Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microb Cell Fact ; 23(1): 208, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39049057

RESUMEN

The diversity of chemical and structural attributes of proteins makes it inherently difficult to produce a wide range of proteins in a single recombinant protein production system. The nature of the target proteins themselves, along with cost, ease of use, and speed, are typically cited as major factors to consider in production. Despite a wide variety of alternative expression systems, most recombinant proteins for research and therapeutics are produced in a limited number of systems: Escherichia coli, yeast, insect cells, and the mammalian cell lines HEK293 and CHO. Recent interest in Vibrio natriegens as a new bacterial recombinant protein expression host is due in part to its short doubling time of ≤ 10 min but also stems from the promise of compatibility with techniques and genetic systems developed for E. coli. We successfully incorporated V. natriegens as an additional bacterial expression system for recombinant protein production and report improvements to published protocols as well as new protocols that expand the versatility of the system. While not all proteins benefit from production in V. natriegens, we successfully produced several proteins that were difficult or impossible to produce in E. coli. We also show that in some cases, the increased yield is due to higher levels of properly folded protein. Additionally, we were able to adapt our enhanced isotope incorporation methods for use with V. natriegens. Taken together, these observations and improvements allowed production of proteins for structural biology, biochemistry, assay development, and structure-based drug design in V. natriegens that were impossible and/or unaffordable to produce in E. coli.


Asunto(s)
Proteínas Recombinantes , Vibrio , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Vibrio/genética , Vibrio/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Humanos
2.
Proteins ; 92(9): 1085-1096, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38666764

RESUMEN

Proteases that recognize linear amino acid sequences with high specificity became indispensable tools of recombinant protein technology for the removal of various fusion tags. Due to its stringent sequence specificity, the catalytic domain of the nuclear inclusion cysteine protease of tobacco etch virus (TEV PR) is also a widely applied reagent for enzymatic removal of fusion tags. For this reason, efforts have been made to improve its stability and modify its specificity. For example, P1' autoproteolytic cleavage-resistant mutant (S219V) TEV PR was found not only to be nearly impervious to self-inactivation, but also exhibited greater stability and catalytic efficiency than the wild-type enzyme. An R203G substitution has been reported to further relax the P1' specificity of the enzyme, however, these results were obtained from crude intracellular assays. Until now, there has been no rigorous comparison of the P1' specificity of the S219V and S219V/R203G mutants in vitro, under carefully controlled conditions. Here, we compare the P1' amino acid preferences of these single and double TEV PR mutants. The in vitro analysis was performed by using recombinant protein substrates representing 20 P1' variants of the consensus TENLYFQ*SGT cleavage site, and synthetic oligopeptide substrates were also applied to study a limited set of the most preferred variants. In addition, the enzyme-substrate interactions were analyzed in silico. The results indicate highly similar P1' preferences for both enzymes, many side-chains can be accommodated by the S1' binding sites, but the kinetic assays revealed lower catalytic efficiency for the S219V/R203G than for the S219V mutant.


Asunto(s)
Dominio Catalítico , Endopeptidasas , Endopeptidasas/química , Endopeptidasas/genética , Endopeptidasas/metabolismo , Especificidad por Sustrato , Sustitución de Aminoácidos , Potyvirus/enzimología , Potyvirus/genética , Potyvirus/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Cinética , Secuencia de Aminoácidos , Mutación , Proteolisis , Expresión Génica
3.
Molecules ; 29(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474583

RESUMEN

Tobacco etch virus protease (TEVp) is wildly exploited for various biotechnological applications. These applications take advantage of TEVp's ability to cleave specific substrate sequences to study protein function and interactions. A major limitation of this enzyme is its relatively slow catalytic rate. In this study, MD simulations were conducted on TEV enzymes and known highly active mutants (eTEV and uTEV3) to explore the relationship between mutation, conformation, and catalytic function. The results suggest that mutations distant from the active site can influence the substrate-binding pocket through interaction networks. MD analysis of eTEV demonstrates that, by stabilizing the orientation of the substrate at the catalytic site, mutations that appropriately enlarge the substrate-binding pocket will be beneficial for Kcat, enhancing the catalytic efficiency of the enzyme. On the contrary, mutations in uTEV3 reduced the flexibility of the active pocket and increased the hydrogen bonding between the substrate and enzyme, resulting in higher affinity. At the same time, the MD simulation demonstrates that mutations outside of the active site residues could affect the dynamic movement of the binding pocket by altering residue networks and communication pathways, thereby having a profound impact on reactivity. These findings not only provide a molecular mechanistic explanation for the excellent mutants, but also serve as a guiding framework for rational computational design.


Asunto(s)
Endopeptidasas , Simulación de Dinámica Molecular , Endopeptidasas/metabolismo , Biotecnología , Mutación
4.
Bio Protoc ; 13(23): e4892, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38094251

RESUMEN

Human mitochondrial DNA (mtDNA) encodes several components of oxidative phosphorylation responsible for the bulk of cellular energy production. The mtDNA is transcribed by a dedicated human mitochondrial RNA polymerase (POLRMT) that is structurally distinct from its nuclear counterparts, instead closely resembling the single-subunit viral RNA polymerases (e.g., T7 RNA polymerase). The initiation of transcription by POLRMT is aided by two initiation factors: transcription factor A, mitochondrial (TFAM), and transcription factor B2, mitochondrial (TFB2M). Although many details of human mitochondrial transcription initiation have been elucidated with in vitro biochemical and structural studies, much remains to be addressed relating to the mechanism and regulation of transcription. Studies of such mechanisms require reliable, high-yield, and high-purity methods for protein production, and this protocol provides the level of detail and troubleshooting tips that are necessary for a novice to generate meaningful amounts of proteins for experimental work. The current protocol describes how to purify recombinant POLRMT, TFAM, and TFB2M from Escherichia coli using techniques such as affinity column chromatography (Ni2+ and heparin), how to remove the solubility tags with TEV protease and recover untagged proteins of interest, and how to overcome commonly encountered challenges in obtaining high yield of each protein. Key features • This protocol builds upon purification methods developed by Patel lab (Ramachandran et al., 2017) and others with greater detail than previously published works. • The protocol requires several days to complete as various steps are designed to be performed overnight. • The recombinantly purified proteins have been successfully used for in vitro transcription experiments, allowing for finer control of experimental components in a minimalistic system.

6.
Biomolecules ; 13(10)2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37892190

RESUMEN

Although single-chain variable fragment (scFv) is recognized as a highly versatile scaffold of recombinant antibody fragment molecules, its overexpression in Escherichia coli often leads to the formation of inclusion bodies. To address this issue, we devised and tested four different constructs, named v21, v22, v23 and v24, for producing anti-human epidermal growth factor receptor 2 (HER2) scFv. Among them, the v24 construct obtained from N-terminal fusion of maltose-binding protein (MBP) and subsequent tobacco etch virus protease (TEV) was identified as the most efficient construct for the production of anti-HER2 scFv. Aided by an MBP tag, high-yield soluble expression was ensured and soluble scFv was liberated in cells via autonomous proteolytic cleavage by endogenously expressed TEV. The isolated scFv containing a C-terminal hexahistidine tag was purified through a one-step purification via nickel-affinity chromatography. The purified scFv exhibited a strong (nanomolar Kd) affinity to HER2 both in vitro and in cells. Structural and functional stabilities of the scFv during storage for more than one month were also assured. Given the great utility of anti-HER2 scFv as a basic platform for developing therapeutic and diagnostic agents for cancers, the v24 construct and methods presented in this study are expected to provide a better manufacturing system for producing anti-HER2 scFv with various industrial applications.


Asunto(s)
Escherichia coli , Anticuerpos de Cadena Única , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Anticuerpos de Cadena Única/química , Cromatografía de Afinidad , Proteínas de Unión a Maltosa/genética
7.
Curr Res Struct Biol ; 6: 100106, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822550

RESUMEN

Tobacco etch virus Protease (TEVp), a cysteine protease, is renowned for its remarkable specific proteolysis, making it an invaluable tool for removing fusion tags from recombinant proteins. However, TEV protease's inherent insolubility limits its broad application. Fusion constructs like an N-terminal MBP fusion, known for its improved solubility, have been employed for TEVp production to address this issue. In this study, we fused the TEVp with the N-terminal domain of the spider silk protein, specifically utilizing a charge-reversed mutant (D40K/K65D) of the N-terminal domain of major ampullate spidroin-1 protein from Euprosthenops australis, referred to as NT*. This fusion construct contains a TEVp cleavage site, enabling intracellular self-processing and the release of a His7-tagged protease. The significant increase in soluble protein expression allowed us to purify approximately 90-100 mg of TEVp from a 1-L E. coli culture, surpassing previous findings by a considerable margin. The enzyme remained stable and catalytically active even after several months of storage in a deep freezer (-80 °C).

8.
Biotechnol J ; 18(11): e2200625, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37448316

RESUMEN

Due to their ability to catalytically cleave proteins and peptides, proteases present unique opportunities for the use in industrial, biotechnological, and therapeutic applications. Engineered proteases with redesigned substrate specificities have the potential to expand the scope of practical applications of this enzyme class. We here apply a combinatorial protease engineering-based screening method that links proteolytic activity to the solubility and correct folding of a fluorescent reporter protein to redesign the substrate specificity of tobacco etch virus (TEV) protease. The target substrate EKLVFQA differs at three out of seven positions from the TEV consensus substrate sequence. Flow cytometric sorting of a semi-rational TEV protease library, consisting of focused mutations of the substrate binding pockets as well as random mutations throughout the enzyme, led to the enrichment of a set of protease variants that recognize and cleave the novel target substrate.


Asunto(s)
Endopeptidasas , Péptido Hidrolasas , Especificidad por Sustrato , Endopeptidasas/genética , Péptido Hidrolasas/genética , Proteolisis
9.
Front Bioeng Biotechnol ; 11: 1187761, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456729

RESUMEN

Despite the long history of use and the knowledge of the genetics and biochemistry of E. coli, problems are still possible in obtaining a soluble form of recombinant proteins in this system. Although, soluble protein can be obtained both in the cytoplasm and in the periplasm of the bacterial cell. The latter is a priority strategy for obtaining soluble proteins. The fusion protein technology followed by detachment of the fusion protein with proteases is used to transfer the target protein into the periplasmic space of E. coli. We have continued for the first time to use the main viral protease 3CL of the SARS-CoV-2 virus for this purpose. We obtained a recombinant 3CL protease and studied its complex catalytic properties. The authenticity of the resulting recombinant enzyme, were confirmed by specific activity analysis and activity suppression by the known low-molecular-weight inhibitors. The catalytic efficiency of 3CL (0.17 ± 0.02 µM-1-s-1) was shown to be one order of magnitude higher than that of the widely used tobacco etch virus protease (0.013 ± 0.003 µM-1-s-1). The application of the 3CL gene in genetically engineered constructs provided efficient specific proteolysis of fusion proteins, which we demonstrated using the receptor-binding domain of SARS-CoV-2 spike protein and GST fusion protein. The solubility and immunochemical properties of RBD were preserved. It is very important that in work we have shown that 3CL protease works effectively directly in E. coli cells when co-expressed with the target fusion protein, as well as when expressed as part of a chimeric protein containing the target protein, fusion partner, and 3CL itself. The results obtained in the work allow expanding the repertoire of specific proteases for researchers and biotechnologists.

10.
Transgenic Res ; 32(4): 279-291, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37266895

RESUMEN

Interleukin-37 is a newly discovered cytokine that plays a pivotal role in suppressing innate inflammation and acquired immunity. We have recently expressed both the mature(mat-) and pro-forms of human IL-37b in plants and demonstrated that while both forms of the plant-made hIL-37b are functional, pmat-hIL37b exhibited significantly greater activity than ppro-IL-37b. Compared to ppro-hIL-37b, on the other hand, the expression level of pmat-hIL-37b was substantially lower (100.5 µg versus 1.05 µg/g fresh leaf mass or 1% versus 0.01% TSP). Since the difference between ppro-hIL-37b and pmat-hIL-37b is that ppro-hIL-37b contains a signal sequence not cleavable by plant cells, we reasoned that this signal sequence would play a key role in stabilizing the ppro-hIL-37b protein. Here, we describe a novel approach to enhancing pmat-hIL-37b production in plants based on incorporation of a gene sequence encoding tobacco etch virus (TEV) protease between the signal peptide and the mature hIL-37b, including a TEV cleavage site at the C-termini of TEV protease. The rationale is that when expressed as a sp-TEV-matIL-37b fusion protein, the stabilizing properties of the signal peptide of pro-hIL-37b will be awarded to its fusion partners, resulting in increased yield of target proteins. The fusion protein is then expected to cleave itself in vivo to yield a mature pmat-hIL-37b. Indeed, when a sp-TEV-matIL-37b fusion gene was expressed in stable-transformed plants, a prominent band corresponding to dimeric pmat-hIL-37b was detected, with expression yields reaching 42.5 µg/g fresh leaf mass in the best expression lines. Bioassays demonstrated that plant-made mature pmat-hIL-37b is functional.


Asunto(s)
Inflamación , Señales de Clasificación de Proteína , Humanos , Plantas Modificadas Genéticamente/genética , Proteínas Recombinantes de Fusión
11.
Methods Mol Biol ; 2551: 41-51, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36310195

RESUMEN

Amyloid-beta (Aß) aggregation into soluble oligomers and fibril formation are associated with Alzheimer's disease (AD) pathogenesis. Aß1-42 is the major form of the Aß peptide present in neuritic plaques and shown to be neurotoxic both in vivo and in vitro. However, understanding the mechanism of its toxicity, aggregation, and other biochemical properties is limited because of its difficult production (recombinant or synthetic) and irreproducibility issues attributed to batch-to-batch preparation differences. Chemically synthetic Aß1-42 is now well established, but it always introduces up to 5% D-isomers along with its L-isomeric form, and thus it is not fruitful for biochemical/structural studies. Here, we optimized an efficient published method for expression and purification of Aß1-42 upon overexpression in Escherichia coli (E. coli) that provides a satisfactory yield as well as minimizes the variability between batch preparations. With the present protocol, ~7-8 mg/liter of unlabeled peptide and ~3.5-4 mg/liter for 13C,15N-labeled (double-labeled) Aß1-42 were obtained.


Asunto(s)
Enfermedad de Alzheimer , Infecciones por Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Péptidos beta-Amiloides/química , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/metabolismo
12.
Neuroscience ; 518: 162-177, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35995336

RESUMEN

In several forms of dementia, such as Alzheimer's disease, the cytoskeleton-associated protein tau undergoes proteolysis, giving rise to fragments that have a toxic impact on neuronal homeostasis. How these fragments interact with cellular structures, in particular with the cytoskeleton, is currently incompletely understood. Here, we developed a method, derived from a Tobacco Etch Virus (TEV) protease system, to induce controlled cleavage of tau at specific sites. Five tau proteins containing specific TEV recognition sites corresponding to pathological proteolytic sites were engineered, and tagged with GFP at one end and mCherry at the other. After a controlled cleavage to produce GFP-N-terminal and C-terminal-mCherry fragments, we followed the fate of tau fragments in cells. Our results showed that whole engineered tau proteins associate with the cytoskeleton similarly to the non-modified tau, whereas tau fragments adopted different localizations with respect to the actin and microtubule cytoskeletons. These distinct localizations were confirmed by expressing each separate fragment in cells. Some cleavages - in particular cleavages at amino-acid positions 124 or 256 - displayed a certain level of cellular toxicity, with an unusual relocalization of the N-terminal fragments to the nucleus. Based on the data presented here, inducible cleavage of tau by the TEV protease appears to be a valuable tool to reproduce tau fragmentation in cells and study the resulting consequences on cell physiology.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Proteolisis , Neuronas/metabolismo , Núcleo Celular/metabolismo
13.
Anal Biochem ; 659: 114954, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36265691

RESUMEN

Tobacco etch virus (TEV) protease is a widely used protease for fusion tag cleavage. Despite its widespread usage, an assay to quickly and easily quantify its activity in laboratory settings is still lacking. Thus, researchers may encounter inefficient cleavage of the desired fusion proteins due to poor activity of a given TEV protease preparation. Here, we describe the development and implementation of a fluorescence dequenching-based assay to quantify TEV protease activity and assess kinetic parameters. The peptide substrate used in this assay consists of a C-terminal TAMRA fluorophore, an N-terminal fluorescein fluorophore, and the canonical TEV protease recognition sequence. The assay is based on a reduction of fluorescence quenching of fluorescein upon cleavage by TEV protease. The substrate peptide was studied spectroscopically to assess feasibility and to propose a plausible mechanism of the assay. The assay was optimized and applied to obtain rapid assessments of TEV protease activity in purified samples and crude lysate extracts. The kinetic data obtained from improved TEV protease variants were compared with a traditional SDS-PAGE assay. Finally, the assay was applied to determine the optimum pH for TEV protease. Further, the study found that the assay is a rapid and simple approach to quantify TEV protease activity. The findings of the assay on crude lysate extracts, activity assay of TEV protease variants, and assessment of optimum pH for TEV protease reactions demonstrate the robust utility of the assay.


Asunto(s)
Endopeptidasas , Péptido Hidrolasas , Endopeptidasas/metabolismo , Péptidos/metabolismo , Fluoresceínas , Proteínas Recombinantes de Fusión
14.
Biomol NMR Assign ; 16(2): 373-377, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36070063

RESUMEN

The ribosomal maturation factor (RimP) is a 17.7 kDa protein and is the assembly factor of the 30S subunit. RimP is essential for efficient processing of 16S rRNA and maturation (assembly) of the 30S ribosome. It was suggested that RimP takes part in stabilization of the central pseudoknot at the early stages of the 30S subunit maturation, and this process may occur before the head domain assembly and later stages of the 30S assembly, but the mechanism of this interaction is still not fully understood. Here we report the assignment of the 1H, 13C and 15N chemical shift in the backbone and side chains of RimP from Staphylococcus aureus. Analysis of chemical shifts of the main chain using TALOS + suggests that the RimP contains eight ß-strands and three α-helices with the topology α1-ß1-ß2-α2- ß3- α3- ß4- ß5- ß6- ß7- ß8. Structural studies of RimP and its complex with the ribosome by integrated structural biology approaches (NMR spectroscopy, X-ray diffraction analysis and cryoelectron microscopy) will allow further screening of highly selective inhibitors of the translation of S. aureus.


Asunto(s)
Ribosomas , Staphylococcus aureus , Microscopía por Crioelectrón , Resonancia Magnética Nuclear Biomolecular , ARN Ribosómico 16S/metabolismo , Proteínas Ribosómicas/química , Ribosomas/metabolismo
15.
ACS Synth Biol ; 11(8): 2756-2765, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35802180

RESUMEN

Highly regulated intracellular calcium entry affects numerous cellular physiological events. External regulation of intracellular calcium signaling presents a great opportunity for the artificial regulation of cellular activity. Calcium entry can be mediated by STIM proteins interacting with Orai calcium channels; therefore, the STIM1-Orai1 pair has become a tool for artificially modulating calcium entry. We report on an innovative genetically engineered protease-activated Orai activator called PACE. CAD self-dimerization and activation were inhibited with a coiled-coil forming peptide pair linked to CAD via a protease cleavage site. PACE generated sustained calcium entry after its activation with a reconstituted split protease. We also generated PACE, whose transcriptional activation of NFAT was triggered by PPV or TEV protease. Using PACE, we successfully activated the native NFAT signaling pathway and the production of cytokines in a T-cell line. PACE represents a useful tool for generating sustained calcium entry to initiate calcium-dependent protein translation. PACE provides a promising template for the construction of links between various protease activation pathways and calcium signaling.


Asunto(s)
Canales de Calcio , Calcio , Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Proteína ORAI1/química , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Péptido Hidrolasas/metabolismo
16.
Mol Ther Nucleic Acids ; 27: 1078-1091, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35228901

RESUMEN

Genetic lineage tracing is indispensable to unraveling the origin, fate, and plasticity of cells. However, the intrinsic leakiness in the CreER-loxP system raises concerns on data interpretation. Here, we reported the generation of a novel dual inducible CreER-loxP system with superior labeling characteristics. This two-component system consists of membrane localized CreER (mCreER: CD8α-FRB-CS-CreER) and TEV protease (mTEVp: CD8α-FKBP-TEVp), which are fusion proteins incorporated with the chemically induced dimerization machinery. Rapamycin and tamoxifen induce sequential dimerization of FKBP and FRB, cleavage of CreER from the membrane, and translocation into the nucleus. The labeling leakiness in Ad293 cells reduced dramatically from more than 70% to less than 5%. This tight labeling feature depends largely on the association of mCreER with HSP90, which conceals the TEV protease cutting site between FRB and CreER and thus preventing uninduced cleavage of the membrane-tethering CreER. Membrane-bound CreER also diminished significantly cytotoxicity. Our studies showed mCreER under the control of the rat insulin promoter increased labeling specificity in MIN6 islet beta-cells. Viability and insulin secretion of MIN6 cells remained intact. Our results demonstrate that this novel system can provide more stringent temporal and spatial control of gene expression and will be useful in cell fate probing.

17.
Protein Pept Lett ; 29(5): 429-439, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35125073

RESUMEN

BACKGROUND: In plants, heterotrimeric G-protein (Gγ) subunits are diverse, and they have structural plasticity to provide functional selectivity to the heterotrimer. Although the Gß and Gγ subunits dimerize to function in the signaling pathway, the interaction mechanism of various Gγ subunits with the Gß subunit partners is still elusive. OBJECTIVE: To better understand the interaction mechanism, one approach is to separate the subunits for the re-assembly in vitro. Hence, developing a reliable method for achieving the efficient production and purification of these proteins has become necessary. METHODS: In this study, Gγ1 and Gγ2 proteins from Oryza sativa and Arabidopsis thaliana were successfully identified, cloned, expressed in bacteria, and purified as recombinant proteins with the fusion tags. Highly expressed recombinant Gγ subunits in E. coli were digested by proteases, which were also produced in the presented study. RESULTS: Preliminary structural characterization studies without the Gß partners showed that Gγ1 proteins have disordered structures with coiled-coil, α-helix extensions, and loops, whereas the Gγ2 protein has a more dominant ß-sheet and turns structure. Finally, computational analyses performed on Gγ genes have laid the foundation of new targets for biotechnological purposes. CONCLUSION: The proposed optimized expression and purification protocol can contribute to investigations on the Gßγ binding mechanism in plant G-protein signaling. The investigations on selective binding are critical to shed light on the role(s) of different plant Gγ subunit types in biological processes.


Asunto(s)
Arabidopsis , Proteínas de Unión al GTP Heterotriméricas , Arabidopsis/genética , Proteínas Portadoras/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/genética , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Proteínas de Plantas/química , Plantas/metabolismo
18.
Methods Mol Biol ; 2379: 171-181, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35188662

RESUMEN

Studying the stability of a protein dependent on its N-terminal residue requires a mechanism, which selectively exposes the amino acid at the N-terminus. Here, we describe the use of the tobacco etch virus (TEV) protease to generate a specific N-terminal amino acid in the stroma of the chloroplast. The established molecular reporter system further allows the quantification of the reporter protein half-life dependent on the identity of the N-terminal residue.


Asunto(s)
Cloroplastos , Plastidios , Aminoácidos/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Plastidios/genética , Proteínas/metabolismo
19.
Protein Expr Purif ; 191: 106021, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34798273

RESUMEN

Many recombinant proteins are products of great value in biomedical and industrial fields. The use of solubility and affinity tags are commonly used to increase yields and facilitate the purification process. However, it is of paramount importance in several applications to remove the fusion tag from the final product. In this regard, the Tobacco Etch Virus protease (TEV) is one of the most widely used for tag removal. The presence in the TEV of the same tag to be removed facilitates the separation of TEV and the tag from the cleaved recombinant protein in a single purification step. We generated a double-tagged (StrepTagII and HisTag) TEV variant with reported mutations that improve the activity, the expression yield in E.coli, and that decrease the auto-proteolysis. This TEV can be easily purified by two consecutive affinity chromatography steps with high yields and purity. The cleavage reaction can be done to almost completeness in as fast as 15 min at room temperature and the removal of the protease and tags is performed in a single purification step, independent of the previous presence of a StrepTagII or a HisTag on the target.


Asunto(s)
Endopeptidasas , Escherichia coli , Proteínas Recombinantes de Fusión , Endopeptidasas/biosíntesis , Endopeptidasas/química , Endopeptidasas/genética , Endopeptidasas/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación
20.
J Neurosci Methods ; 366: 109407, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34763021

RESUMEN

Oxytocin is a neuropituitary hormone that is involved in a wide range of psychosocial behaviors. Despite its psychophysiological importance as a neuromodulator in the CNS, effective techniques capable of monitoring oxytocin dynamics or testing related behavioral consequences are limited. Along with an explosive advancement in synthetic biology, high-performance genetically-encoded neuromodulator sensors are being developed. Here we comprehensively review the current methodologies available for detecting oxytocin in neuroscience. Their strengths and weaknesses are discussed, and a graphical summary is plotted for better comparison of techniques. We also suggest future directions for next generation oxytocin sensor development and their working principles.


Asunto(s)
Técnicas Biosensibles , Oxitocina , Receptores Acoplados a Proteínas G , Técnicas Biosensibles/métodos , Oxitocina/análisis , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA