Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
1.
Rev Cardiovasc Med ; 25(8): 295, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39228481

RESUMEN

This review summarises the data from long-term experimental studies and literature data on the role of oxidatively modified low-density lipoproteins (LDL) in atherogenesis and diabetogenesis. It was shown that not "oxidized" (lipoperoxide-containing) LDL, but dicarbonyl-modified LDL are atherogenic (actively captured by cultured macrophages with the help of scavenger receptors), and also cause expression of lectin like oxidized low density lipoprotein receptor 1 (LOX-1) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (NOX-1) genes in endotheliocytes, which stimulate apoptosis and endothelial dysfunction. The obtained data allowed us to justify new approaches to pharmacotherapy of atherosclerosis and diabetes mellitus.

2.
PeerJ ; 12: e17849, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39131625

RESUMEN

The physiological activity facilitated by arbuscular mycorrhizal fungi (AMF) contributes to plants' ability to tolerate drought. Nevertheless, it is unclear if AMF colonization affects the expression of genes in the host plant that encode antioxidant enzymes in the superoxide dismutase (SOD) family, which help alleviate drought stress in plants. Here, we conducted a pot trial to determine whether colonization by the AMF Rhizophagus irregularis improves drought resistance in Bombax ceiba. We comprehensively analyzed the SOD gene family and evaluated genome-wide expression patterns of SODs and SOD activity in AMF-colonized and non-mycorrhizal plants under simulated drought. We identified a total of 13 SODs in the genome of B. ceiba, including three FeSODs (BcFSDs), three MnSODs (BcMSDs), and seven Cu/ZnSODs (BcCSDs). Phylogenetic analysis based on binding domain revealed that SOD genes from B. ceiba and various other plant species can be divided into three separate groups, showing significant bootstrap values. Our examination of gene composition and patterns suggests that most BcSOD genes in these three subgroups are significantly conserved. Additionally, it was noted that hormones and stress-responsive cis-regulatory elements were found in all BcSOD promoters. Expression profiling by qRT-PCR demonstrated that AMF increased relative expression levels of Cu/Zn-SODs in both roots and shoots under drought stress, except for BcCSD3 in roots. Furthermore, AMF colonization increased the relative expression of BcMSD1a and BcMSD1b in roots, augmenting SOD activities and increasing ROS scavenging during drought. In general, this work offers molecular evidence in support of the beneficial effect of AMF colonization on drought tolerance in B. ceiba. It also elucidates the expression patterns of SOD genes, which will support efforts to optimize mycorrhizal seedling cultivation under stressful conditions.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Micorrizas , Superóxido Dismutasa , Micorrizas/fisiología , Micorrizas/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Filogenia , Estrés Fisiológico/genética , Raíces de Plantas/microbiología , Raíces de Plantas/genética , Familia de Multigenes/genética , Resistencia a la Sequía , Hongos
3.
BMC Plant Biol ; 24(1): 716, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39060949

RESUMEN

BACKGROUND: Superoxide dismutase (SOD) can greatly scavenge reactive oxygen species (ROS) in plants. SOD activity is highly related to plant stress tolerance that can be improved by overexpression of SOD genes. Identification of SOD activity-related loci and potential candidate genes is essential for improvement of grain quality in wheat breeding. However, the loci and candidate genes for relating SOD in wheat grains are largely unknown. In the present study, grain SOD activities of 309 recombinant inbred lines (RILs) derived from the 'Berkut' × 'Worrakatta' cross were assayed by photoreduction method with nitro-blue tetrazolium (NBT) in four environments. Quantitative trait loci (QTL) of SOD activity were identified using inclusive composite interval mapping (ICIM) with the genotypic data of 50 K single nucleotide polymorphism (SNP) array. RESULTS: Six QTL for SOD activity were mapped on chromosomes 1BL, 4DS, 5AL (2), and 5DL (2), respectively, explaining 2.2 ~ 7.4% of the phenotypic variances. Moreover, QSOD.xjau-1BL, QSOD.xjau-4DS, QSOD.xjau-5 A.1, QSOD.xjau-5 A.2, and QSOD.xjau-5DL.2 identified are likely to be new loci for SOD activity. Four candidate genes TraesCS4D01G059500, TraesCS5A01G371600, TraesCS5D01G299900, TraesCS5D01G343100LC, were identified for QSOD.xjau-4DS, QSOD.xjau-5AL.1, and QSOD.xjau-5DL.1 (2), respectively, including three SOD genes and a gene associated with SOD activity. Based on genetic effect analysis, this can be used to identify desirable alleles and excellent allele variations in wheat cultivars. CONCLUSION: These candidate genes are annotated for promoting SOD production and inhibiting the accumulation of ROS during plant growth. Therefore, lines with high SOD activity identified in this study may be preferred for future wheat breeding.


Asunto(s)
Sitios de Carácter Cuantitativo , Superóxido Dismutasa , Triticum , Triticum/genética , Triticum/enzimología , Sitios de Carácter Cuantitativo/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Mapeo Cromosómico , Polimorfismo de Nucleótido Simple , Genes de Plantas , Grano Comestible/genética , Fenotipo
4.
Mol Neurobiol ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060907

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an unknown pathogenesis. It has been reported that mutations in the gene for Cu/Zn superoxide dismutase (SOD1) cause familial ALS. Mutant SOD1 undergoes aggregation and forms amyloid more easily, and SOD1-immunopositive inclusions have been observed in the spinal cords of ALS patients. Because of this, SOD1 aggregation is thought to be related to the pathogenesis of ALS. Some core regions of amyloid have been identified, but the issue of whether these regions form aggregates in living cells remains unclear, and the mechanism responsible for intracellular SOD1 aggregation also remains unclear. The findings reported in this study indicate that the aggregation of the ALS-linked mutant SOD1-EGFP was significantly enhanced when the BioID2 gene was fused to the N-terminus of the mutant SOD1-EGFP plasmid for cellular expression. Expression of a series of BioID2-(C-terminal deletion peptides of SOD1)-EGFP permitted us to identify 1-35 as a minimal N-terminal sequence and Ile35 as an essential amino acid residue that contributes to the intracellular aggregation of SOD1. The findings also showed that an additional substitution of Ile35 with Ser into the ALS mutant SOD1 resulted in the significant suppression of aggregate formation. The fact that no Ile35 mutations have been reported to date in ALS patients indicates that all ALS mutant SOD1s contain Ile35. Taken together, we propose that Ile35 plays a pivotal role in the aggregation of the ALS-linked SOD1 and that this study will contribute to our understanding of the mechanism responsible for SOD1 aggregation.

5.
Antioxidants (Basel) ; 13(3)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38539848

RESUMEN

The transcription factor WRKY53 of the model plant Arabidopsis thaliana is an important regulator of leaf senescence. Its expression, activity and degradation are tightly controlled by various mechanisms and feedback loops. Hydrogen peroxide is one of the inducing agents for WRKY53 expression, and a long-lasting intracellular increase in H2O2 content accompanies the upregulation of WRKY53 at the onset of leaf senescence. We have identified different antioxidative enzymes, including catalases (CATs), superoxide dismutases (SODs) and ascorbate peroxidases (APXs), as protein interaction partners of WRKY53 in a WRKY53-pulldown experiment at different developmental stages. The interaction of WRKY53 with these enzymes was confirmed in vivo by bimolecular fluorescence complementation assays (BiFC) in Arabidopsis protoplasts and transiently transformed tobacco leaves. The interaction with WRKY53 inhibited the activity of the enzyme isoforms CAT2, CAT3, APX1, Cu/ZuSOD1 and FeSOD1 (and vice versa), while the function of WRKY53 as a transcription factor was also inhibited by these complex formations. Other WRKY factors like WRKY18 or WRKY25 had no or only mild inhibitory effects on the enzyme activities, indicating that WRKY53 has a central position in this crosstalk. Taken together, we identified a new additional and unexpected feedback regulation between H2O2, the antioxidative enzymes and the transcription factor WRKY53.

6.
Mol Biol Rep ; 51(1): 287, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329621

RESUMEN

BACKGROUND: Cervical Cancer (CC), a leading cause of female mortality worldwide, demonstrates a direct association with high-risk human papillomavirus (HPV) infections. However, not all CC patients exhibit HPV infection, suggesting additional predisposing factors. Recently, disturbances in the oxidant-antioxidant balance have been implicated in CC development. This study explores the impact of gold nanoparticles (AuNPs) on the survival and antioxidant capacity of HeLa cells, aiming to contribute to novel CC therapy approaches. METHODS AND RESULTS: Synthesized and characterized AuNPs (25.5 nm, uniform distribution according to the DLS analysis) were administered to HeLa cells at varying concentrations. After 24 h, cell viability was assessed using the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H-tetrazolium bromide) (MTT) assay. Real-time PCR measured expression levels of apoptosis-related genes (BCL2 associated X (BAX) and p53). Catalase and superoxide dismutase (SOD) activities, key antioxidant enzymes, were also evaluated post-AuNP treatment. AuNPs dose-dependently reduced HeLa cell viability, with an IC50 value of 113 µg/ml. BAX gene expression significantly increased, indicating pro-apoptotic effects. Moreover, enzyme activities significantly rose under AuNP influence. CONCLUSIONS: AuNPs demonstrated the potential to induce HeLa cell death by upregulating pro-apoptotic BAX gene expression and altering antioxidant system enzyme activities. These findings underscore the promise of AuNPs as a therapeutic avenue for CC, emphasizing their impact on crucial cellular processes involved in cancer progression.


Asunto(s)
Nanopartículas del Metal , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/genética , Oro/farmacología , Antioxidantes , Células HeLa , Proteína X Asociada a bcl-2/genética
7.
J Cell Mol Med ; 28(1): e18015, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37938877

RESUMEN

Insulin resistance is a significant contributor to the development of type 2 diabetes (T2D) and is associated with obesity, physical inactivity, and low maximal oxygen uptake. While intense and prolonged exercise may have negative effects, physical activity can have a positive influence on cellular metabolism and the immune system. Moderate exercise has been shown to reduce oxidative stress and improve antioxidant status, whereas intense exercise can increase oxidative stress in the short term. The impact of exercise on pro-inflammatory cytokine production is complex and varies depending on intensity and duration. Exercise can also counteract the harmful effects of ageing and inflamm-ageing. This review aims to examine the molecular pathways altered by exercise in non-obese individuals at higher risk of developing T2D, including glucose utilization, lipid metabolism, mitochondrial function, inflammation and oxidative stress, with the potential to improve insulin sensitivity. The focus is on understanding the potential benefits of exercise for improving insulin sensitivity and providing insights for future targeted interventions before onset of disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Obesidad/metabolismo , Antioxidantes/metabolismo , Estrés Oxidativo , Ejercicio Físico , Insulina/metabolismo
8.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1011455

RESUMEN

ObjectiveTo investigate the clinical efficacy of Huangqi injection combined with Buzhong Yiqi acupuncture in the treatment of chronic fatigue syndrome (CFS) with Qi deficiency and its effects on TCM syndromes, fatigue symptoms, serum superoxide dismutase (SOD), malondialdehyde (MDA), and oxidized low-density lipoprotein (ox-LDL) levels. MethodA total of 200 patients with CFS of Qi deficiency were randomly divided into a control group (100 cases) and an observation group (100 cases). The control group was treated with vitamin B compounds, and the observation group was treated with Huangqi injection combined with Buzhong Yiqi acupuncture for two weeks. The scores of TCM syndromes, fatigue symptoms, levels of serum SOD, MDA, and ox-LDL and the incidence of adverse reactions were observed and compared before and after treatment in two groups. ResultAfter treatment, the total effective rate of the control group was 54.34% (50/92), while that of the observation group was 88.54% (85/96). The total effective rate of the observation group was higher than that of the control group (χ2=27.13,P<0.05). Compared with those in the two groups before treatment, scores of fatigue self-assessment scale (FSAS), physical fatigue and mental fatigue, and sleep/rest response scores of fatigue in the two groups after treatment were significantly decreased (P<0.05). After treatment, scores of FSAS, physical fatigue and mental fatigue, and sleep/rest response scores of fatigue in the observation group were significantly decreased compared with those in the control group (P<0.05). Compared with those in the two groups before treatment, TCM syndrome scores in the two groups after treatment were significantly decreased (P<0.05). After treatment, TCM syndrome scores in the observation group were significantly decreased compared with those in the control group (P<0.05). Compared with those in the two groups before treatment, MDA levels in the two groups were significantly decreased (P<0.05), ox-LDL levels in the observation group were significantly decreased (P<0.05), and SOD levels were significantly increased (P<0.05). After treatment, compared with those in the control group, the serum MDA and ox-LDL levels in the observation group were significantly decreased (P<0.05), and the serum SOD was significantly increased (P<0.05). No serious adverse events or adverse reactions occurred during this clinical trial. ConclusionHuangqi injection combined with Buzhong Yiqi acupuncture has a good clinical curative effect in the treatment of CFS with Qi deficiency, which can effectively improve the fatigue symptoms of patients, increase the level of SOD, and reduce the level of serum MDA and ox-LDL. It is related to the production of antioxidants, inhibiting the production of lipid peroxides, and improving the body's ability to resist oxidative stress.

9.
Mol Cell Biochem ; 479(3): 693-705, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37166541

RESUMEN

Over the past few years, the prevalence of neurodegenerative diseases (NDD) has increased dramatically. The community health system is burdened by the high healthcare costs associated with NDD. Superoxide dismutase (SOD) is a type of metalloenzyme that possesses a distinct characteristic of protecting the body from oxidative stress through antioxidants. In this way, SOD supplementation may activate the endogenous antioxidant mechanism in various pathological conditions and could be used to neutralize free radical excess. Several factors are responsible for damaging DNA and RNA in the body, including the overproduction of reactive species, particularly reactive oxygen species (ROS) and reactive nitrogen species (RNS). Excessive ROS/RNS have deleterious effects on mitochondria and their metabolic processes, mainly through increased mitochondrial proteins, lipids and DNA oxidation. Studies have shown that oxidative stress is implicated in the etiology of many diseases, including NDD. It is thought that anti-inflammatory compounds, particularly phytochemicals, can interfere with these pathways and regulate inflammation. Extensive experimental and clinical research has proven that curcumin (Cur) has anti-inflammatory and anti-neurologic properties. In this review, we have compiled the available data on Cur's anti-inflammatory properties, paying special attention to its therapeutic impact on NDD through SOD.


Asunto(s)
Curcumina , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/metabolismo , Curcumina/farmacología , Curcumina/uso terapéutico , ADN/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
10.
Healthcare (Basel) ; 11(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37998419

RESUMEN

This article explores the correlation between salivary biomarkers, such as glutathione peroxidase (GPX), total antioxidant capacity (TAC), and superoxide dismutase (SOD), and their association with oral health for children in competitive sports. Saliva has emerged as a valuable resource for evaluating physiological and pathological conditions due to its non-invasive collection method and easy storage. This study examines the potential of GPX, TAC, and SOD as salivary biomarkers for assessing the impact of competitive sports on children's oral health. It discusses the potential implications of increased oxidative stress due to intense physical activity and the role of antioxidant defense mechanisms in maintaining oral health. In total, 173 children aged between 6 and 17 were divided into three groups, 58 hockey players, 55 football players, and 60 in the control group, and examined to assess their oral hygiene and dental and periodontal health. Saliva was collected, centrifuged, and the supernatant was analyzed for the relevant biomarkers. The findings seem to suggest that salivary biomarkers, like GPX, TAC, and SOD, might serve as indicators of the physiological response to competitive sports in children, as well as indicators of oral health, especially dental cavities, and periodontal disease. Statistical analysis showed significant differences between the groups, with better values for athletes, regardless of age, sex, or activity type. Understanding the relationship between salivary biomarkers and competitive sports in children can have significant implications for monitoring and optimizing the health and performance of young athletes. Further research is needed to establish the specific associations between these biomarkers and the effects of several types and intensities of sports activities on oral health in children.

11.
Bioinformation ; 19(6): 729-738, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37885788

RESUMEN

Parkinson's disease (PD) is a neurological condition that worsens with age (i.e., 1% of people over 65) with no permanent cure. Hence, finding a disease-modifying agent with fewer undesirable side effects is urgently needed. Parkinson's disease (PD) pathology results in the degeneration of dopaminergic (DAergic) neurons by accumulating lewy bodies, alpha-synuclein (-syn), lowering anti-oxidants, increasing neuronal inflammation, and altering neuron shape. A well-researched natural substance called Withania somnifera (WS) has a potent anti-oxidative, anti-inflammatory, and anti-neurodegenerative impact. WS, sometimes called as Indian Ginseng, is a subtropical undershrub of the Solanaceae family together with Ashwagandha. In the current work, EWSR's anti-inflammatory and neuroprotective efficacy was assessed in relation to rotenone-induced oxidative stress (i.e., LPO, CAT, and SOD and GSH), microglial activation, and neurodegeneration in the rotenone rat PD model. In ROT-induced brains, EWSR therapy resulted in a considerable decrease in LPO and increased levels of the antioxidants SOD, CAT, and GSH. Furthermore, our research showed that the intraperitoneal treatment of EWSR (40 mg/kg) in rotenone-induced rats reduced microglial activation and neuron loss in the substantia nigra (SN) and hippocampus caused by rotenone-induced neurotoxicity. Based on the observations, EWSR can be considered as an excellent source for neuroprotection, due to its significant anti-oxidative, anti-inflammatory, anti-neurodegenerative and anti-microglial properties when administered individually and in combination with known anti-inflammatory compounds (Doxycycline and Ellagic acids). But, further research is required before replacing the known neuroprotective treatments with phytochemical treatments.

12.
Biology (Basel) ; 12(10)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37887052

RESUMEN

In New Zealand, during the hottest periods of the year, some salmon farms in the Marlborough Sounds reach water temperatures above the optimal range for Chinook salmon. High levels of mortality are recorded during these periods, emphasising the importance of understanding thermal stress in this species. In this study, the responses of Chinook salmon (Oncorhynchus tshawytscha) to chronic, long-term changes in temperature and dissolved oxygen were investigated. This is a unique investigation due to the duration of the stress events the fish were exposed to. Health and haematological parameters were analysed alongside gene expression results to determine the effects of thermal stress on Chinook salmon. Six copies of heat shock protein 90 (HSP90) were discovered and characterised: HSP90AA1.1a, HSP90AA1.2a, HSP90AA1.1b, HSP90AA1.2b, HSP90AB1a and HSP90AB1b, as well as two copies of SOD1, named SOD1a and SOD1b. The amino acid sequences contained features similar to those found in other vertebrate HSP90 and SOD1 sequences, and the phylogenetic tree and synteny analysis provided conclusive evidence of their relationship to other vertebrate HSP90 and SOD1 genes. Primers were designed for qPCR to enable the expression of all copies of HSP90 and SOD1 to be analysed. The expression studies showed that HSP90 and SOD1 were downregulated in the liver and spleen in response to longer term exposure to high temperatures and lower dissolved oxygen. HSP90 was also downregulated in the gill; however, the results for SOD1 expression in the gill were not conclusive. This study provides important insights into the physiological and genetic responses of Chinook salmon to temperature and oxygen stress, which are critical for developing sustainable fish aquaculture in an era of changing global climates.

13.
Molecules ; 28(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37687161

RESUMEN

Alzheimer's (AD) and Parkinson's diseases (PD) are multifactorial neurogenerative disorders of the Central Nervous System causing severe cognitive and motor deficits in elderly people. Because treatment of AD and PD by synthetic drugs alleviates the symptoms often inducing side effects, many studies have aimed to find neuroprotective properties of diet polyphenols, compounds known to act on different cell signaling pathways. In this article, we analyzed the effect of polyphenols obtained from the agro-food industry waste of Citrus limon peel (LPE) on key enzymes of cholinergic and aminergic neurotransmission, such as butyryl cholinesterase (BuChE) and monoamine oxidases (MAO)-A/B, on Aß1-40 aggregation and on superoxide dismutase (SOD) 1/2 that affect oxidative stress. In our in vitro assays, LPE acts as an enzyme inhibitor on BuChE (IC50 ~ 73 µM), MAO-A/B (IC50 ~ 80 µM), SOD 1/2 (IC50 ~ 10-20 µM) and interferes with Aß1-40 peptide aggregation (IC50 ~ 170 µM). These results demonstrate that LPE behaves as a multitargeting agent against key factors of AD and PD by inhibiting to various extents BuChE, MAOs, and SODs and reducing Aß-fibril aggregation. Therefore, LPE is a promising candidate for the prevention and management of AD and PD symptoms in combination with pharmacological therapies.


Asunto(s)
Citrus , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Enfermedades Neurodegenerativas/tratamiento farmacológico , Superóxido Dismutasa , Monoaminooxidasa , Colinesterasas , Superóxido Dismutasa-1 , Extractos Vegetales/farmacología
14.
Metabolites ; 13(9)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37755272

RESUMEN

Environmental stressors such as high temperature and intense light have been shown to have negative effects on plant growth and productivity. To survive in such conditions, plants activate several stress response mechanisms. The synergistic effect of high-temperature and intense light stress has a significant impact on ginger, leading to reduced ginger production. Nevertheless, how ginger responds to this type of stress is not yet fully understood. In this study, we examined the phenotypic changes, malonaldehyde (MDA) content, and the response of four vital enzymes (superoxide dismutase (SOD), catalase (CAT), lipoxygenase (LOX), and nitrate reductase (NR)) in ginger plants subjected to high-temperature and intense light stress. The findings of this study indicate that ginger is vulnerable to high temperature and intense light stress. This is evident from the noticeable curling, yellowing, and wilting of ginger leaves, as well as a decrease in chlorophyll index and an increase in MDA content. Our investigation confirms that ginger plants activate multiple stress response pathways, including the SOD and CAT antioxidant defenses, and adjust their response over time by switching to different pathways. Additionally, we observe that the expression levels of genes involved in different stress response pathways, such as SOD, CAT, LOX, and NR, are differently regulated under stress conditions. These findings offer avenues to explore the stress mechanisms of ginger in response to high temperature and intense light. They also provide interesting information for the choice of genetic material to use in breeding programs for obtaining ginger genotypes capable of withstanding high temperatures and intense light stress.

15.
Cancer Epidemiol ; 87: 102455, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37748209

RESUMEN

BACKGROUND: Superoxide dismutase (SOD) is an antioxidant enzyme that degrades superoxide, a major causative factor in carcinogenesis. We assessed associations between serum SOD activities and incidence of colorectal carcinoma (CRC) in a case-control study nested in the Japan Collaborative Cohort (JACC) study. METHODS: At baseline, 39,242 subjects donated serum samples. Participants diagnosed with CRC during follow-up were regarded as cases. Odds ratios (ORs) for CRC incidence associated with SOD were evaluated with conditional logistic regression models. In the current study, 176 cases and 524 controls were analyzed. RESULTS: For the overall cohort, a decreasing trend in risk of CRC with increasing SOD was observed (P for trend=0.054) and the fourth quartile of SOD level showed the lowest risk compared to the first (OR=0.52, 95% confidence interval [CI]=0.29-0.93). This was significant in men (P for trend=0.001), with the fourth quartile of SOD level showing the lowest risk compared to the first (OR, 0.23; 95%CI, 0.09-0.60). It was also exclusively observed for rectal cancer and left-sided CRC (P for trend, 0.037 and 0.020, respectively), with the fourth quartile again showing the lowest risk compared to the first (OR, 0.28 and 0.38; 95%CI, 0.09-0.84 and 0.16-0.91, respectively). Limiting subjects to those followed-up over 2 years, all trends remained unchanged. CONCLUSIONS: Our findings suggest that serum SOD activity correlates inversely with risk of CRC, particularly in men and individuals with rectal cancer/left-sided CRC.


Asunto(s)
Neoplasias Colorrectales , Neoplasias del Recto , Masculino , Humanos , Incidencia , Estudios de Casos y Controles , Factores de Riesgo , Superóxido Dismutasa , Neoplasias Colorrectales/epidemiología
16.
J Zhejiang Univ Sci B ; 24(7): 602-616, 2023 May 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37455137

RESUMEN

Blueberries are rich in phenolic compounds including anthocyanins which are closely related to biological health functions. The purpose of this study was to investigate the antioxidant activity of blueberry anthocyanins extracted from 'Brightwell' rabbiteye blueberries in mice. After one week of adaptation, C57BL/6J healthy male mice were divided into different groups that were administered with 100, 400, or 800 mg/kg blueberry anthocyanin extract (BAE), and sacrificed at different time points (0.1, 0.5, 1, 2, 4, 8, or 12 h). The plasma, eyeball, intestine, liver, and adipose tissues were collected to compare their antioxidant activity, including total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity and glutathione-peroxidase (GSH-PX/GPX) content, and the oxidative stress marker malondialdehyde (MDA) level. The results showed that blueberry anthocyanins had positive concentration-dependent antioxidant activity in vivo. The greater the concentration of BAE, the higher the T-AOC value, but the lower the MDA level. The enzyme activity of SOD, the content of GSH-PX, and messenger RNA (mRNA) levels of Cu,Zn-SOD, Mn-SOD, and GPX all confirmed that BAE played an antioxidant role after digestion in mice by improving their antioxidant defense. The in vivo antioxidant activity of BAE indicated that blueberry anthocyanins could be developed into functional foods or nutraceuticals with the aim of preventing or treating oxidative stress-related diseases.


Asunto(s)
Antioxidantes , Arándanos Azules (Planta) , Masculino , Ratones , Animales , Antioxidantes/farmacología , Antocianinas/farmacología , Ratones Endogámicos C57BL , Superóxido Dismutasa , Extractos Vegetales/farmacología , Superóxido Dismutasa-1
17.
Plants (Basel) ; 12(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37447028

RESUMEN

Oxidative stress in soybean seedlings and the length of the soybean stem lesions infected with the fungus Macrophomina phaseolina (Tassi) Goid were evaluated to determine the most tolerant soybean cultivar to this pathogen. The level of superoxide anion radical (O2•-) production, the activity of the antioxidant enzyme superoxide-dismutase (SOD), and the intensity of lipid peroxidation (LP) were measured in four soybean cultivars: Favorit, Atlas, Victoria, and Rubin. Results showed that O2•- radical production and SOD activity were the most elevated in the cv. Favorit inoculated with M. phaseolina, while the level of lipid peroxidation intensity was the lowest compared to the control. This indicates that the soybean cv. Favorit has managed to prevent infection with M. phaseolina. Furthermore, higher O2•- radical production and lower SOD enzyme activity were measured in cv. Victoria, with enhanced lipid peroxidation. This means that the cv. Victoria was infected with M. phaseolina, and was the most sensitive. None of the tested oxidative stress parameters showed a significant difference in the cvs. Atlas and Rubin compared to the control. Furthermore, the highest lesion length was measured in the cv. Victoria, followed by cv. Favorit, while the lowest lesion length was measured in the cv. Atlas followed by the cv. Rubin; and thus, the cv. Atlas followed by the cv. Rubin, were the most tolerant soybean cultivars to this pathogen.

18.
Front Cardiovasc Med ; 10: 1164547, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304947

RESUMEN

Resistin has been shown to play a key role in inducing vascular smooth muscle cells (VSMCs) malfunction in the atherosclerosis progression. Ginsenoside Rb1 is the main component of ginseng, which has been used for thousands of years and has been reported to have a powerful vascular protective effect. The aim of this study was to explore the protective effect of Rb1 on VSMCs dysfunction induced by resistin. In the presence or absence of Rb1, human coronary artery smooth muscle cells (HCASMC) were treated at different time points with or without 40 ng/ml resistin and acetylated low-density lipoprotein (acetylated LDL). Cell migration and proliferation were analyzed using wound healing test and CellTiter Aqueous Cell Proliferation Assay (MTS) test, respectively. Intracellular reactive oxygen species (ROS) (H2DCFDA as a dye probe) and superoxide dismutase (SOD) activities were measured by a microplate reader and the differences between groups were compared. Rb1 significantly reduced resistin-induced HCASMC proliferation. Resistin increased HCASMC migration time-dependently. At 20 µM, Rb1 could significantly reduce HCASMC migration. Resistin and Act-LDL increased ROS production to a similar level in HCASMCs, while Rb1 pretreated group reversed the effects of resistin and acetyl-LDL. Besides, the mitochondrial SOD activity was significantly reduced by resistin but was restored when pretreated with Rb1. We confirmed the protection of Rb1 on HCASMC and suggested that the mechanisms involved might be related to the reduction of ROS generation and increased activity of SOD. Our study clarified the potential clinical applications of Rb1 in the control of resistin-related vascular injury and in the treatment of cardiovascular disease.

19.
Redox Rep ; 28(1): 2218679, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37260037

RESUMEN

OBJECTIVES: Gastric ulcer (GU) is a prevalent chronic digestive disease affecting about 10% of the world's population leading to gastrointestinal perforation and bleeding. Genistein is a legume flavonoid with antioxidants, anti-inflammatory and antibacterial activities. Therefore, we aimed to investigate the ability of genistein to reduce experimentally induced GU in rats by affecting gastric tissue fibrosis Wnt/ß-catenin/TGF-ß/SMAD4 pathway. METHODS: Thirty rats were used. Ten rats served as control, and GU was induced in twenty rats using a single dose of indomethacin (80 mg/kg) orally. Following induction of GU, ten were treated with genistein 25 mg/kg orally. The gastric tissues were isolated to investigate markers of gastric fibrosis, Wnt, ß-catenin, transforming growth factor (TGF)-ß, SMAD4, and Protein kinase B (PKB). In addition, gastric sections were stained with PAS and anti-TGF-ß antibodies. RESULTS: Investigation GU micro-images revealed degeneration in both surface cells and glandular epithelial cells, which was improved by genistein. In addition, treatment with genistein significantly reduced the expression of Wnt, ß-catenin, TGF-ß, SMAD4, and PKB. CONCLUSION: Besides antioxidant activity, genistein improves experimentally induced GU in rats, at least in part, via reduction of gastric tissue fibrosis as indicated by reduction in expression of Wnt, ß-catenin, TGF-ß, SMAD4, and PKB.


Asunto(s)
Genisteína , Úlcera Gástrica , Factor de Crecimiento Transformador beta , Animales , Ratas , beta Catenina/metabolismo , Cateninas , Fibrosis , Genisteína/uso terapéutico , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Factor de Crecimiento Transformador beta/metabolismo
20.
Curr Issues Mol Biol ; 45(4): 3315-3332, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37185741

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons in the spinal cord, cerebral cortex, and medulla oblongata. Most patients present a clinical phenotype of classic ALS-with predominant atrophy, muscle weakness, and fasciculations-and survival of 3 to 5 years following diagnosis. In the present review, we performed a literature search to provide an update on the etiology and pathophysiological mechanisms involved in ALS. There are two types of ALS: the familial form with genetic involvement, and the sporadic form with a multifactorial origin. ALS pathophysiology is characterized by involvement of multiple processes, including oxidative stress, glutamate excitotoxicity, and neuroinflammation. Moreover, it is proposed that conditioning risk factors affect ALS development, such as susceptibility to neurodegeneration in motor neurons, the intensity of performed physical activity, and intestinal dysbiosis with involvement of the enteric nervous system, which supports the existing theories of disease generation. To improve patients' prognosis and survival, it is necessary to further deepen our understanding of the etiopathogenesis of ALS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA