Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Biol Macromol ; 274(Pt 1): 133195, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885869

RESUMEN

Chronic wound healing is a pressing global public health concern. Abuse and drug resistance of antibiotics are the key problems in the treatment of chronic wounds at present. Postbiotics are a novel promising strategy. Previous studies have reported that postbiotics have a wide range of biological activities including antimicrobial, immunomodulatory, antioxidant and anti-inflammatory abilities. However, several aspects related to these postbiotic activities remain unexplored or poorly known. Therefore, this work aims to outline general aspects and emerging trends in the use of postbiotics for wound healing, such as the production, characterization, biological activities and delivery strategies of postbiotics. In this review, a comprehensive overview of the physiological activities and structures of postbiotic biomolecules that contribute to wound healing is provided, such as peptidoglycan, lipoteichoic acid, bacteriocins, exopolysaccharides, surface layer proteins, pili proteins, and secretory proteins (p40 and p75 proteins). Considering the presence of readily degradable components in postbiotics, potential natural polymer delivery materials and delivery systems are emphasized, followed by the potential applications and commercialization prospects of postbiotics. These findings suggest that the treatment of chronic wounds with postbiotic ingredients will help provide new insights into wound healing and better guidance for the development of postbiotic products.


Asunto(s)
Lipopolisacáridos , Peptidoglicano , Ácidos Teicoicos , Cicatrización de Heridas , Ácidos Teicoicos/química , Cicatrización de Heridas/efectos de los fármacos , Humanos , Peptidoglicano/química , Animales , Glicoproteínas de Membrana/metabolismo , Sistemas de Liberación de Medicamentos
2.
Talanta ; 275: 126014, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38615456

RESUMEN

Clostridioides difficile (C. difficile) is the most common agent of antibiotic-associated diarrhea, leading to intestinal infection through the secretion of two major toxins. Not all strains of this bacterium are toxigenic, but some of them cause infection via their accessory virulence factors, such as surface layer protein (SlpA). SlpA is conserved in both toxigenic and non-toxigenic strains of C. difficile. In the present work, an amplification-free electrochemical genosensor was designed for the detection of the slpA gene. A glassy carbon electrode coated with gold nanoparticle-reduced graphene oxide nanocomposite was used as the working electrode, and its surface was modified using a simple thiolated linear oligonucleotide as the bioreceptor. Moreover, the hexaferrocenium tri[hexa(isothiocyanato) iron(III)] trihydroxonium (HxFc) complex was used as an intercalator, and its redox signal was recorded using differential pulse voltammetry. Scan rate studies indicated a quasi-reversible adsorption-controlled process for the HxFc complex. This genosensor showed high sensitivity with a limit of detection of 0.2 fM, a linear response range of 0.46-1900 fM, and a satisfactory specificity toward the synthetic slpA target gene. Also, the genosensor indicated responses in the mentioned linear range toward the genome extracted from either toxigenic or non-toxigenic strains of C. difficile.


Asunto(s)
Técnicas Biosensibles , Clostridioides difficile , Técnicas Electroquímicas , Oro , Grafito , Clostridioides difficile/genética , Clostridioides difficile/aislamiento & purificación , Grafito/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Oro/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Nanopartículas del Metal/química , Electrodos , Límite de Detección , Nanocompuestos/química
3.
Food Res Int ; 175: 113773, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38129062

RESUMEN

The bacterial surface components are considered as effector molecules and show the potential to support intestinal health, but the detailed mechanism of how the gut microbiota changes after the intervention of surface molecules is still unknown. In the present study, capsular polysaccharide (B-CPS) and surface layer protein (B-SLP) were extracted from Lacticaseibacillus paracasei S-NB. The protective effect of direct administration of B-CPS (100 µg/mL) and B-SLP (100 µg/mL) on intestinal epithelial barrier dysfunction was verified based on the LPS-induced Caco-2 cell model. Additionally, the B-CPS and B-SLP could be utilized as carbon source and nitrogen source for the growth of several Lactobacillus strains, respectively. The postbiotic potential of B-CPS and B-SLP was further evaluated by in vitro fermentation with fecal cultures. The B-CPS and a combination of B-CPS and B-SLP regulated the composition of gut microbiota by increasing the relative abundances of Bacteroides, Bifidobacterium, Phascolarctobacterium, Parabacteroides, Subdoligranulum and Collinsella and decreasing the abundance of pathogenic bacteria like Escherichia-Shigella, Blautia, Citrobacter and Fusobacterium. Meanwhile, the total short-chain fatty acid production markedly increased after fermentation with either B-CPS individually or in combination with B-SLP. These results provided an important basis for the application of B-CPS and B-SLP as postbiotics to improve human intestinal health.


Asunto(s)
Microbioma Gastrointestinal , Lacticaseibacillus paracasei , Humanos , Células CACO-2 , Bacterias , Polisacáridos/farmacología
4.
bioRxiv ; 2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986930

RESUMEN

Secretory (S) Immunoglobin (Ig) A is the predominant mucosal antibody, which mediates host interactions with commensal and pathogenic microbes, including Clostridioides difficile. SIgA adopts a polymeric IgA structure that is bound by secretory component (SC). Despite significance, how SIgA supports diverse effector mechanisms is poorly characterized and SIgA-based therapies nonexistent. We engineered chimeric (c) SIgAs, in which we replaced SC domain D2 with a single domain antibody or a monomeric fluorescent protein, allowing us to investigate and enhance SIgA effector mechanisms. cSIgAs exhibited increased neutralization potency against C. difficile toxins, promoted bacterial clumping and cell rupture, and decreased cytotoxicity. cSIgA also allowed us to visualize and/or quantify C. difficile morphological changes and clumping events. Results reveal mechanisms by which SIgA combats C. difficile infection, demonstrate that cSIgA design can modulate these mechanisms, and demonstrate cSIgA's adaptability to modifications that might target a broad range of antigens and effector mechanisms.

5.
Int J Biol Macromol ; 244: 125146, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37271267

RESUMEN

Probiotic surface layer proteins (Slps) have multiple functions and bacterial adhesion to host cells is one of them. The precise role of Slps in cellular adhesion is not well understood due to its low native protein yield and self-aggregative nature. Here, we report the recombinant expression and purification of biologically active Slp of Lactobacillus helveticus NCDC 288 (SlpH) in high yield. SlpH is a highly basic protein (pI = 9.4), having a molecular weight of 45 kDa. Circular Dichroism showed a prevalence of beta-strands in SlpH structure and resistance to low pH. SlpH showed binding to human intestinal tissue, enteric Caco-2 cell line, and porcine gastric mucin, but not with fibronectin, collagen type IV and laminin. SlpH inhibited the binding of the enterotoxigenic E. coli by 70 % and 76 % and that of Salmonella Typhimurium SL1344 by 71 % and 75 % to enteric Caco-2 cell line in the exclusion and competition assays, respectively. The pathogen exclusion and competition activity and tolerance to harsh gastrointestinal conditions show the potential for developing SlpH as a prophylactic or therapeutic agent against enteric pathogens.


Asunto(s)
Lactobacillus helveticus , Probióticos , Animales , Humanos , Porcinos , Proteínas de la Membrana , Lactobacillus helveticus/genética , Escherichia coli , Células CACO-2 , Interacciones Microbiota-Huesped , Adhesión Bacteriana , Probióticos/metabolismo
6.
World J Microbiol Biotechnol ; 39(4): 108, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36856865

RESUMEN

The ability of isolated surface layer proteins (SLPs) to reassemble on suitable surfaces enables the application of SLPs in various fields of nanotechnology. In this work, SLPs from Lactobacillus buchneri BNCC 187,964 and L. kefir BNCC 190,565 were extracted and verified as glycosylated proteins. They were applied to coat on the surface of cationic liposomes. The absorption of the two SLPs on liposomes induced the zeta potential reduction and particle size increase. The two kinds of SLP-coated liposomes demonstrated better thermal, light and pH stability than the control liposomes. And the L. kefir SLP showed better protective effects than the L. buchneri SLP. Moreover, both of the SLPs could endow liposomes with the function of binding ferritin as observed by transmission electron microscope. Fourier transform infrared spectroscopy illustrated that the interaction between the two SLPs and liposomes was similar. The recrystallization of the two SLPs on the liposomes might drive the lipid into a higher order state and hydrogen bonds were formed between the two SLPs and the liposomes. All the findings demonstrated that L. kefir SLP and L. buchneri SLP had great potential to be explored as effective coating agents to improve the stability and function of cationic liposomes.Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.Yes, all have been checked.


Asunto(s)
Lactobacillus , Liposomas , Cationes , Glicoproteínas de Membrana
7.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36737423

RESUMEN

AIMS: Certain lactic acid bacteria (LAB) are known to have anti-inflammatory effects; however, hiochi bacteria, which are taxonomically classified as LAB and known to spoil a traditional Japanese alcoholic beverage, have not been studied in the same context. The aim of this study is to investigate the anti-inflammatory effects of hiochi bacteria strains and the underlying mechanisms. METHODS AND RESULTS: We screened 45 strains of hiochi bacteria for anti-inflammatory effects and found that Lentilactobacillus hilgardii H-50 strongly inhibits lipopolysaccharide (LPS)-induced secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 in mouse splenocytes. This inhibition is attributed to its specific surface layer proteins (SLPs), which directly bind to LPS. CONCLUSIONS: The L. hilgardii H-50 strain exerts anti-inflammatory effects through its SLPs.


Asunto(s)
Lipopolisacáridos , Bazo , Ratones , Animales , Lipopolisacáridos/farmacología , Bazo/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Antiinflamatorios/farmacología
8.
Food Chem ; 405(Pt B): 135021, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36436234

RESUMEN

The aim of this study was to explore the interaction mechanism between surface layer protein (SLP) and mannan at pH 3.0, 5.0 and 7.0 through multi-spectral methods combined with computer simulations. The fluorescence quenching data showed that SLP and mannan bound spontaneously to form complexes at all pH levels. In addition, molecular docking revealed that SLP had different binding sites to mannan at different pH, which mainly depended on hydrogen bonds and hydrophobic interactions. Molecular dynamics simulation results showed that the combination with mannan contributed to the stability of SLP structure. This study confirmed that the combination of SLP and mannan at pH 5.0 has higher binding affinity and more stable structure. The mechanism proposed in this study provides understanding underlying the interactions between SLP and mannan and insights for further exploration of the potential of SLP as a mannan transport carrier in fermented dairy products similar to TKM.


Asunto(s)
Mananos , Proteínas de la Membrana , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Concentración de Iones de Hidrógeno
9.
Access Microbiol ; 5(12)2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188235

RESUMEN

The phytopathogen Paracidovorax citrulli possesses an ortholog of a newly identified surface layer protein (SLP) termed NpdA but has not been reported to produce a surface layer (S-layer). This study had two objectives. First, to determine if P. citrulli formed an NpdA-based S-layer and, if so, assess the effects of S-layer formation on virulence, production of nanostructures termed nanopods, and other phenotypes. Second, to establish the distribution of npdA orthologs throughout the Pseudomonadota and examine selected candidate cultures for physical evidence of S-layer formation. Formation of an NpdA-based S-layer by P. citrulli AAC00-1 was confirmed by gene deletion mutagenesis (ΔnpdA), proteomics, and cryo-electron microscopy. There were no significant differences between the wild-type and mutant in virulence assays with detached watermelon fruit. Nanopods contiguous with S-layers of multiple biofilm cells were visualized by transmission electron microscopy. Orthologs of npdA were identified in 62 Betaproteobacteria species and 49 Gammaproteobacteria species. In phylogenetic analyses, NpdA orthologs largely segregated into distinct groups. Cryo-electron microscopy imaging revealed an NpdA-like S-layer in all but one of the 16 additional cultures examined. We conclude that NpdA represents a new family of SLP, forming an S-layer in P. citrulli and other Pseudomonadota. While the S-layer did not contribute to virulence in watermelon fruit, a potential role of the P. citrulli S-layer in another dimension of pathogenesis cannot be ruled out. Lastly, formation of cell-bridging nanopods in biofilms is a new property of S-layers; it remains to be determined if nanopods can mediate intercellular movement of materials.

10.
Front Microbiol ; 13: 998215, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312948

RESUMEN

Receptor-binding proteins (RBPs) are located at the viral tail and mediate the initial recognition of phage to a specific bacterial host. Phage RBPs have co-evolved with numerous types of host receptors resulting in the formation of a diverse assortment of cognate pairs of RBP-receptors that function during the phage attachment step. Although several Clostridioides difficile bacteriophages have been discovered, their RBPs are poorly described. Using homology analysis, putative prophage-tail structure (pts) genes were identified from the prophage genome of the C. difficile HN10 strain. Competition and enzyme-linked immunosorbent assays, using recombinant PtsHN10M, demonstrated the interaction of this Pts to C. difficile cells, suggesting a role as a phage RBP. Gel filtration and cross-linking assay revealed the native form of this protein as a homotrimer. Moreover, truncated variants indicated that the C-terminal domain of PtsHN10M was important for binding to C. difficile cells. Interaction of PtsHN10M was also observed to the low-molecular weight subunit of surface-layer protein A (SlpA), located at the outermost surface of C. difficile cells. Altogether, our study highlights the function of PtsHN10M as an RBP and potentially paves the way toward phage engineering and phage therapy against C. difficile infection.

11.
Microb Pathog ; 169: 105681, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35850375

RESUMEN

Clostridioides difficile is the leading cause of nosocomial diarrhea with high morbidity and mortality worldwide. C. difficile strains produce a crystalline surface layer protein A (SlpA), which is an absolute necessity for its pathogenesis. However, its pathogenic mechanisms and its pro-inflammatory behavior are not yet fully elucidated. Herein, we report for the first time that SlpA extracted from C. difficile can induce autophagy process in Caco-2 cells. SlpA protein was purified from two C. difficile strains (RT001 and ATCC 700075). The cell viability of Caco-2 cells after exposure with different concentrations (15, 20, 25 µg/mL) of SlpA at various time points (3, 6, 12, 24 h) was measured by MTT assay. Acridine orange staining was used to visualize the hypothetical acidic vesicular organelles. The gene expression of autophagy mediators including LC3B, Atg5, Atg16L, and Beclin-1 was determined by quantitative real-time PCR assay. Western blotting assay was used to detect the expression of LC3B protein. MTT assay showed that different concentrations of SlpA did not induce significant changes in the viability of Caco-2 cells. SlpA at concentration of 20 µg/mL enhanced the formation of acidic vesicular organelles in Caco-2 cells after 12 h of exposure. Moreover, SlpA treatment significantly increased the expression of autophagy-associated genes, and increased the expression of LC3B protein in Caco-2 cells. In conclusion, our study demonstrated that SlpA is capable to induce autophagy in intestinal epithelial cells. These findings reveal a novel mechanism for the pathogenesis of C. difficile mediated by its SLPs.


Asunto(s)
Clostridioides difficile , Autofagia , Proteínas Bacterianas/metabolismo , Células CACO-2 , Clostridioides difficile/clasificación , Clostridioides difficile/genética , Células Epiteliales/metabolismo , Humanos , Ribotipificación
12.
Int J Pharm ; 622: 121896, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35680108

RESUMEN

Liposome targeting by conjugation with specific ligands and cross-linking reagents is an attractive strategy for active drug delivery. Here, we demonstrated the potential of surface layer protein (Slp) B from Levilactobacillus brevis JCM 1059 as a specific ligand to antigen-presenting cells (APCs) in Peyer's patches. L. brevis JCM 1059 SlpB-coated liposomes (SlpB-LPs) showed higher resistance to various pH values and bile acids compared to non-coated liposomes (LPs). SlpB-LP showed a significantly higher uptake into dendritic cell-like differentiated THP-1 cells than LP did. The SlpB-LP-conjugated α-galactosylceramide (αGalCer) promoted the production of IL-12 (p40) and TNF-α by THP-1 cells. Furthermore, SlpB-LP showed significantly higher delivery efficiency into APCs underlaying microfold (M) cells in Peyer's patches after oral administration in BALB/c mice and enhanced IL-12 production when αGalCer was conjugated to SlpB-LP. In conclusion, the present study demonstrates the therapeutic potential of SlpB-coated LP to deliver immunomodulatory components to the gut immune system.


Asunto(s)
Liposomas , Ganglios Linfáticos Agregados , Animales , Células Presentadoras de Antígenos , Interleucina-12 , Lipopolisacáridos/metabolismo , Liposomas/metabolismo , Ratones , Receptores Fc
13.
Food Res Int ; 157: 111445, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35761685

RESUMEN

Cellular components, surface layer protein (SLP) and exopolysaccharides (EPS) of postbiotic lactic bacteria (PLAB) can rehabilitate high-fat diet-induced dysbiosis and obese characteristic gut microbiome. However, it is not clear whether and how PLAB components affect gut microbiota and specifically adipocyte gene expression. Furthermore, SLP and EPS of PLAB in combination with polyphenolics of prebiotic wine grape seed flour (GSF) may have greater benefit on high-fat diet (HFD)-induced obesity and gut microbiota imbalance. To investigate interactions, C57BL/6 mice were fed a HFD and orally administered saline (CON), 250 mg/Kg EPS, or 120 mg/Kg SLP or saline with fed 2% GSF (GSF) or combination (42 mg/Kg EPS + 20 mg/Kg SLP + 0.5% GSF; ALL). There were significant reductions of HFD-induced body weight gain, adipose weight, serum triglyceride, and insulin resistance by the SLP and ALL diets compared to CON, with the most profound effect by ALL. ALL significantly affected the distribution of intestinal bacterial genus and species particularly those involved in production of short chain fatty acid (SCFA) and anti-obesogenic action. Microarray analysis from adipose tissue showed that ALL significantly affected expression of genes related to fatty acid biosynthesis, autophagy, inflammatory response, immune response, brown adipose tissue development and response to lipoteichoic acid and peptidoglycan (p < 0.05). Interestingly, expression of Akp13 (A-kinase anchoring protein 13) gene, which is related to body mass index and immune response, was negatively associated with the abundance of obesogenic and SCFAs producing gut bacteria. These data suggest that a combination of postbiotic kefir LAB cellular components and prebiotic GSF establishes a healthy intestinal microbiota that in part was associated with the prevention of obesity and obesity-related diseases.


Asunto(s)
Microbioma Gastrointestinal , Kéfir , Lactobacillales , Animales , Dieta Alta en Grasa/efectos adversos , Kéfir/microbiología , Ratones , Ratones Endogámicos C57BL , Obesidad/prevención & control , Prebióticos
14.
Probiotics Antimicrob Proteins ; 14(2): 360-371, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35066819

RESUMEN

The probiotic extracellular matrix components (ECM) have been considered as an important factor in eliciting the beneficial roles of the bacteria. The study involved the growth phase-dependent extraction of the surface layer protein (SLP) and cell-bound exopolysaccharide (EPS-b) from novel Limosilactobacillus fermentum (MTCC 5898). Both SLP and EPS-b were optimally extracted at the late logarithmic phase of the bacteria upon 8 h of incubation. Furthermore, the adhesive, immunomodulatory, and anti-oxidative potential of the extracted components were evaluated using in vitro models. The major role of SLP was evidenced on bacterial adhesion to mucin and was related to its hydrophobic character. Under in vitro conditions, no effect of SLP and EPS-b was observed on the proliferation of murine splenocytes; however, both the components stimulated the phagocytosis of murine peritoneal macrophages at varying concentrations. Furthermore, all the components exhibited strong radical scavenging, chelating, and reducing potential with increasing concentration. Therefore, the ECM components of L. fermentum exhibited a variable biofunctional effect, providing crucial information to enable its further use as functional foods and overcome the challenges posed by probiotics.


Asunto(s)
Limosilactobacillus fermentum , Probióticos , Animales , Bacterias , Adhesión Bacteriana , Limosilactobacillus fermentum/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Probióticos/metabolismo
15.
Int J Biol Macromol ; 201: 254-261, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34952095

RESUMEN

In this study, the surface layer protein (SLP) from Lactobacillus kefiri HBA20 was characterized. The SLP was extracted by 5M LiCl. The molecular mass of the SLP was approximately 64 kDa as analyzed via SDS-PAGE. The surface morphology and the adhesion potential of L. kefiri HBA20 in the absence and presence of SLP were measured by AFM. Moreover, the protein secondary structure was evaluated by using circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR), respectively. SLP had high ß-sheet contents and low content of α-helix. Thermal analysis of SLP of Lactobacillus kefiri HBA20 exhibited one transition peak at 129.64 °C. Furthermore, SEM measurements were showed that after the SLP were removed from the cell surface, the coaggregation ability with Saccharomyces cerevisiae Y8 of the strain was significantly reduced. In conclusion, the SLP of Lactobacillus kefiri HBA20 has a stable structure and the ability of adhesion to yeast. Molecular docking study revealed that mannan bind with the hydrophobic residues of SLP. Our results will help further understanding of the new surface layer protein and the interaction between L. kefiri and S. cerevisiae.


Asunto(s)
Proteínas de la Membrana , Saccharomyces cerevisiae , Lactobacillus , Glicoproteínas de Membrana/química , Simulación del Acoplamiento Molecular
16.
J Agric Food Chem ; 69(50): 15157-15164, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34882385

RESUMEN

The antiobesity action of nonviable probiotic lactic acid bacteria (PLAB) may be attributed to bacterial cellular components recognized by host cells. The anti-inflammation and antiobesity properties of surface layer proteins (SLPs) that are cellular components isolated from kefir PLAB were determined in macrophage RAW 264.7 cells and obese mice. Kefir SLPs significantly decreased secretion of IL-6 and production of NF-kB p65 protein by LPS-stimulated RAW 264.7 cells in a dose-response manner. C57BL/6J mice were fed a high-fat (HF) diet with oral administration of either saline (CON) or kefir SLPs for 6 weeks. SLPs significantly improved body weight gain and adipose tissue weight, plasma triglyceride concentrations, and insulin resistance. Profiling of adipocyte gene expression showed that the antiobesity effect was significantly related to the expression of genes associated with adipogenesis, autophagy, and inflammatory/immune response, and fatty acid oxidation. Taken together, SLPs are a novel bioactive component in kefir PLABs to target obesity and obesity-related disorders.


Asunto(s)
Kéfir , Lactobacillales , Tejido Adiposo , Animales , Dieta Alta en Grasa/efectos adversos , Inflamación/genética , Lactobacillales/genética , Glicoproteínas de Membrana , Ratones , Ratones Endogámicos C57BL , Obesidad/genética
17.
Int J Biol Macromol ; 183: 457-462, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33933546

RESUMEN

Surface layer proteins (SLPs) are crystalline arrays in the outermost layer of cell envelope in many archaea and bacteria. SLPs subunits have the ability to reassemble on the surface of lipid layers. In this work, the SLP from Lactobacillus acidophilus ATCC 4356 was extracted and reassembled on the surface of positively charged liposomes composed of dipalmitoyl phosphatidylcholine, cholesterol and octadecylamine. Zeta potentials and particle size were determined to describe the adsorption process of SLP on liposomes. The liposomes completely coated with SLP were observed by transmission electron microscope. To investigate the stabilizing effects of SLP on liposomes, carboxyfluorescein (CF) was encapsulated and its leakage was determined as an evaluation index. The results showed that the L. acidophilus ATCC 4356 SLP significantly (P < 0.05) increased the stability of the liposomes in the course of thermal challenge. Furthermore, SLP was able to reduce the aggregation of liposomes in serum. Storage stability of liposomes was performed at 25 °C, 4 °C and -20 °C for 90 days. And the SLP-coated liposomes released less CF than the control liposomes during storage at the three evaluated temperatures. Our findings extended the application field of Lactobacillus SLPs and introduced a novel nanocarrier system with good chemical stability.


Asunto(s)
Proteínas Bacterianas/química , Lactobacillus acidophilus , Lípidos/química , Tensoactivos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Aminas/química , Proteínas Bacterianas/aislamiento & purificación , Colesterol/química , Lactobacillus acidophilus/metabolismo , Liposomas , Nanopartículas , Propiedades de Superficie , Tensoactivos/aislamiento & purificación , Temperatura , Factores de Tiempo
18.
Appl Microbiol Biotechnol ; 105(10): 4269-4284, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33990856

RESUMEN

Enterococcus faecium WEFA23 was previously found effectively against adherence and colonization of Listeria monocytogenes CMCC54007, which might be closely related to its surface layer protein (SLP). In this study, the protective of SLP of E. faecium WEFA23 against infection of L. monocytogenes CMCC54007 was systemically investigated. In vitro assay showed that SLP actively inhibited L. monocytogenes internalization into Caco-2 cell line, with decreasing mRNA level of pro-inflammation cytokines and virulence factors and restoring destroyed intestinal barrier. In vivo assay through excluding SLP of E. faecium WEFA23 by 5 M LiCl represented that SLP increased body weight, reduced mortality and cell counts of L. monocytogenes CMCC54007 in tissues of mice. Further researches showed that SLP protected against L. monocytogenes CMCC54007 infection by modulation of intestinal permeability and immunity, namely, it decreased fluorescein isothiocyanate (FITC)-Dextran in serum, ameliorated destroyed colon structure, and increased number of goblet cells and protein level of TJ protein (Claudin-1, Occludin, and ZO-1) in colon. For immunity, SLP decreased number of CD4+ and CD8+ T cells in liver, mRNA level, and content of pro-inflammatory factors IL-6, IL-1ß, IFN-γ ,TNF-α, and NO, and restored the structure of liver and spleen. Key Points•SLP of E. faecium inhibited L. monocytogenes internalization and colonization•SLP of E. faecium ameliorated host intestinal barrier dysfunction•SLP of E. faecium decreased pro-inflammatory cytokines and cells.


Asunto(s)
Enterococcus faecium , Listeria monocytogenes , Listeriosis , Animales , Linfocitos T CD8-positivos , Células CACO-2 , Humanos , Listeriosis/prevención & control , Proteínas de la Membrana , Ratones , Permeabilidad
19.
mSystems ; 6(2)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758029

RESUMEN

The bacterial extracellular matrix forms autonomously, giving rise to complex material properties and multicellular behaviors. Synthetic matrix analogues can replicate these functions but require exogenously added material or have limited programmability. Here, we design a two-strain bacterial system that self-synthesizes and structures a synthetic extracellular matrix of proteins. We engineered Caulobacter crescentus to secrete an extracellular matrix protein composed of an elastin-like polypeptide (ELP) hydrogel fused to supercharged SpyCatcher [SC(-)]. This biopolymer was secreted at levels of 60 mg/liter, an unprecedented level of biomaterial secretion by a native type I secretion apparatus. The ELP domain was swapped with either a cross-linkable variant of ELP or a resilin-like polypeptide, demonstrating this system is flexible. The SC(-)-ELP matrix protein bound specifically and covalently to the cell surface of a C. crescentus strain that displays a high-density array of SpyTag (ST) peptides via its engineered surface layer. Our work develops protein design guidelines for type I secretion in C. crescentus and demonstrates the autonomous secretion and assembly of programmable extracellular protein matrices, offering a path forward toward the formation of cohesive engineered living materials.IMPORTANCE Engineered living materials (ELM) aim to mimic characteristics of natural occurring systems, bringing the benefits of self-healing, synthesis, autonomous assembly, and responsiveness to traditional materials. Previous research has shown the potential of replicating the bacterial extracellular matrix (ECM) to mimic biofilms. However, these efforts require energy-intensive processing or have limited tunability. We propose a bacterially synthesized system that manipulates the protein content of the ECM, allowing for programmable interactions and autonomous material formation. To achieve this, we engineered a two-strain system to secrete a synthetic extracellular protein matrix (sEPM). This work is a step toward understanding the necessary parameters to engineering living cells to autonomously construct ELMs.

20.
Biochem Biophys Res Commun ; 546: 15-20, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33561743

RESUMEN

Escherichia coli and Salmonella are common pathogenic bacteria in human intestine, which can infect epithelial cells and cause diseases. Adhesion to intestinal tissue is the first step of pathogen infection. This work was to investigate the protective function of surface layer protein (SLP) from Lactobacillus casei fb05 against the harmful effects of E. coli and Salmonella on intestinal tissue (collagen and HT-29 cells). The SLP of L. casei fb05 was identified by transmission electron microscopy and SDS-PAGE. The purified SLP could reduce the adhesion of E. coli and Salmonella to collagen and HT-29 cells as observed by light microscope. The flow cytometry results showed that the L. casei fb05 SLP decreased the two pathogens-induced apoptosis of HT-29 cells by about 45%-49%. In addition, the activation of caspase-9 and caspase-3 caused by the two pathogens was significantly declined by the interference of the L. casei fb05 SLP. All the findings demonstrated that the L. casei fb05 SLP could decrease the deleterious effects of E. coli and Salmonella on intestinal tract in two ways: reducing pathogen adhesion and inhibiting pathogen-induced apoptosis. The potential of L. casei fb05 SLP in the treatment of intestinal diseases might be explored in this work.


Asunto(s)
Escherichia coli/patogenicidad , Intestinos/microbiología , Lacticaseibacillus casei/metabolismo , Glicoproteínas de Membrana/metabolismo , Salmonella typhimurium/patogenicidad , Apoptosis , Adhesión Bacteriana , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Colágeno/metabolismo , Células HT29 , Humanos , Factores Protectores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA