética , Hemorroides/microbiología , Hemorroides/genética , Bacterias/genética , Bacterias/aislamiento & purificación , Secuenciación Completa del Genoma , Masculino , Farmacorresistencia Bacteriana Múltiple/genética , Femenino , Adulto
16.
Am J Hum Genet ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39226898

RESUMEN

Variants that alter gene splicing are estimated to comprise up to a third of all disease-causing variants, yet they are hard to predict from DNA sequencing data alone. To overcome this, many groups are incorporating RNA-based analyses, which are resource intensive, particularly for diagnostic laboratories. There are thousands of functionally validated variants that induce mis-splicing; however, this information is not consolidated, and they are under-represented in ClinVar, which presents a barrier to variant interpretation and can result in duplication of validation efforts. To address this issue, we developed SpliceVarDB, an online database consolidating over 50,000 variants assayed for their effects on splicing in over 8,000 human genes. We evaluated over 500 published data sources and established a spliceogenicity scale to standardize, harmonize, and consolidate variant validation data generated by a range of experimental protocols. According to the strength of their supporting evidence, variants were classified as "splice-altering" (∼25%), "not splice-altering" (∼25%), and "low-frequency splice-altering" (∼50%), which correspond to weak or indeterminate evidence of spliceogenicity. Importantly, 55% of the splice-altering variants in SpliceVarDB are outside the canonical splice sites (5.6% are deep intronic). These variants can support the variant curation diagnostic pathway and can be used to provide the high-quality data necessary to develop more accurate in silico splicing predictors. The variants are accessible through an online platform, SpliceVarDB, with additional features for visualization, variant information, in silico predictions, and validation metrics. SpliceVarDB is a very large collection of splice-altering variants and is available at https://splicevardb.org.

17.
Plant Commun ; : 101075, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39228129

RESUMEN

Houttuynia cordata Thunb., also known as Yuxingcao in Chinese, is a perennial herb in the Saururaceae family. It is highly regarded for its medicinal properties, particularly in treating respiratory infections and inflammatory conditions, as well as boosting the human immune system. However, the lack of genomic information has hindered research on the functional genomics and potential improvements of H. cordata. In this study, we present the assembly of a near-complete genome of H. cordata and investigate the biosynthesis pathway of flavonoids, specifically quercetin, using genomics, transcriptomics, and metabolomics analysis. The genome of H. cordata diverged from Saururus chinensis around 33.4 million years ago and consists of 2.24 Gb with 76 chromosomes (4n = 76), which underwent three whole-genome duplication (WGD) events. These WGDs played a crucial role in shaping H. cordata's genome and influencing gene families associated with its medicinal properties. Through metabolomics and transcriptomics analysis, we identified key genes involved in the ß-oxidation process for houttuynin biosynthesis, one of the volatile oils responsible for its fishy-smell. Additionally, utilizing the reference genome, we effectively identified genes involved in flavonoid biosynthesis, particularly quercetin metabolism in H. cordata. This discovery has paramount implications for understanding the regulatory mechanisms of active pharmaceutical ingredient production in traditional Chinese medicine. Overall, the high-quality genome of H. cordata serves as a crucial resource for future functional genomics research and provides a solid foundation for genetic improvement of H. cordata for the benefit of human health.

18.
J Med Virol ; 96(9): e29902, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39228345

RESUMEN

The whole-genome sequence (WGS) analysis of Aichivirus (AiV) identified in Korea was performed in this study. Using Sanger and Nanopore sequencing, the 8228-nucleotide-long genomic sequence of AiV (OQ121963) was determined and confirmed to belong to genotype A. The full-length genome of OQ121963 consisted of a 7296 nt open reading frame (ORF) that encodes a single polyprotein, and 5' UTR (676 nt) and 3' UTR (256 nt) at 5' and 3' ends, respectively. The ORF consisted of leader protein (L), structural protein P1 (VP0, VP1, and VP3), and nonstructural protein P2 (2A, 2B, and 2C) and P3 (3A, 3B, 3C, and 3D). The secondary structure analysis of the 5' UTR identified only stem-loop C (SL-C) and not SL-A and SL-B. The variable region of the AiV genome was analyzed by MegAlign Pro and reconfirmed by SimPlot analysis using 16 AiV whole genomes known to date. Among the entire regions, structural protein region P1 showed the lowest amino acid identity (96.07%) with reference sequence AB040749 (originated in Japan; genotype A), while the highest amino acid identity (98.26%) was confirmed in the 3D region among nonstructural protein region P2 and P3. Moreover, phylogenetic analysis of the WGS of OQ121963 showed the highest homology (96.96%) with JX564249 (originated in Taiwan; genotype A) and lowest homology (90.14%) with DQ028632 (originated in Brazil; genotype B). Therefore, the complete genome characterization of OQ121963 and phylogenetic analysis of the AiV conducted in this study provide useful information allowing to improve diagnostic tools and epidemiological studies of AiVs.


Asunto(s)
Genoma Viral , Genotipo , Kobuvirus , Sistemas de Lectura Abierta , Filogenia , Secuenciación Completa del Genoma , Genoma Viral/genética , República de Corea , Humanos , Kobuvirus/genética , Kobuvirus/clasificación , Kobuvirus/aislamiento & purificación , Infecciones por Picornaviridae/virología , Infecciones por Picornaviridae/epidemiología , Regiones no Traducidas 5'/genética , Adulto , ARN Viral/genética , Regiones no Traducidas 3'/genética
19.
J Med Microbiol ; 73(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39229883

RESUMEN

Introduction. The discordance between phenotypic and molecular methods of rifampicin (RIF) drug susceptibility testing (DST) in Mycobacterium tuberculosis poses a significant challenge, potentially resulting in misdiagnosis and inappropriate treatment.Hypothesis/gap statement. A comparison of RIF phenotypic and molecular methods for DST, including whole genome sequencing (WGS), may provide a better understanding of resistance mechanisms.Aim. This study aims to compare RIF DST in M. tuberculosis using two phenotypic and molecular methods including the GeneXpert RIF Assay (GX) and WGS for better understanding.Methodology. The study evaluated two phenotypic liquid medium methods [Lowenstein-Jensen (LJ) and Mycobacterium Growth Indicator Tube (MGIT)], one targeted molecular method (GX), and one WGS method. Moreover, mutational frequency in ponA1 and ponA2 was also screened in the current and previous RIF resistance M. tuberculosis genomic isolates to find their compensatory role.Results. A total of 25 RIF-resistant isolates, including nine from treatment failures and relapse cases with both discordant and concordant DST results on LJ, MGIT and GX, were subjected to WGS. The phenotypic DST results indicated that 11 isolates (44%) were susceptible on LJ and MGIT but resistant on GX. These isolates exhibited multiple mutations in rpoB, including Thr444>Ala, Leu430>Pro, Leu430>Arg, Asp435>Gly, His445>Asn and Asn438>Lys. Conversely, four isolates that were susceptible on GX and MGIT but resistant on LJ were wild type for rpoB in WGS. However, these isolates possessed several novel mutations in the PonA1 gene, including a 10 nt insertion and two nonsynonymous mutations (Ala394>Ser, Pro631>Ser), as well as one nonsynonymous mutation (Pro780>Arg) in PonA2. The discordance rate of RIF DST is higher on MGIT than on LJ and GX when compared to WGS. These discordances in the Delhi/CAS lineages were primarily associated with failure and relapse cases.Conclusion. The WGS of RIF resistance is relatively expensive, but it may be considered for isolates with discordant DST results on MGIT, LJ and GX to ensure accurate diagnosis and appropriate treatment options.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Rifampin , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Rifampin/farmacología , Humanos , Secuenciación Completa del Genoma , Mutación , Farmacorresistencia Bacteriana/genética , Antituberculosos/farmacología , Proteínas Bacterianas/genética , Tuberculosis/microbiología
20.
AIMS Microbiol ; 10(3): 608-643, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39219753

RESUMEN

Listeria monocytogenes is a concern in seafood and its food processing environment (FPE). Several outbreaks globally have been linked to various types of seafood. Genetic profiling of L. monocytogenes is valuable to track bacterial contamination throughout the FPE and in understanding persistence mechanisms, with limited studies from South Africa. Forty-six L. monocytogenes isolates from origins: Fish/seafood products (n = 32) (salmon, smoked trout, fresh hake, oysters), the FPE (n = 6), and clinical (n = 8) were included in this study. Lineage typing, antibiotic susceptibility testing, and screening for two genes (bcrABC and emrC) conferring sanitizer tolerance was conducted. The seafood and FPE isolates originated from seven different factories processing various seafood products with undetermined origin. All clinical isolates were categorized as lineage I, and seafood and FPE isolates were mostly categorized into lineage II (p < 0.01). Seafood and FPE isolates (53%) carried the bcrABC gene cassette and one fish isolate, the emrC gene. A subset, n = 24, was grouped into serotypes, sequence types (STs), and clonal complexes (CCs) with whole genome sequencing (WGS). Eight CCs and ten STs were identified. All clinical isolates belonged to serogroup 4b, hypervirulent CC1. CC121 was the most prevalent in isolates from food and the FPE. All isolates carried Listeria pathogenicity islands (LIPI) 1 and 2. LIPI-3 and LIPI-4 were found in certain isolates. We identified genetic determinants linked to enhanced survival in the FPE, including stress survival islets (SSI) and genes conferring tolerance to sanitizers. SSI-1 was found in 44% isolates from seafood and the FPE. SSI-2 was found in all the ST121 seafood isolates. Isolates (42%) harbored transposon Tn1688_qac (ermC), conferring tolerance to quaternary ammonium compounds. Five plasmids were identified in 13 isolates from seafood and the FPE. This is the first One Health study reporting on L. monocytogenes genetic diversity, virulence and resistance profiles from various types of seafood and its FPE in South Africa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA