Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Intervalo de año de publicación
1.
Prep Biochem Biotechnol ; : 1-13, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38511632

RESUMEN

Since cytoplasmic expression of heterologous proteins with disulfide bonds leads to the formation of inclusion bodies in E. coli, periplasmic production is preferable. The N-terminal signal peptide attached to the secreted protein determines the type of secretory pathway through which the target protein is secreted; Sec, Tat, or SRP. The aim of this study was to design and compare two novel signal peptides for the secretion of recombinant neurturin (as a model) via the Sec and Tat pathways. For this purpose, we aligned the natural signal peptides from E. coli and Bacillus subtilis to identify the conserved amino acids and those with the highest repetition. The SignalP4.1 and TatP1.0 software were used to determine the secretion efficiency of the new signal peptides. The efficiency of new signal peptides was then evaluated and compared experimentally with two naturally used signal peptides. Quantitative analysis of Western blot bands showed that approximately 80% of the expressed neurturin was secreted into the periplasmic space by new signal peptides. Circular dichroism spectroscopy also confirmed the correct secondary structure of the secreted neurturin. In conclusion, these novel signal peptides can be used to secrete any other recombinant proteins to the periplasmic space of E. coli efficiently.

2.
Microbiology (Reading) ; 170(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38363712

RESUMEN

The twin-arginine protein transport (Tat) system exports folded proteins across the cytoplasmic membranes of prokaryotes and the energy transducing-membranes of plant thylakoids and mitochondria. Proteins are targeted to the Tat machinery by N-terminal signal peptides with a conserved twin-arginine motif, and some substrates are exported as heterodimers where the signal peptide is present on one of the partner proteins. A subset of Tat substrates is found in the membrane. Tat-dependent membrane proteins usually have large globular domains and a single transmembrane helix present at the N- or C-terminus. Five Tat substrates that have C-terminal transmembrane helices have previously been characterized in the model bacterium Escherichia coli. Each of these is an iron-sulfur cluster-containing protein involved in electron transfer from hydrogen or formate. Here we have undertaken a bioinformatic search to identify further tail-anchored Tat substrates encoded in bacterial genomes. Our analysis has revealed additional tail-anchored iron-sulfur proteins associated in modules with either a b-type cytochrome or a quinol oxidase. We also identified further candidate tail-anchored Tat substrates, particularly among members of the actinobacterial phylum, that are not predicted to contain cofactors. Using reporter assays, we show experimentally that six of these have both N-terminal Tat signal peptides and C-terminal transmembrane helices. The newly identified proteins include a carboxypeptidase and a predicted protease, and four sortase substrates for which membrane integration is a prerequisite for covalent attachment to the cell wall.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de la Membrana , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Escherichia coli/metabolismo , Transporte de Proteínas , Arginina/metabolismo , Proteínas Portadoras/metabolismo , Señales de Clasificación de Proteína , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
3.
Appl Microbiol Biotechnol ; 108(1): 89, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38194145

RESUMEN

The industrial bacterium Bacillus licheniformis has long been used as a microbial factory for the production of enzymes due to its ability to secrete copious amounts of native extracellular proteins and its generally regarded as safe (GRAS) status. However, most attempts to use B. licheniformis to produce heterologous and cytoplasmic enzymes primarily via the general secretory (Sec) pathway have had limited success. The twin-arginine transport (Tat) pathway offers a promising alternative for the extracellular export of Sec-incompatible proteins because it transports full, correctly folded proteins. However, compared to the Sec pathway, the yields of the Tat pathway have historically been too low for commercial use. To improve the export efficiency of the Tat pathway, we identified the optimal Tat-dependent signal peptides and increased the abundance of the Tat translocases, the signal peptidase (SPase), and the intracellular chaperones. These strategic modifications significantly improved the Tat-dependent secretion of the cytoplasmic enzyme arginase into the culture medium using B. licheniformis. The extracellular enzymatic activity of arginase showed a 5.2-fold increase after these modifications. Moreover, compared to the start strain B. licheniformis 0F3, the production of extracellular GFP was improved by 3.8 times using the strategic modified strain B. licheniformis 0F13, and the extracellular enzymatic activity of SOX had a 1.3-fold increase using the strain B. licheniformis 0F14. This Tat-based production chassis has the potential for enhanced production of Sec-incompatible enzymes, therefore expanding the capability of B. licheniformis as an efficient cellular factory for the production of high-value proteins. KEY POINTS: • Systematic genetic modification of Tat-pathway in B. licheniformis. • Significant enhancement of the secretion capacity of Tat pathway for delivery the cytoplasmic enzyme arginase. • A new platform for efficient extracellular production of Sec-incompatible enzymes.


Asunto(s)
Arginasa , Bacillus licheniformis , Vías Secretoras/genética , Bacillus licheniformis/genética , Citoplasma , Citosol
4.
Microbiologyopen ; 12(2): e1350, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37186227

RESUMEN

High-value heterologous proteins produced in Escherichia coli that contain disulfide bonds are almost invariably targeted to the periplasm via the Sec pathway as it, among other advantages, enables disulfide bond formation and simplifies downstream processing. However, the Sec system cannot transport complex or rapidly folding proteins, as it only transports proteins in an unfolded state. The Tat system also transports proteins to the periplasm, and it has significant potential as an alternative means of recombinant protein production because it transports fully folded proteins. Most of the studies related to Tat secretion have used the well-studied TorA signal peptide that is Tat-specific, but this signal peptide also tends to induce degradation of the protein of interest, resulting in lower yields. This makes it difficult to use Tat in the industry. In this study, we show that a model disulfide bond-containing protein, YebF, can be exported to the periplasm and media at a very high level by the Tat pathway in a manner almost completely dependent on cytoplasmic disulfide formation, by other two putative Tat SPs: those of MdoD and AmiC. In contrast, the TorA SP exports YebF at a low level.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Periplasma , Proteínas Recombinantes , Sistema de Translocación de Arginina Gemela , Transporte de Proteínas , Periplasma/metabolismo , Disulfuros/química , Escherichia coli/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Pliegue de Proteína , Oxidorreductasas N-Desmetilantes/genética , Oxidorreductasas N-Desmetilantes/metabolismo , Señales de Clasificación de Proteína , Sistema de Translocación de Arginina Gemela/metabolismo , Medios de Cultivo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
5.
Microbiology (Reading) ; 169(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36790402

RESUMEN

The twin arginine transport (Tat) pathway exports folded proteins across the cytoplasmic membranes of prokaryotes and the thylakoid membranes of chloroplasts. In Escherichia coli and other Gram-negative bacteria, the Tat machinery comprises TatA, TatB and TatC components. A Tat receptor complex, formed from all three proteins, binds Tat substrates, which triggers receptor organization and recruitment of further TatA molecules to form the active Tat translocon. The polytopic membrane protein TatC forms the core of the Tat receptor and harbours two binding sites for the sequence-related TatA and TatB proteins. A 'polar' cluster binding site, formed by TatC transmembrane helices (TMH) 5 and 6 is occupied by TatB in the resting receptor and exchanges for TatA during receptor activation. The second binding site, lying further along TMH6, is occupied by TatA in the resting state, but its functional relevance is unclear. Here we have probed the role of this second binding site through a programme of random and targeted mutagenesis. Characterization of three stably produced TatC variants, P221R, M222R and L225P, each of which is inactive for protein transport, demonstrated that the substitutions did not affect assembly of the Tat receptor. Moreover, the substitutions that we analysed did not abolish TatA or TatB binding to either binding site. Using targeted mutagenesis we introduced bulky substitutions into the TatA binding site. Molecular dynamics simulations and crosslinking analysis indicated that TatA binding at this site was substantially reduced by these amino acid changes, but TatC retained function. While it is not clear whether TatA binding at the TMH6 site is essential for Tat activity, the isolation of inactivating substitutions indicates that this region of the protein has a critical function.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Arginina/metabolismo , Proteínas Portadoras/metabolismo , Sitios de Unión , Transporte de Proteínas/fisiología
6.
Biotechnol Genet Eng Rev ; 39(1): 1-44, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35613080

RESUMEN

Mycobacterium tuberculosis (MTB) causes one of the ancient diseases, Tuberculosis, affects people around the globe and its severity can be understood by its classification as a second infectious disease after COVID-19 and the 13th leading cause of death according to a WHO report. Despite having advanced diagnostic approaches and therapeutic strategies, unfortunately, TB is still spreading across the population due to the emergence of drug-resistance MTB and Latent TB infection (LTBI). We are seeking for effective approaches to overcome these hindrances and efficient treatment for this perilous disease. Therefore, there is an urgent need to develop drugs based on operative targeting of the bacterial system that could result in both efficient treatment and lesser emergence of MDR-TB. One such promising target could be the secretory systems and especially the Type 7 secretory system (T7SS-ESX) of Mycobacterium tuberculosis, which is crucial for the secretion of effector proteins as well as in establishing host-pathogen interactions of the tubercle bacilli. The five paralogous ESX systems (ESX-1 to EXS-5) have been observed by in silico genome analysis of MTB, among which ESX-1 and ESX-5 are substantial for virulence and mediating host cellular inflammasome. The bacterium growth and virulence can be modulated by targeting the T7SS. In the present review, we demonstrate the current status of therapeutics against MTB and focus on the function and cruciality of T7SS along with other secretory systems as a promising therapeutic target against Tuberculosis.


Asunto(s)
COVID-19 , Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas Bacterianas/metabolismo , Secretoma , Tuberculosis/microbiología
7.
Front Physiol ; 13: 933153, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35957980

RESUMEN

In 1971, Blobel proposed the first statement of the Signal Hypothesis which suggested that proteins have amino-terminal sequences that dictate their export and localization in the cell. A cytosolic binding factor was predicted, and later the protein conducting channel was discovered that was proposed in 1975 to align with the large ribosomal tunnel. The 1975 Signal Hypothesis also predicted that proteins targeted to different intracellular membranes would possess distinct signals and integral membrane proteins contained uncleaved signal sequences which initiate translocation of the polypeptide chain. This review summarizes the central role that the signal peptides play as address codes for proteins, their decisive role as targeting factors for delivery to the membrane and their function to activate the translocation machinery for export and membrane protein insertion. After shedding light on the navigation of proteins, the importance of removal of signal peptide and their degradation are addressed. Furthermore, the emerging work on signal peptidases as novel targets for antibiotic development is described.

8.
J Cell Sci ; 134(9)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34550353

RESUMEN

Cytochrome c6 is a redox carrier in the thylakoid lumen of cyanobacteria and some eukaryotic algae. Although the isofunctional plastocyanin is present in land plants and the green alga Chlamydomonas reinhardtii, these organisms also possess a cytochrome c6-like protein designated as cytochrome c6A. Two other cytochrome c6-like groups, c6B and c6C, have been identified in cyanobacteria. In this study, we have identified a novel c6-like cytochrome called PetJ2, which is encoded in the nuclear genome of Cyanophora paradoxa, a member of the glaucophytes - the basal branch of the Archaeplastida. We propose that glaucophyte PetJ2 protein is related to cyanobacterial c6B and c6C cytochromes, and that cryptic green algal and land plant cytochromes c6A evolved from an ancestral archaeplastidial PetJ2 protein. In vitro import experiments with isolated muroplasts revealed that PetJ2 is imported into plastids. Although it harbors a twin-arginine motif in its thylakoid-targeting peptide, which is generally indicative of thylakoid import via the Tat import pathway, our import experiments with isolated muroplasts and the heterologous pea thylakoid import system revealed that PetJ2 uses the Sec pathway instead of the Tat import pathway.


Asunto(s)
Cyanophora , Secuencia de Aminoácidos , Cyanophora/metabolismo , Citocromos/metabolismo , Eucariontes/metabolismo , Plastidios/metabolismo
9.
mBio ; 12(3): e0130221, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34154411

RESUMEN

The cell envelope of Gram-negative bacteria consists of two membranes surrounding the periplasm and peptidoglycan layer. ß-Lactam antibiotics target the periplasmic penicillin-binding proteins that synthesize peptidoglycan, resulting in cell death. The primary means by which bacterial species resist the effects of ß-lactam drugs is to populate the periplasmic space with ß-lactamases. Resistance to ß-lactam drugs is spread by lateral transfer of genes encoding ß-lactamases from one species of bacteria to another. However, the resistance phenotype depends in turn on these "alien" protein sequences being recognized and exported across the cytoplasmic membrane by either the Sec or Tat protein translocation machinery of the new bacterial host. Here, we examine BKC-1, a carbapenemase from an unknown bacterial source that has been identified in a single clinical isolate of Klebsiella pneumoniae. BKC-1 was shown to be located in the periplasm, and functional in both K. pneumoniae and Escherichia coli. Sequence analysis revealed the presence of an unusual signal peptide with a twin arginine motif and a duplicated hydrophobic region. Biochemical assays showed this signal peptide directs BKC-1 for translocation by both Sec and Tat translocons. This is one of the few descriptions of a periplasmic protein that is functionally translocated by both export pathways in the same organism, and we suggest it represents a snapshot of evolution for a ß-lactamase adapting to functionality in a new host. IMPORTANCE Bacteria can readily acquire plasmids via lateral gene transfer (LGT). These plasmids can carry genes for virulence and antimicrobial resistance (AMR). Of growing concern are LGT events that spread ß-lactamases, particularly carbapenemases, and it is important to understand what limits this spread. This study provides insight into the sequence features of BKC-1 that exemplify the limitations on the successful biogenesis of ß-lactamases, which is one factor limiting the spread of AMR phenotypes by LGT. With a very simple evolutionary adaptation, BKC-1 could become a more effective carbapenemase, underscoring the need to understand the evolution, adaptability, and functional assessment of newly reported ß-lactamases rapidly and thoroughly.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Productos del Gen tat/genética , Klebsiella pneumoniae/genética , Canales de Translocación SEC/genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Transporte Biológico , Escherichia coli/genética , Humanos , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/enzimología , Pruebas de Sensibilidad Microbiana , Periplasma/metabolismo , beta-Lactamas/farmacología
10.
Plant Mol Biol ; 105(4-5): 513-523, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33393067

RESUMEN

KEY MESSAGE: The thylakoid transit peptide of tobacco oxygen-evolving enhancer protein contains a minimal ten amino acid sequences for thylakoid lumen transports. This ten amino acids do not contain twin-arginine, which is required for typical chloroplast lumen translocation. Chloroplasts are intracellular organelles responsible for photosynthesis to produce organic carbon for all organisms. Numerous proteins must be transported from the cytosol to chloroplasts to support photosynthesis. This transport is facilitated by chloroplast transit peptides (TPs). Four chloroplast thylakoid lumen TPs were isolated from Nicotiana tabacum and were functionally analyzed as thylakoid lumen TPs. Typical chloroplast stroma-transit peptides and thylakoid lumen transit peptides (tTPs) are found in N. tabacum transit peptides (NtTPs) and the functions of these peptides are confirmed with TP-GFP fusion proteins under fluorescence microscopy and chloroplast fractionation, followed by Western blot analysis. During the functional analysis of tTPs, we uncovered the minimum 10 amino acid sequence is sufficient for thylakoid lumen transport. These ten amino acids can efficiently translocate GFP protein, even if they do not contain the twin-arginine residues required for the twin-arginine translocation (Tat) pathway, which is a typical thylakoid lumen transport. Further, thylakoid lumen transporting processes through the Tat pathway was examined by analyzing tTP sequence functions and we demonstrate that the importance of hydrophobic core for the tTP cleavage and target protein translocation.


Asunto(s)
Aminoácidos/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Nicotiana/metabolismo , Oxígeno/metabolismo , Tilacoides/metabolismo , Secuencia de Aminoácidos , Aminoácidos/genética , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Elementos de Facilitación Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Membranas Intracelulares/metabolismo , Microscopía Confocal , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Señales de Clasificación de Proteína/genética , Transporte de Proteínas , Homología de Secuencia de Aminoácido , Tilacoides/genética , Nicotiana/clasificación , Nicotiana/genética
11.
Biochim Biophys Acta Mol Cell Res ; 1867(11): 118816, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32768405

RESUMEN

The biogenesis of membrane-bound electron transport chains requires membrane translocation pathways for folded proteins carrying complex cofactors, like the Rieske Fe/S proteins. Two independent systems were developed during evolution, namely the Twin-arginine translocation (Tat) pathway, which is present in bacteria and chloroplasts, and the Bcs1 pathway found in mitochondria of yeast and mammals. Mitochondria of plants carry a Tat-like pathway which was hypothesized to operate with only two subunits, a TatB-like protein and a TatC homolog (OrfX), but lacking TatA. Here we show that the nuclearly encoded TatA from pea has dual targeting properties, i.e., it can be imported into both, chloroplasts and mitochondria. Dual targeting of TatA was observed with in organello experiments employing chloroplasts and mitochondria isolated from pea as well as after transient expression of suitable reporter constructs in leaf tissue from pea and Nicotiana benthamiana. The extent of transport of these constructs into mitochondria of transiently transformed leaf cells was relatively low, causing a demand for highly sensitive methods to be detected, like the sasplitGFP approach. Yet, the dual import of TatA into mitochondria and chloroplasts observed here points to a common mechanism of Tat transport for folded proteins within both endosymbiotic organelles in plants.


Asunto(s)
Cloroplastos/genética , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Mitocondrias/genética , Proteínas de Plantas/genética , Sistema de Translocación de Arginina Gemela/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Cloroplastos/metabolismo , Complejo III de Transporte de Electrones/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Pisum sativum/genética , Pliegue de Proteína , Señales de Clasificación de Proteína , Transducción de Señal/genética
12.
Mol Microbiol ; 113(5): 861-871, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31971282

RESUMEN

The twin-arginine protein transport (Tat pathway) is found in prokaryotes and plant organelles and transports folded proteins across membranes. Targeting of substrates to the Tat system is mediated by the presence of an N-terminal signal sequence containing a highly conserved twin-arginine motif. The Tat machinery comprises membrane proteins from the TatA and TatC families. Assembly of the Tat translocon is dynamic and is triggered by the interaction of a Tat substrate with the Tat receptor complex. This review will summarise recent advances in our understanding of Tat transport, focusing in particular on the roles played by Tat signal peptides in protein targeting and translocation.


Asunto(s)
Secuencias de Aminoácidos , Señales de Clasificación de Proteína , Transporte de Proteínas , Sistema de Translocación de Arginina Gemela/fisiología , Proteínas Bacterianas/fisiología , Membrana Celular , Proteínas de Escherichia coli/fisiología , Proteínas de Transporte de Membrana/fisiología , Unión Proteica , Conformación Proteica
13.
Electron. j. biotechnol ; 42: 49-55, Nov. 2019. tab, ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1087461

RESUMEN

Background: Protein glutaminase specifically deamidates glutamine residue in protein and therefore significantly improves protein solubility and colloidal stability of protein solution. In order to improve its preparation efficiency, we exploited the possibility for its secretory expression mediated by twin-arginine translocation (Tat) pathway in Bacillus licheniformis. Results: The B. licheniformis genome-wide twin-arginine signal peptides were analyzed. Of which, eleven candidates were cloned for construction of expression vectors to mediate the expression of Chryseobacterium proteolyticum protein glutaminase (PGA). The signal peptide of GlmU was confirmed that it significantly mediated PGA secretion into media with the maximum activity of 0.16 U/ml in Bacillus subtilis WB600. A mutant GlmU-R, being replaced the third residue aspartic acid of GlmU twin-arginine signal peptide with arginine by site-directed mutagenesis, mediated the improved secretion of PGA with about 40% increased (0.23 U/ml). In B. licheniformis CBBD302, GlmU-R mediated PGA expression in active form with the maximum yield of 6.8 U/ml in a 25-l bioreactor. Conclusions: PGA can be produced and secreted efficiently in active form via Tat pathway of B. licheniformis, an alternative expression system for the industrial-scale production of PGA.


Asunto(s)
Bacillus licheniformis/enzimología , Glutaminasa/metabolismo , Arginina , Plásmidos , Prostaglandinas A/química , Bacillus subtilis , Señales de Clasificación de Proteína , Secuencia de Bases , Mutagénesis Sitio-Dirigida , Ácido Aspártico , Escherichia coli , Bacillus licheniformis/genética , Glutaminasa/genética
14.
Mol Biotechnol ; 61(6): 451-460, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30997666

RESUMEN

We have previously shown that the small metal-binding protein (SmbP) extracted from the gram-negative bacterium Nitrosomonas europaea can be employed as a fusion protein for the expression and purification of recombinant proteins in Escherichia coli. With the goal of increasing the amounts of SmbP-tagged proteins produced in the E. coli periplasm, we replaced the native SmbP signal peptide with three different signal sequences: two were from the proteins CusF and PelB, for transport via the Sec pathway, and one was the signal peptide from TorA, for transport via the Tat pathway. Expression of SmbP-tagged Red Fluorescent Protein (RFP) using these three alternative signal peptides individually showed a considerable increase in protein levels in the periplasm of E. coli as compared to its level using the SmbP signal sequence. Therefore, for routine periplasmic expression and purification of recombinant proteins in E. coli, we highly recommend the use of the fusion proteins PelB-SmbP or CusF-SmbP, since these signal sequences increase periplasmic production considerably as compared to the wild-type. Our work, finally, demonstrates that periplasmic expression for SmbP-tagged proteins is not limited to the Sec pathway, in that the TorA-SmbP construct can export reasonable quantities of folded proteins to the periplasm. Although the Sec route has been the most widely used, sometimes, depending on the nature of the protein of interest, for example, if it contains cofactors, it is more appropriate to consider using the Tat route over the Sec. SmbP therefore can be recommended in terms of its particular versatility when combined with signal peptides for the two different routes.


Asunto(s)
Proteínas Bacterianas/genética , Clonación Molecular/métodos , Nitrosomonas europaea/genética , Periplasma/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas Transportadoras de Cobre , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Genes Reporteros , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Nitrosomonas europaea/metabolismo , Oxidorreductasas N-Desmetilantes/genética , Oxidorreductasas N-Desmetilantes/metabolismo , Periplasma/química , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Señales de Clasificación de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Proteína Fluorescente Roja
15.
Microb Cell Fact ; 17(1): 52, 2018 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-29598818

RESUMEN

The secretion of biotechnologically or pharmaceutically relevant recombinant proteins into the culture supernatant of a bacterial expression host greatly facilitates their downstream processing and significantly reduces the production costs. The first step during the secretion of a desired target protein into the growth medium is its transport across the cytoplasmic membrane. In bacteria, two major export pathways, the general secretion or Sec pathway and the twin-arginine translocation or Tat pathway, exist for the transport of proteins across the plasma membrane. The routing into one of these alternative protein export systems requires the fusion of a Sec- or Tat-specific signal peptide to the amino-terminal end of the desired target protein. Since signal peptides, besides being required for the targeting to and membrane translocation by the respective protein translocases, also have additional influences on the biosynthesis, the folding kinetics, and the stability of the respective target proteins, it is not possible so far to predict in advance which signal peptide will perform best in the context of a given target protein and a given bacterial expression host. As outlined in this review, the most promising way to find the optimal signal peptide for a desired protein is to screen the largest possible diversity of signal peptides, either generated by signal peptide variation using large signal peptide libraries or, alternatively, by optimization of a given signal peptide using site-directed or random mutagenesis strategies.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/genética , Señales de Clasificación de Proteína/genética , Proteínas Recombinantes/biosíntesis , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Bacterias Grampositivas/genética , Bacterias Grampositivas/metabolismo , Microbiología Industrial , Proteínas de Transporte de Membrana/genética , Transporte de Proteínas , Canales de Translocación SEC/genética , Sistema de Translocación de Arginina Gemela/genética
16.
Metab Eng ; 45: 20-31, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29155061

RESUMEN

Technologies enabling high-cell-density growth are required for economical industrial production of most biotechnological products. However, the key factor limiting cell density in bioreactors is the availability of oxygen during the late phases of fermentation. Although the expression of bacterial Vitreoscilla hemoglobin (VHb) is useful for enhanced oxygen availability, bacterial cell membrane makes efficient hemoglobin-oxygen contact a challenge. On the other hand, periplasmic spaces of Gram-negative microorganisms offer an excellent compartment for the intermittent storage of hemoglobin-bound oxygen. In this study, the cell growth was increased by a remarkable 100% using the twin-arginine translocase (Tat) pathway to export active VHb into the periplasm of Escherichia coli, Halomonas bluephagenesis TD01 and H. campaniensis LS21. Furthermore, eight low-oxygen-inducible vgb promoters were constructed in tandem to become a strong promoter cassette termed P8vgb, which better induces expression of both gene vgb encoding VHb and the PHB synthesis operon microaerobically. Both the P8vgb and VHb performed excellently in E. coli and two Halomonas spp., demonstrating their universal applicability for various organisms.


Asunto(s)
Proteínas Bacterianas , Halomonas , Hidroxibutiratos/metabolismo , Consumo de Oxígeno , Oxígeno/metabolismo , Poliésteres/metabolismo , Hemoglobinas Truncadas , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Halomonas/genética , Halomonas/metabolismo , Hemoglobinas Truncadas/biosíntesis , Hemoglobinas Truncadas/genética , Vitreoscilla/genética
17.
Photosynth Res ; 135(1-3): 149-163, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28540588

RESUMEN

Plants and algae have developed various light-harvesting mechanisms for optimal delivery of excitation energy to the photosystems. Cryptophyte algae have evolved a novel soluble light-harvesting antenna utilizing phycobilin pigments to complement the membrane-intrinsic Chl a/c-binding LHC antenna. This new antenna consists of the plastid-encoded ß-subunit, a relic of the ancestral phycobilisome, and a novel nuclear-encoded α-subunit unique to cryptophytes. Together, these proteins form the active α1ß·α2ß-tetramer. In all cryptophyte algae investigated so far, the α-subunits have duplicated and diversified into a large gene family. Although there is transcriptional evidence for expression of all these genes, the X-ray structures determined to date suggest that only two of the α-subunit genes might be significantly expressed at the protein level. Using proteomics, we show that in phycoerythrin 545 (PE545) of Guillardia theta, the only cryptophyte with a sequenced genome, all 20 α-subunits are expressed when the algae grow under white light. The expression level of each protein depends on the intensity of the growth light, but there is no evidence for a specific light-dependent regulation of individual members of the α-subunit family under the growth conditions applied. GtcpeA10 seems to be a special member of the α-subunit family, because it consists of two similar N- and C-terminal domains, which likely are the result of a partial tandem gene duplication. The proteomics data of this study have been deposited to the ProteomeXchange Consortium and have the dataset identifiers PXD006301 and 10.6019/PXD006301.


Asunto(s)
Criptófitas/metabolismo , Criptófitas/efectos de la radiación , Complejos de Proteína Captadores de Luz/metabolismo , Luz , Ficobiliproteínas/metabolismo , Proteínas de Plantas/metabolismo , Proteómica/métodos , Aclimatación/efectos de la radiación , Secuencia de Aminoácidos , Células Cultivadas , Criptófitas/crecimiento & desarrollo , Complejos de Proteína Captadores de Luz/química , Modelos Genéticos , Modelos Moleculares , Fotosíntesis/efectos de la radiación , Ficobiliproteínas/química , Proteínas de Plantas/química , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Espectrometría de Fluorescencia , Temperatura
18.
mBio ; 8(4)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28765221

RESUMEN

The general secretory pathway (Sec) and twin-arginine translocase (Tat) operate in parallel to export proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane of plant chloroplasts. Substrates are targeted to their respective machineries by N-terminal signal peptides that share a tripartite organization; however, Tat signal peptides harbor a conserved and almost invariant arginine pair that is critical for efficient targeting to the Tat machinery. Tat signal peptides interact with a membrane-bound receptor complex comprised of TatB and TatC components, with TatC containing the twin-arginine recognition site. Here, we isolated suppressors in the signal peptide of the Tat substrate, SufI, that restored Tat transport in the presence of inactivating substitutions in the TatC twin-arginine binding site. These suppressors increased signal peptide hydrophobicity, and copurification experiments indicated that they restored binding to the variant TatBC complex. The hydrophobic suppressors could also act in cis to suppress substitutions at the signal peptide twin-arginine motif that normally prevent targeting to the Tat pathway. Highly hydrophobic variants of the SufI signal peptide containing four leucine substitutions retained the ability to interact with the Tat system. The hydrophobic signal peptides of two Sec substrates, DsbA and OmpA, containing twin lysine residues, were shown to mediate export by the Tat pathway and to copurify with TatBC. These findings indicate that there is unprecedented overlap between Sec and Tat signal peptides and that neither the signal peptide twin-arginine motif nor the TatC twin-arginine recognition site is an essential mechanistic feature for operation of the Tat pathway.IMPORTANCE Protein export is an essential process in all prokaryotes. The Sec and Tat export pathways operate in parallel, with the Sec machinery transporting unstructured precursors and the Tat pathway transporting folded proteins. Proteins are targeted to the Tat pathway by N-terminal signal peptides that contain an almost invariant twin-arginine motif. Here, we make the surprising discovery that the twin arginines are not essential for recognition of substrates by the Tat machinery and that this requirement can be bypassed by increasing the signal peptide hydrophobicity. We further show that signal peptides of bona fide Sec substrates can also mediate transport by the Tat pathway. Our findings suggest that key features of the Tat targeting mechanism have evolved to prevent mistargeting of substrates to the Sec pathway rather than being a critical requirement for function of the Tat pathway.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Señales de Clasificación de Proteína/fisiología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Arginina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/genética , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Transporte de Membrana/genética , Dominios Proteicos , Señales de Clasificación de Proteína/genética , Sistemas de Translocación de Proteínas , Transporte de Proteínas , Canales de Translocación SEC/genética , Canales de Translocación SEC/metabolismo , Proteína SecA
19.
Open Biol ; 7(8)2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28814647

RESUMEN

The twin-arginine protein transport (Tat) machinery mediates the translocation of folded proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane of plant chloroplasts. The Escherichia coli Tat system comprises TatC and two additional sequence-related proteins, TatA and TatB. The active translocase is assembled on demand, with substrate-binding at a TatABC receptor complex triggering recruitment and assembly of multiple additional copies of TatA; however, the molecular interactions mediating translocase assembly are poorly understood. A 'polar cluster' site on TatC transmembrane (TM) helix 5 was previously identified as binding to TatB. Here, we use disulfide cross-linking and molecular modelling to identify a new binding site on TatC TM helix 6, adjacent to the polar cluster site. We demonstrate that TatA and TatB each have the capacity to bind at both TatC sites, however in vivo this is regulated according to the activation state of the complex. In the resting-state system, TatB binds the polar cluster site, with TatA occupying the TM helix 6 site. However when the system is activated by overproduction of a substrate, TatA and TatB switch binding sites. We propose that this substrate-triggered positional exchange is a key step in the assembly of an active Tat translocase.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Sitios de Unión , Reactivos de Enlaces Cruzados , Activación Enzimática , Escherichia coli/química , Modelos Moleculares , Complejos Multienzimáticos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Especificidad por Sustrato
20.
Elife ; 62017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28513434

RESUMEN

The majority of multi-spanning membrane proteins are co-translationally inserted into the bilayer by the Sec pathway. An important subset of membrane proteins have globular, cofactor-containing extracytoplasmic domains requiring the dual action of the co-translational Sec and post-translational Tat pathways for integration. Here, we identify further unexplored families of membrane proteins that are dual Sec-Tat-targeted. We establish that a predicted heme-molybdenum cofactor-containing protein, and a complex polyferredoxin, each require the concerted action of two translocases for their assembly. We determine that the mechanism of handover from Sec to Tat pathway requires the relatively low hydrophobicity of the Tat-dependent transmembrane domain. This, coupled with the presence of C-terminal positive charges, results in abortive insertion of this transmembrane domain by the Sec pathway and its subsequent release at the cytoplasmic side of the membrane. Together, our data points to a simple unifying mechanism governing the assembly of dual targeted membrane proteins.


Asunto(s)
Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/metabolismo , Canales de Translocación SEC/metabolismo , Sistema de Translocación de Arginina Gemela/metabolismo , Biología Computacional , Análisis Mutacional de ADN , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de la Membrana/genética , Modelos Biológicos , Proteínas Mutantes/biosíntesis , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptomyces coelicolor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA