Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Pain ; 17: 17448069211042963, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34461754

RESUMEN

IB4-positive maxillary trigeminal ganglion (TG) neurons are a subtype of afferent neurons involving nociception in orofacial regions, and excitability of these neurons is associated with orofacial nociceptive sensitivity. TREK-2 channel is a member of two-pore domain potassium (K2P) channel family mediating leak K+ currents. It has been shown previously that TREK-2 channel activity can be enhanced following GABAB receptor activation, leading to a reduction of cortical neuron excitability. In the present study, we have characterized TREK-2 channel expression on maxillary TG neurons and investigated the effect of the GABAB agonist baclofen on electrophysiological properties of small-sized maxillary TG neurons of rats. We show with immunohistochemistry that TREK-2 channels are predominantly expressed in small-sized IB4-positive maxillary TG neurons. Patch-clamp recordings on neurons in ex vivo TG preparations show that baclofen hyperpolarizes resting membrane potentials, increases outward leak currents, and decreases input resistances in IB4-positive maxillary TG neurons. Moreover, baclofen significantly reduces action potential (AP) firing in IB4-positive maxillary TG neurons. In contrast, baclofen shows no significant effect on electrophysiological properties of small-sized nociceptive-like and non-nociceptive-like maxillary trigeminal neurons that are IB4-negatve. Our results suggest that TREK-2 channel activity can be enhanced by baclofen, leading to reduced excitability of IB4-positive maxillary TG neurons. This finding provides new insights into the role of TREK-2 and GABAB receptors in controlling nociceptive sensitivity in orofacial regions, which may have therapeutic implications.


Asunto(s)
Neuronas/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Ganglio del Trigémino/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Femenino , Masculino , Potenciales de la Membrana/efectos de los fármacos , Neuronas Aferentes/fisiología , Nocicepción/efectos de los fármacos , Ratas Sprague-Dawley
2.
Front Pharmacol ; 12: 705421, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34267666

RESUMEN

Pulmonary arterial hypertension (PAH) is an aggressive vascular remodeling disease that carries a high morbidity and mortality rate. Treprostinil (Remodulin) is a stable prostacyclin analogue with potent vasodilatory and anti-proliferative activity, approved by the FDA and WHO as a treatment for PAH. A limitation of this therapy is the severe subcutaneous site pain and other forms of pain experienced by some patients, which can lead to significant non-compliance. TWIK-related potassium channels (TREK-1 and TREK-2) are highly expressed in sensory neurons, where they play a role in regulating sensory neuron excitability. Downregulation, inhibition or mutation of these channels leads to enhanced pain sensitivity. Using whole-cell patch-clamp electrophysiological recordings, we show, for the first time, that treprostinil is a potent antagonist of human TREK-1 and TREK-2 channels but not of TASK-1 channels. An increase in TASK-1 channel current was observed with prolonged incubation, consistent with its therapeutic role in PAH. To investigate treprostinil-induced inhibition of TREK, site-directed mutagenesis of a number of amino acids, identified as important for the action of other regulatory compounds, was carried out. We found that a gain of function mutation of TREK-1 (Y284A) attenuated treprostinil inhibition, while a selective activator of TREK channels, BL-1249, overcame the inhibitory effect of treprostinil. Our data suggests that subcutaneous site pain experienced during treprostinil therapy may result from inhibition of TREK channels near the injection site and that pre-activation of these channels prior to treatment has the potential to alleviate this nociceptive activity.

3.
Neurosci Lett ; 619: 54-9, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-26971702

RESUMEN

The entorhinal cortex (EC) provides a majority of the excitatory inputs to the hippocampus and is part of the neural circuitry that is involved in memory formation. Although many studies have investigated the effects of propofol in the hippocampus, the function of propofol in the EC remains unclear. Here, using whole-cell patch clamp recordings, we found that propofol induced a postsynaptic outward current and dramatically suppressed the firing rates in the entorhinal stellate neurons, the axons of which form the perforant pathway and relay the main inputs to hippocampus. Propofol-induced inhibition in the EC was mediated by a dual ionic mechanism, including both HCN channel inhibition and TREK-2 channel activation, which form a subtype of two-pore-domain K(+) channels. The inhibitory action of propofol observed in the EC might provide a mechanism for the anesthetic effect of propofol. Considering the crucial role of the EC in learning and memory, our findings may provide insight into the acute amnesic effect induced by propofol.


Asunto(s)
Anestésicos Generales/farmacología , Corteza Entorrinal/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Neuronas/efectos de los fármacos , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Propofol/farmacología , Animales , Corteza Entorrinal/fisiología , Técnicas In Vitro , Masculino , Neuronas/fisiología , Ratas Sprague-Dawley , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA