Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 278(Pt 4): 134971, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39182879

RESUMEN

Electrical stimulation therapy is effective in promoting wound healing by rescuing the decreased endogenous electrical field, where self-powered and miniaturized devices such as nanogenerators become the emerging trends. While high-voltage and unidirectional electric field may pose thermal effect and damage to the skin, nanogenerators with lower voltages, pulsed or bidirectional currents, and less invasive electrodes are preferred. Herein, we construct a polydopamine (PDA)-modified poly-L-lactic acid (PLLA) /MXene (PDMP/MXene) nanofibrous composite membrane that generates piezoelectric voltages matching the transepithelial potential (TEP) to accelerate wound healing. PDA coating not only enhances the piezoelectricity of PLLA by dipole attraction and alignment, but also increases its hydrophilicity and facilitates subsequent MXene adhesion for electrical conductivity and stability in physiological environment. When applied as wound dressings in mice, the PDMP/MXene membranes act as a nanogenerators with reduced internal resistances and satisfactory piezoelectric performances that resemble bioelectric potentials (~10 mV) responding to physical activities. The membrane significantly accelerates wound closure by facilitating fibroblast migration, collagen deposition and angiogenesis, and suppressing the expression of inflammatory responses. This piezoelectric fibrous membrane therefore provides a convenient solution for speeding up wound healing by sustained low voltage mimicking bioelectricity, better cell affinity.


Asunto(s)
Poliésteres , Polímeros , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Ratones , Poliésteres/química , Polímeros/química , Membranas Artificiales , Indoles/química , Conductividad Eléctrica , Fibroblastos/efectos de los fármacos , Electricidad , Nanofibras/química , Movimiento Celular/efectos de los fármacos
2.
J Colloid Interface Sci ; 677(Pt B): 513-522, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39154444

RESUMEN

Two-dimensional (2D) heterostructure materials, incorporating the collective strengths and synergetic properties of individual building blocks, have attracted great interest as a novel paradigm in electrode materials science. The family of 2D transition metal carbides and nitrides (e.g., MXenes) has become an appealing platform for fabricating functional materials with strong application performance. Herein, a 2D LiFe0.3Mn0.7PO4 (LFMP)-on-MXene heterostructure composite is prepared through an electrostatic self-assembly procedure. The functional groups on the surface of MXenes possess highly electronegative properties that facilitate the incorporation of LFMPs into MXenes to construct heterostructure composites. The special heterostructure of nanosized-LiFe0.3Mn0.7PO4 and MXene provides rapid Li+ and electron transport in the cathodes. This LiFe0.3Mn0.7PO4-3.0 wt% MXene composite can exhibit an excellent rate capability of 98.3 mAh g-1 at 50C and a very stable cycling performance with a capacity retention of 94.3 % at 5C after 1000 cycles. Furthermore, NaFe0.3Mn0.7PO4-3.0 wt% MXene with stable cyclability can be obtained by an electrochemical conversion method with LiFe0.3Mn0.7PO4-3.0 wt% MXene. Ex-situ XRD suggests that LiFe0.3Mn0.7PO4-on-MXene achieves a highly reversible structural evolution with a solid solution phase transformation (LFMP→LixFe0.3Mn0.7PO4 (LxFMP), LxFMP→LFMP) and a two-phase reaction (LxFMP←→Fe0.3Mn0.7PO4 (FMP)). This work provides a new direction for the use of MXenes to fabricate 2D heterostructures for lithium-ion batteries.

3.
J Colloid Interface Sci ; 677(Pt B): 541-550, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39154446

RESUMEN

The advancement of interface engineering has demonstrated remarkable efficacy in overcoming the primary impediment associated with sluggish reaction kinetics in supercapacitor electrodes. In this investigation, we employed a facile co-precipitation method to synthesize NiCoMoO4/MXene heterostructures utilizing Ti3C2Tx MXene nanosheets as carriers. This heterostructure inhibits the restacking of MXene nanosheets and simultaneously enhances the exposure of electrochemically active sites in NiCoMoO4 nanorods, thereby mitigating the reduction in specific capacitance resulting from volumetric fluctuations. The NiCoMoO4/MXene electrode, possessing pseudo-capacitance properties, demonstrates an impressive level of specific capacitance, exceptional performance across various charging rates, and consistent behavior throughout repeated cycles. By optimizing the mass ratio, this electrode achieves a specific capacity of 1900 F/g under a current density of 1 A/g. Even after enduring 10,000 cycles at a significantly higher current density of 5 A/g, it still maintains an impressive retention rate of 94.73 %. Our density functional theory (DFT) calculations indicate that the enhanced electrochemical performance can be attributed to the improved electronic coupling within the NiCoMoO4/MXene heterostructure. The integration of NiCoMoO4/MXene cathode and activated carbon (AC) anode with an alkaline gel electrolyte containing potassium ferricyanide in flexible quasi-solid-state supercapacitors (FSSCs) results in exceptional electrochemical performance and flexibility. These FSSCs demonstrate a maximum energy density of 72.89 Wh kg-1 at a power density of 850 W kg-1, while maintaining an impressive power output of 16,780 W kg-1 with an energy density of 37.28 Wh kg-1. Based on these outstanding properties, it is evident that the NiCoMoO4/MXene heterojunction possesses significant advantages as electrode material for supercapacitors, and the fabricated FSSCs devices pave a new pathway for flexible electronic devices.

4.
J Colloid Interface Sci ; 668: 634-645, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38696991

RESUMEN

Solid polymer electrolytes (SPEs) have been considered the most promising separators for all-solid-state lithium metal batteries (ASSLMBs) due to their ease of processing and low cost. However, the practical applications of SPEs in ASSLMBs are limited by their low ionic conductivities and mechanical strength. Herein, we developed a three-dimensional (3D) interconnected MXene (Ti3C2Tx) network and Li6.4La3Zr1.4Ta0.6O12 (LLZTO) particles synergistically reinforced polyethylene oxide (PEO)-based SPE, where the association of Li+ with ether-oxygen in PEO could be significantly weakened through the Lewis acid-base interactions between the electron-absorbing group (Ti-F, -O-) of Ti3C2Tx and Li+. Besides, the TFSI- in lithium salts could be immobilized by hydrogen bonds from the Ti-OH of Ti3C2Tx. The 3D interconnected Ti3C2Tx network not only alleviated the agglomeration of inorganic fillers (LLZTO), but also improved the mechanical strength of composite solid electrolyte (CSE). Consequently, the assembled Li||CSE||Li symmetric battery showed excellent cycling stability at 35 ℃ (stable cycling over 3000 h at 0.1 mA cm-2, 0.1 mAh cm-2) and -2 ℃ (stable cycling over 2500 h at 0.05 mA cm-2, 0.05 mAh cm-2). Impressively, the LiFePO4||CSE||Li battery showed a high discharge capacity of 145.3 mAh/g at 0.3 C after 300 cycles at 35 ℃. This rational structural design provided a new strategy for the preparation of high-performance solid-state electrolytes for lithium metal batteries.

5.
Talanta ; 277: 126318, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810381

RESUMEN

Monitoring health-related biomarkers using fast and facile detection techniques provides key physicochemical information for disease diagnosis or reflects body health status. Among them, electrochemical detection of various bio-macromolecules, e.g., the C-reactive protein (CRP), is of great interest in offering potential diagnosis for acute inflammation caused by infections, heart diseases, etc. Herein, a novel electrochemical aptamer biosensor was constructed from Ti3C2Tx MXene and in-situ reduced Au NPs for thiolated-RNA aptamer immobilization and CRP protein detection using Fc(COOH) as the signal probe. The sensory performances for CRP detection were optimized based on working conditions, including the incubation times and the pH. The large surface area offered by Ti3C2Tx MXene and high electrical conductivity originating from Au NPs endowed the as-fabricated aptamer biosensor with a decent sensitivity for CRP in a wide linear range of 0.05-80.0 ng/mL, good selectivity over interfering substances, and a low detection limit of 0.026 ng/mL. Such aptamer biosensors also detected CRP in serum samples using the spike & recovery method with reasonable recovery rates. The results demonstrated the potential of the as-fabricated electrochemical aptamer biosensor for fast and facile CRP detection in practical applications.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Proteína C-Reactiva , Técnicas Electroquímicas , Compuestos Ferrosos , Oro , Metalocenos , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Proteína C-Reactiva/análisis , Compuestos Ferrosos/química , Técnicas Electroquímicas/métodos , Metalocenos/química , Humanos , Oro/química , Nanopartículas del Metal/química , Límite de Detección
6.
J Colloid Interface Sci ; 671: 553-563, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38820840

RESUMEN

Recently, the solar-driven interfacial evaporation desalination has attracted more and more attentions due to the advantages of low cost, zero energy consumption, and high water purification rate, etc. One of the bottlenecks of this emerging technique lies in a lack of simple and low-cost ways to construct three-dimensional (3D) hierarchical microstructures for photothermal membranes. To this end, a two-step strategy is carried out by combining surface functionalization with substrate engineering. Firstly, a silane coupling agent 3-aminopropyltriethoxysilane (APTES) is grafted onto an ideal photothermal material of Ti3C2Tx MXene, to improve the nanochannel sizes and hydrophilicity, which are attributed to enlarged interspaces of MXene and introduced hydrophilic group e.g., -NH2 and -OH, respectively. Secondly, a low-cost and robust nonwoven fiber (NWF) substrate, which has a 3D micron-sized mesh structure with interlaced fiber stacks, is employed as the skeleton to load enough APTES-grafted MXene by a simple soaking method. Benefited from above design, the Ti3C2Tx-APTES/NWF composite membrane with a 3D hierarchical structure shows enhanced light scattering and utilization, water transport and vapor escape. A remarkable evaporation rate of 1.457 kg m-2 h-1 and an evaporation efficiency of 91.48 % are attained for a large-area (5 × 5 cm2) evaporator, and the evaporation rate is further increased to 1.672 kg m-2 h-1 for a small-area (2 × 2 cm2) device. The rejection rates of salt ions and heavy metal ions are higher than 99 % and 99.99 %, respectively, and the removal rates of organic dye molecules are nearly to 100 %. Besides, the composite photothermal membrane exhibits great stabilities in harsh conditions such as high salinities, long cycling, large light intensities, strong acid/alkali environments, and mechanical bending. Most importantly, the photothermal membrane shows a considerable cost-effectiveness of 89.4 g h-1/$. Hence, this study might promote the commercialization of solar-driven interfacial evaporation desalination by collaboratively considering surface modification and substrate engineering for MXene.

7.
J Colloid Interface Sci ; 667: 741-750, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38664092

RESUMEN

Metal sulfides exhibit obvious volume expansion due to the inherent poor conductivity and large temperature fluctuations, leading to reduced storage capacity. Herein, an electrostatic self-assembly strategy was proposed to fabricate a three-dimensional (3D) polyaniline (PANI) encapsulated hollow ZnS-SnS2 (H-ZSS) heterojunction confined on Ti3C2Tx MXene nanosheets (H-ZnS-SnS2@MXene@PANI, denoted as H-ZSSMP), which exhibits remarkable reversible capacity and cyclic stability (520.3 mAh/g at 2 A/g after 1000 cycles) at room temperature. Additionally, specific capacity can stabilized at 362.5 mAh/g for 250 cycles at -20 °C. A full cell with the configuration of H-ZSSMP//lithium iron phosphate (LiFePO4) can retain a satisfactory reversible capacity of 424.7 mAh/g after 100 cycles at 0.1 C. Theory calculations confirm heterogeneous interface can accelerate the transfer of ions through the interfacial regulation effect of MXene on H-ZSS. Our work provides a simple strategy to improve the capacity and stability of lithium-ion batteries (LIBs), as well as the new applications of MXene and bimetallic sulfides as anode materials, which will facilitate the development of MXene based composites for energy storage.

8.
J Colloid Interface Sci ; 665: 838-845, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38564947

RESUMEN

Currently, aqueous zinc ion batteries (AZIBs) have grown to be a good choice for large-scale energy storage systems due to their high theoretical specific capacity, low redox potential, low cost, and non-toxicity of the aqueous electrolyte. However, it is still challenging to obtain high specific capacity and stability suitable cathodes. Herein, hierarchical self-supporting potassium ammonium vanadate@MXene (KNVO@MXene) hybrid films were prepared by vacuum filtration method. Due to the three-dimensional nanoflower structure of KNVO with dual ions intercalation, high conductivity of two-dimensional Ti3C2Tx MXene, and the hierarchical self-supporting structure, the AZIB based on the KNVO@MXene hybrid film cathode possessed superior specific capacity (481 mAh/g at 0.3 A/g) and cycling stability (retaining 125 mAh/g after 1000 cycles at a high current density of 10 A/g). In addition, the storage mechanism was revealed by various ex-situ characterizations. Hence, a new viewpoint for the preparation of AZIB self-supporting cathode materials is presented.

9.
Talanta ; 275: 126125, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663066

RESUMEN

The establishment of rapid target analysis methods for cytokeratin fragment antigen 21-1 (CYFRA 21-1) is urgently needed. [Ir(pbi)2(acac)] (pbi = 2-(4-bromophenyl)-1-hydrogen -benzimidazole, acac = acetylacetonate) as traditional electrochemiluminescence (ECL) luminophores has been confined due to its non-negligible dark toxicity and poor water solubility leading to poor biocompatibility and electrical conductivity as an organic molecule. Hence, to overcome this limitation, [Ir(pbi)2(acac)] can be effectively loaded on the polyvinyl alcohol hydrogel modified Ti3C2Tx MXene surface (Ir@Ti3C2Tx-PVA) as sensing platform which can emit high ECL signals. Then, a quenching strategy was proposed to fabricate an ECL sandwich immunosensor using H2O2 as quencher molecules which can generated by Pd@Au0.85Pd0.15. Especially, the generation of O2 to H2O2 can be achieved through a two-electron (2e-) reaction pathway by Pd@Au0.85Pd0.15, to overcome the restriction that the H2O2 was virtually impossible to label or immobilize on the non-enzyme nanomaterials. The proposed ECL assay achieves a response to CYFRA 21-1 within the range of 0.1 pg/mL-100 ng/mL, with a detection limit of 8.9 fg/mL (S/N = 3). This work provided a feasible tactic to seek superior-performance ECL luminophore and quencher consequently set up a novel means to makeup ultrasensitive ECL biosensor, which extended the utilization potential of Ir(pbi)2(acac) in ECL assays.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Oro , Peróxido de Hidrógeno , Queratina-19 , Mediciones Luminiscentes , Paladio , Alcohol Polivinílico , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Técnicas Electroquímicas/métodos , Paladio/química , Catálisis , Técnicas Biosensibles/métodos , Alcohol Polivinílico/química , Oro/química , Humanos , Mediciones Luminiscentes/métodos , Queratina-19/análisis , Inmunoensayo/métodos , Antígenos de Neoplasias/análisis , Antígenos de Neoplasias/inmunología , Titanio/química , Límite de Detección , Iridio/química , Nanopartículas del Metal/química
10.
J Hazard Mater ; 469: 134002, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38503213

RESUMEN

More than 4.5 billion tons of unconventional uranium resources [UO2(CO3)3]4- are uniformly dissolved in seawater, providing a sustainable and abundant fuel source for the development of nuclear energy. Herein, we presented a rational design and development of Ti3C2Tx nanocontainer inspired by the exceptional selectivity and affinity exhibited by superb-uranyl proteins through amino acid intercalation. The amino acid intercalation of Ti3C2Tx demonstrated exceptional UO22+ capture capacity (Arg-Ti3C2Tx, His-Ti3C2Tx, and Lys-Ti3C2Tx with qmax values of 594.46, 846.04, and 1030.17 mg/g). Furthermore, these intercalated materials exhibited remarkable sequestration efficiency and selectivity (Uinitial = ∼45.2 ∼7636 µg/L; ∼84.45% ∼98.08%; and ∼2.72 ×104 ∼1.28 ×105 KdU value), despite the presence of an overwhelming surplus of Na+, Ca2+, Mg2+, and Co2+ ions. Significantly, even in the 0.3 M NaHCO3 solution and surpassing 103-fold of the Na3VO4 system, the adsorption efficiency of Lys-Ti3C2Tx still achieved a remarkable 63.73% and 65.05%. Moreover, the Lys-Ti3C2Tx can extract ∼30.23 ∼8664.03 µg/g uranium after 24 h contact in ∼13.3 ∼5000 µg/L concentration from uranium-spiked natural seawater. The mechanism analysis revealed that the high binding capability can be attributed to the chelation of carboxyl and amino groups with uranyl ions. This innovative state-of-the-art approach in regulating uranium harvesting capability through intercalation of amino acid molecules provides novel insights for extracting uranium from seawater.

11.
J Colloid Interface Sci ; 665: 376-388, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38537586

RESUMEN

With the popularization of 5G technology and the development of science and technology, flexible and transparent conductive films (TCF) are increasingly used in the preparation of optoelectronic devices such as electromagnetic shielding devices, transparent flexible heaters, and solar cells. Silver nanowires (AgNW) are considered the best material for replacing indium tin oxide to prepare TCFs due to their excellent comprehensive properties. However, the loose overlap between AgNWs is a significant reason for the high resistance. This article investigates a sandwich structured conductive network composed of AgNW and Ti3C2Tx MXene for high-performance EMI shielding and transparent electrical heaters. Polyethylene pyrrolidone (PVP) solution was used to hydrophilic modify PET substrate, and then MXene, AgNW, and MXene were assembled layer by layer using spin coating method to form a TCF with a sandwich structure. One-dimensional AgNW is used to provide electron transfer channels and improve light penetration, while two-dimensional MXene nanosheets are used for welding AgNWs and adding additional conductive channels. The flexible TCF has excellent transmittance (85.1 % at 550 nm) and EMI shielding efficiency (27.1 dB). At the voltage of 5 V, the TCF used as a heater can reach 85.6 °C. This work offers an innovative approach to creating TCFs for the future generation.

12.
J Colloid Interface Sci ; 661: 237-248, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38301462

RESUMEN

Lithium ion capacitors (LICs) are a new generation of energy storage devices that combine the super energy storage capability of lithium ion batteries with the satisfactory power density of supercapacitors. The development of high-performance LICs still faces great challenges due to the unbalanced reaction kinetics at the anode and cathode. Therefore, it is an inevitable need to enhance the electron/ion transfer capability of the anode materials. In this paper, to obtain a superior-rate and high-capacity Ni3S2-based anode, highly conductive Ti3C2Tx MXene sheets were introduced to sever as the carrier of Ni3S2 nanoparticles and simultaneously an amorphous carbon layer which coats onto the surface of Ni3S2 nanoparticles was in-situ generated by the carbonization of dopamine reactant. The as-synthesized Ni3S2/Ti3C2Tx/C composite exhibits a high specific surface area (112.6 m2/g) because of the addition of Ti3C2Tx that can reduce the aggregation of Ni3S2 nanoparticles and the in-situ generated amorphous carbon layer that can suppress the growth of Ni3S2 nanoparticles. The Ni3S2/Ti3C2Tx/C anode possesses a remarkable reversible discharge specific capacity (626.0 mAh/g under 0.2 A/g current density), which increases to 1150.8 mAh/g after 400-cycle charge/discharge measurement at the same measurement condition indicating eminent cyclability, along with superior rate capability. To construct a superior-performance LIC device, a sterculiae lychnophorae derived porous carbon (SLPC) cathode with an average discharge specific capacity of 73.4 mAh/g@0.1A/g was prepared. The Ni3S2/Ti3C2Tx/C//SLPC LIC device with optimal cathode/anode mass ratio has a satisfactory energy density ranging from 32.8 to 119.1 Wh kg-1 at the corresponding power density of 8799.4 to 157.5 W kg-1, together with a prominent capacity retention (95.5 %@1 A/g after 10,000 cycles).

13.
J Colloid Interface Sci ; 661: 358-365, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38301472

RESUMEN

Rational design of high-performance electrode materials is crucial for enhancing desalination performance of capacitive deionization (CDI). Here, ultrathin nitrogen-doped carbon/Ti3C2Tx-TiN (NC/MX-TiN) heterostructure was developed by pyrolyzing zeolite imidazolate framework-8 (ZIF-8) nanoparticles sandwiched MXene (ZSM), which were formed by assembling ultrafine ZIF-8 nanoparticles with size of 20 nm on both sides of MXene nanosheets. The introduction of ultrasmall ZIF-8 particles allowed for in situ nitridation of the MXene during pyrolysis, forming consecutive TiN layers tightly connected to the internal MXene. The two-dimensional (2D) heterostructure exhibited remarkable properties, including high specific surface area and excellent conductivity. Additionally, the resulting TiN demonstrated exceptional redox capability, which significantly enhanced the performance of CDI and ensured cycling stability. Benefiting from these advantages, the NC/MX-TiN exhibited a maximum adsorption capacity of 45.6 mg g-1 and a steady cycling performance in oxygenated saline water over 50 cycles. This work explores the rational design and construction of MXene-based 2D heterostructure and broadens new horizons for the development of novel CDI electrode materials.

14.
Nanotechnology ; 35(15)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38176072

RESUMEN

Semiconductor photocatalysis holds significant promise in addressing both environmental and energy challenges. However, a major hurdle in photocatalytic processes remains the efficient separation of photoinduced charge carriers. In this study, TiO2nanorod arrays were employed by glancing angle deposition technique, onto which Ti3C2TxMXene was deposited through a spin-coating process. This hybrid approach aims to amplify the photocatalytic efficacy of TiO2nanorod arrays. Through photocurrent efficiency characterization testing, an optimal loading of TiO2/Ti3C2Txcomposites is identified. Remarkably, this composite exhibits a 40% increase in photocurrent density in comparison to pristine TiO2. This enhancement is attributed to the exceptional electrical conductivity and expansive specific surface area inherent to Ti3C2TxMXene. These attributes facilitate swift transport of photoinduced electrons, consequently refining the separation and migration of electron-hole pairs. The synergistic TiO2/Ti3C2Txcomposite showcases its potential across various domains including photoelectrochemical water splitting and diverse photocatalytic devices. As such, this composite material stands as a novel and promising entity for advancing photocatalytic applications. This study can offer an innovative approach for designing simple and efficient photocatalytic materials composed of MXene co-catalysts and TiO2for efficient water electrolysis on semiconductors.

15.
Colloids Surf B Biointerfaces ; 234: 113755, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38241894

RESUMEN

In terms of cancer-related deaths among women, breast cancer (BC) is the most common. Clinically, human epidermal growth receptor 2 (HER2) is one of the most commonly used diagnostic biomarkers for facilitating BC cell proliferation and malignant growth. In this study, a disposable gold electrode (DGE) modified with gold nanoparticle-decorated Ti3C2Tx (Au/MXene) was utilized as a sensing platform to immobilize the capturing antibody (Ab1/Au/MXene). Subsequently, nitrogen-doped graphene (NG) with a metal-organic framework (MOF)-derived copper-manganese-cobalt oxide, tagged as NG/CuMnCoOx, was used as a probe to label the detection antibody (Ab2). A sandwich-type immunosensor (NG/CuMnCoOx/Ab2/HER2-ECD /Ab1/Au/MXene/DGE) was developed to quantify HER2-ECD. NG/CuMnCoOx enhances the conductivity, electrocatalytic active sites, and surface area to immobilize Ab2. In addition, Au/MXene facilitates electron transport and captures more Ab1 on its surface. Under optimal conditions, the resultant immunosensor displayed an excellent linear range of 0.0001 to 50.0 ng. mL-1. The detection limit was 0.757 pg·mL-1 with excellent selectivity, appreciable reproducibility, and high stability. Moreover, the applicability for determining HER2-ECD in human serum samples indicates its ability to monitor tumor markers clinically.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama , Grafito , Compuestos de Manganeso , Nanopartículas del Metal , Estructuras Metalorgánicas , Nitritos , Óxidos , Elementos de Transición , Humanos , Femenino , Biomarcadores de Tumor , Grafito/química , Estructuras Metalorgánicas/química , Oro/química , Reproducibilidad de los Resultados , Nanopartículas del Metal/química , Neoplasias de la Mama/diagnóstico , Inmunoensayo , Técnicas Electroquímicas , Límite de Detección , Anticuerpos Inmovilizados/química
16.
J Colloid Interface Sci ; 658: 865-878, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157611

RESUMEN

Aluminum alloy (Al alloy) suffers from severe corrosion in acidic solution. Two-dimensional (2D) MXene-based composite coatings show great prospects for corrosion protection on metals used in special conditions. The composite coatings still face challenges in complex functionalization and orientation control. In harsh conditions, the long-term ability and roles of MXene in corrosion protection are still not clear. Here, a bio-inspired myristic-calcium chloride-Ti3C2Tx MXene (MA + CaCl2 + MXene) composite coating is successfully prepared on aluminum alloy (Al alloy) by electrodeposition process. Electrochemical tests, surface morphology, and chemical composition are analyzed to investigate the corrosion resistance and protection mechanism of the MXene coating in acidic solution (0.5 M H2SO4 + 2 ppm HF). As a result, the incorporation of MXene can significantly reduce corrosion current density (7.498 × 10-8 A/cm2) by âˆ¼ 5 orders of magnitude and impedance modulus at 0.01 Hz (|Z|0.01 Hz) value of the composite coating is 196.8 Ω·cm2, which is over 4 times higher than that of bare Al alloy (40.74 Ω·cm2) after immersion test for 72 h. Furthermore, the in-situ corrosion test confirms the enhanced corrosion resistance of the MA + CaCl2 + MXene composite coating. The MXene can increase coating thickness to 23.6 ± 0.4 µm, reduce porosity to (5.845 ± 1) × 10-5, decrease the diffusion coefficients of H+ to (1.587 ± 0.3) × 10-9 cm2/s, and enhance the adhesion of the coating to the substrate (the delamination time exceeds 5 h), thus providing improved anti-corrosion ability. This strategy opens up new prospects for construction of 2D MXene-based anti-corrosion coatings.

17.
Nanotechnology ; 35(1)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37714139

RESUMEN

The development of Fe2O3as lithium-ion batteries (LIBs) anode is greatly restricted by its poor electronic conductivity and structural stability. To solve these issues, this work presentsin situconstruction of three-dimensional crumpled Fe2O3@N-Ti3C2Txcomposite by solvothermal-freeze-drying process, in which wormlike Fe2O3nanoparticles (10-50 nm)in situnucleated and grew on the surface of N-doped Ti3C2Txnanosheets with Fe-O-Ti bonding. As a conductive matrix, N-doping endows Ti3C2Txwith more active sites and higher electron transfer efficiency. Meanwhile, Fe-O-Ti bonding enhances the stability of the Fe2O3/N-Ti3C2Txinterface and also acts as a pathway for electron transmission. With a large specific surface area (114.72 m2g-1), the three-dimensional crumpled structure of Fe2O3@N-Ti3C2Txfacilitates the charge diffusion kinetics and enables easier exposure of the active sites. Consequently, Fe2O3@N-Ti3C2Txcomposite exhibits outstanding electrochemical performance as anode for LIBs, a reversible capacity of 870.2 mAh g-1after 500 cycles at 0.5 A g-1, 1129 mAh g-1after 280 cycles at 0.2 A g-1and 777.6 mAh g-1after 330 cycles at 1 A g-1.

18.
Ultrason Sonochem ; 99: 106570, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37678067

RESUMEN

In this work, different mass loadings of MXene-coupled MIL-101(Cr) (MXe/MIL-101(Cr)) nanocomposites were generated through a hydrothermal process in order to investigate the potential of this nanocomposite as a novel sonocatalyst for the elimination of sulfadiazine (SD) and acetaminophen (AAP) in aqueous media. The sonocatalytic activity of different MXe/MIL-101(Cr) compositions and surface functionalities was investigated. In addition, the sonocatalytic activities at various pH values, temperatures, pollutant concentrations, catalyst dosages, initial H2O2 concentrations, and organic matter contents were investigated. The experiments on the sonocatalytic elimination of SD and AAP revealed that MXe/MIL-101(Cr) exhibited a catalytic efficiency of âˆ¼ 98% in 80 min when the MXene loading was 30 wt% in the nanocomposite. Under optimized reaction conditions, the degradation efficiency of MXe/MIL-101(Cr) reached 91.5% for SD and 90.6% for AAP in 60 min; these values were 1.2 and 1.8 times greater than those of MXene and MIL-101(Cr), respectively. The high surface area of the MXe/MIL-101(Cr) nanocomposite increased from 4.68 m2/g to 294.21 m2/g, and the band gap of the tagged MIL-101(Cr) on the MXene surface was minimized. The superior sonocatalytic activity of MXe/MIL-101(Cr) was attributed to the effective contact interface, the effective separation rate of e- - h+ pairs through the type II heterostructure interface, and the favorable high free •OH radical production rates that promoted the degradation of SD and AAP. The solid heterointerface between MIL-101(Cr) and MXene was confirmed through Raman and FTIR analysis and was found to promote accessible •OH radical production under sonication, thus maximizing the catalytic activity of nanocomposites. The present results present an effective strategy for the design of a highly efficient, low-cost, reliable sonocatalyst that can eradicate pharmaceutical pollutants in our environment.

19.
Anal Chim Acta ; 1274: 341512, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37455067

RESUMEN

Exploring facile strategy for developing highly efficient emitters using water-insoluble luminophores has become a vital topic in electrochemiluminescence (ECL) immunoassay. In this work, an ECL-active and water-dispersive iridium(III) complex-based polymer dots (IrPdots) was fabricated by encapsulating water-insoluble tris[1-phenylisoquinolinato-C2, N] iridium(III) complexes [Ir(piq)3] into poly-(styrene-co-maleic anhydride) (PSMA) matrix by a controllable nanoprecipitation process. The obtained IrPdots generated strong ECL signals in the presence of tri-n-propylamine (TPrA) and were used to label detection antibody (Ab2) to act as ECL probes to indicate the signal changes when analyzing target antigen. To construct a sandwich immunosensor, Pd nanoparticles (NPs) decorated MoS2/Ti3C2Tx MXene nanocomposites (MoS2/Ti3C2Tx MXene/Pd) were fabricated as substrates to bind capture antibody (Ab1), which could further amplify ECL signals via a coreaction-accelerating pathway to improve the detection sensitivity. When the cytokeratin 19 fragment 21-1 (CYFRA 21-1) was chosen as model analyte, the developed immunosensor displayed a good linear relationship ranging from 0.1 pg/mL to 50 ng/mL with a low detection limit of 95 fg/mL (S/N = 3) was achieved as well. This research proposed a facile and effective method of fabricating IrPdots as ECL probes for immunoassay using water-insoluble iridium complexes, which expanded the application scope of those water-insoluble luminophores for aqueous bioanalysis.


Asunto(s)
Mediciones Luminiscentes , Cápsulas/química , Iridio/química , Técnicas Electroquímicas , Mediciones Luminiscentes/métodos , Inmunoensayo/métodos
20.
J Colloid Interface Sci ; 650(Pt A): 480-489, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37421750

RESUMEN

Lithium-sulfur (Li-S) batteries are regarded as highly prospective energy storage devices. However, problems such as low sulfur utilization, poor cycle performance, and insufficient rate capability hinder the commercial development of Li-S batteries. Three-dimensional (3D) structure materials have been applied to modify the separator of Li-S batteries to suppress the diffusion of lithium polysulfides (LiPSs) and inhibit the transmembrane diffusion of Li+. A vanadium sulfide/titanium carbide (VS4/Ti3C2Tx) MXene composite with a 3D conductive network structure has been synthesized in situ by a simple hydrothermal reaction. VS4 is uniformly loaded on the Ti3C2Tx nanosheets through vanadium-carbon(V-C) bonds, which effectively inhibits the self-stacking of Ti3C2Tx. The synergistic action of VS4 and Ti3C2Tx substantially reduces the shuttle of LiPSs, improves interfacial charge transfer, and boosts the kinetics of LiPSs conversion, consequently increasing the rate performance and cycle stability of the battery. The assembled battery has a specific discharge capacity of 657 mAhg-1 after 500 cycles at 1C, with a high capacity retention rate of 71%. The construction of VS4/Ti3C2Tx composite with a 3D conductive network structure provides a feasible strategy for the application of polar semiconductor materials in Li-S batteries. It also provides an effective solution for the design of high-performance Li-S batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA