Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Wiad Lek ; 77(3): 514-525, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38691794

RESUMEN

OBJECTIVE: Aim: To evaluate the cytotoxic activity of newly synthesized a series of novel HDAC inhibitors comprising sulfonamide as zinc binding group and Coumarin as cap groups. PATIENTS AND METHODS: Materials and Methods: The utilization of sulfonamide as zinc binding group and Coumarin as cap groups known to possess antitumor activity in the designed of new histone deacetylase inhibitors and using the docking and MTT assay to evaluate the compounds. RESULTS: Results: Four compounds have been synthesized and characterized successfully by ART-FTIR, NMR and ESI-Ms. The synthesized compound assessed for their cytotoxic activity against hepatoblastoma HepG2 (IC50, I=0.094, II=0.040, III=0.032, IV=0.046, SAHA=0.141) and human colon adenocarcinoma MCF-7 (IC50, I=0.135, II=0.050, III= 0.065, IV=0.059, SAHA=0.107). The binding mode to the active site of [HDAC6] were determined by docking study which give results that they might be good inhibitors for [HDAC6]. CONCLUSION: Conclusions: The synthesized compounds (I, II, III and IV) showed a comparable cytotoxic result with FDA approved drug (SAHA) toward HepG2 and MCF-7 cancer cell lines and their docking analysis provided a preliminary indication that they are viable [HDAC6] candidates.


Asunto(s)
Antineoplásicos , Cumarinas , Inhibidores de Histona Desacetilasas , Simulación del Acoplamiento Molecular , Sulfonamidas , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Sulfonamidas/química , Sulfonamidas/farmacología , Sulfonamidas/síntesis química , Cumarinas/química , Cumarinas/farmacología , Cumarinas/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Células Hep G2 , Células MCF-7
2.
Saudi Pharm J ; 32(5): 102025, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38550332

RESUMEN

Based on previous developments of our research programs in trying to find new compounds with multiple biological targets such as antioxidant, anti-diabetic, anti-Alzheimer's, and anti-arthritic agents. In the context, a novel series of sulfonamide derivatives based on the pyrazole or pyridine moieties 3a, b, 7-9, 11-13, 15a, b, and 16 were synthesized from amine compounds with sulfonyl chloride derivatives. The structures of sulfonamide derivatives were elucidated via spectroscopy (1H and 13C NMR). The sulfonamide derivatives were biologically assessed in vitro for their anti-diabetic (α-amylase and α-glucosidase inhibition) and anti-Alzheimer's (acetylcholinesterase inhibition) activities. The biological results revealed that compound 15a is a powerful enzyme inhibitor for α-amylase and α-glucosidase. Also, compound 15b demonstrated inhibitor activity against the acetylcholinesterase enzyme. The structure-activity relationship study of sulfonamide derivatives was accomplished. Furthermore, complementary in silico molecular properties, drug-likeness, ADMET prediction, and surface properties of the two more powerful derivatives 15a and 15b were fulfilled and computed. These studies recommend 15a and 15b as candidates with modifications in their structures before the in vivo assays.

3.
Chem Biol Interact ; 393: 110947, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38479716

RESUMEN

In this study, twenty-nine coumarin-3-sulfonamide derivatives, twenty-seven of which are original were designed and synthesized. Cytotoxicity assay indicated that most of these derivatives exhibited moderated to good potency against A549 cells. Among them, compound 8q showed potent inhibition against the four tested cancer cell lines, especially A549 cells with IC50 value of 6.01 ± 0.81 µM, and much lower cytotoxicity on the normal cells was observed compared to the reference compounds. Bioinformatics analysis revealed human carbonic anhydrase IX (CAIX) was highly expressed in lung adenocarcinoma (LUAD) and associated with poor prognosis. The inhibitory activity of compound 8q against CAIX was assessed by using molecular docking and molecular dynamics simulations, which revealed prominent interactions of both compound 8q and CAIX at the active site and their high affinity. The results of ELISA assays verified that compound 8q possessed strong inhibitory activity against CAIX and high subtype selectivity, and could also down-regulate the expression of CAIX in A549 cells. Furthermore, the significant inhibitory effects of compound 8q on the migration and invasion of A549 cells were also found. After treatment with compound 8q, intracellular reactive oxygen species (ROS) levels increased and mitochondrial membrane potential (MMP) decreased. Mechanistic investigation using western blotting revealed compound 8q exerted the anti-migrative and anti-invasive effects probably through mitochondria-mediated PI3K/AKT pathway by targeting CAIX. In summary, coumarin-3-sulfonamide derivatives were developed as potential and effective CAIX inhibitors, which were worthy of further investigation.


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Cumarinas , Humanos , Anhidrasa Carbónica IX , Simulación del Acoplamiento Molecular , Cumarinas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Antígenos de Neoplasias/metabolismo , Sulfonamidas/farmacología , Relación Estructura-Actividad , Estructura Molecular
4.
Cent Nerv Syst Agents Med Chem ; 24(1): 82-104, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38275073

RESUMEN

Facile synthetic procedures and broad spectrum of biological activities are special attributes of sulfonamides. Sulfonamide derivatives have demonstrated potential as a class of compounds for the treatment of Alzheimer's disease (AD). Recent sulfonamide derivatives have been reported as prospective anti-AD agents, with a focus on analogues that significantly inhibit the function of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes and exhibit remarkable antioxidant and anti-inflammatory properties, all of which are critical for the treatment of AD. Sulfonamide- mediated activation of nuclear factor erythroid 2-related factor 2 (NRF2), a key regulator of the endogenous antioxidant response, has also been suggested as a potential therapeutic approach in AD. Additionally, it has been discovered that a number of sulfonamide derivatives show selectivity for the ß- and γ-secretase enzymes and a significant reduction of amyloid B (Aß) aggregation, which have been implicated in AD. The comparative molecular docking of benzenesulfonamide and donepezil, an AD reference drug showed comparable anti-AD activities. These suggest that sulfonamide derivatives may represent a new class of drugs for the treatment of AD. Thus, the current review will focus on recent studies on the chemical synthesis and evaluation of the anti-AD properties, molecular docking, pharmacological profile, and structure-activity relationship (SAR) of sulfonamide derivatives, as well as their potential anti-AD mechanisms of action. This paper offers a thorough assessment of the state of the art in this field of study and emphasizes the potential of sulfonamide derivatives synthesized during the 2012-2023 period as a new class of compounds for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Sulfonamidas , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Sulfonamidas/uso terapéutico , Sulfonamidas/farmacología , Sulfonamidas/síntesis química , Sulfonamidas/química , Humanos , Animales , Inhibidores de la Colinesterasa/uso terapéutico , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Butirilcolinesterasa/metabolismo , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular/métodos , Antioxidantes/farmacología , Antioxidantes/síntesis química , Antioxidantes/uso terapéutico , Antioxidantes/química
5.
Chem Biol Drug Des ; 103(1): e14376, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37852922

RESUMEN

Ribosome S6 Protein Kinase 2 (RSK2) is involved in many signal pathways such as cell growth, proliferation, survival and migration in tumors. Also, RSK2 can phosphorylate YB-1, which induces the expression of tumor initiating cells, leading to poor prognosis of triple negative breast cancer. Herein, phenyl sulfonamide was introduced to a series of 1H-pyrrolo[2,3-b]pyridine-2-carboxamide derivatives to obtain novel RSK2 inhibitors which were evaluated RSK2 inhibitory activity and proliferation inhibitory activity against MDA-MB-468. The newly introduced sulfonamide group was observed to form a hydrogen bond with target residue LEU-74 which played crucial role in activity. The results showed that most of compounds exhibited RSK2 enzyme inhibitory with IC50 up to 1.7 nM. Compound B1 exhibited the strongest MDA-MB-468 cell anti-proliferation activity (IC50 = 0.13 µM). The in vivo tumor growth inhibitory activities were evaluated with compounds B1-B3 in MDA-MB-468 xenograft model which gave up to 54.6% of TGI.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Relación Estructura-Actividad , Piridinas/química , Proliferación Celular , Sulfonamidas/farmacología , Anticonvulsivantes/farmacología , Antineoplásicos/química , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Estructura Molecular , Inhibidores de Proteínas Quinasas/química
6.
Biotechnol Appl Biochem ; 71(1): 223-231, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37964505

RESUMEN

The secondary sulfonamide derivatives containing benzothiazole scaffold (1-10) were synthesized to determine their inhibition properties on two physiologically essential human carbonic anhydrases isoforms (hCAs, EC, 4.2.1.1), hCA I, and hCA II. The inhibitory effects of the compounds on hCA I and hCA II isoenzymes were investigated by comparing their IC50 and Ki values. The Ki values of compounds (1-10) against hCA I and hCA II are in the range of 0.052 ± 0.022-0.971 ± 0.280 and 0.025 ± 0.010-0.682 ± 0.335, respectively. Some of these inhibited the enzyme more effectively than the standard drug, acetazolamide. In particular, compounds 5 and 4 were found to be most effective on hCA I and hCA II.


Asunto(s)
Anhidrasa Carbónica I , Inhibidores de Anhidrasa Carbónica , Humanos , Anhidrasa Carbónica I/metabolismo , Relación Estructura-Actividad , Inhibidores de Anhidrasa Carbónica/farmacología , Sulfonamidas/farmacología , Benzotiazoles , Sulfanilamida , Estructura Molecular
7.
J Biomol Struct Dyn ; : 1-19, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37656159

RESUMEN

Acute myeloid leukemia, a serious condition affecting stem cells, drives uncontrollable myeloblast proliferation, leading to accumulation. Extensive research seeks rapid, effective chemotherapeutics. A potential option is a BRD4 inhibitor, known for suppressing cell proliferation. Sulfonamide derivatives probed essential structural elements for potent BRD4 inhibitors. To achieve this goal, we employed 3D-QSAR molecular modeling techniques, including CoMFA, CoMSIA, and HQSAR models, along with molecular docking and molecular dynamics simulations. The validation of the 2D/3D QSAR models, both internally and externally, underscores their robustness and reliability. The contour plots derived from CoMFA, CoMSIA, and HQSAR analyses played a pivotal role in shaping the design of effective BRD4 inhibitors. Importantly, our findings highlight the advantageous impact of incorporating bulkier substituents on the pyridinone ring and hydrophobic/electrostatic substituents on the methoxy-substituted phenyl ring, enhancing interactions with the BRD4 target. The interaction mode of the new compounds with the BRD4 receptor (PDB ID: 4BJX) was investigated using molecular docking simulations, revealing favorable binding energies, supported by the formation of hydrogen and hydrophobic bonds with key protein residues. Moreover, these novel inhibitors exhibited good oral bioavailability and demonstrated non-toxic properties based on ADMET analysis. Furthermore, the newly designed compounds along with the most active one from series 58, underwent a molecular dynamics simulation to analyze their behavior. The simulation provided additional evidence to support the molecular docking results, confirming the sustained stability of the analyzed molecules over the trajectory. This outcome could serve as a valuable reference for designing and developing novel and effective BRD4 inhibitors.Communicated by Ramaswamy H. Sarma.

8.
Bioorg Med Chem ; 85: 117241, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37087886

RESUMEN

Fourteen new compounds bearing sulfonamide groups that target EGFRT790M/L858R mutations and ALK rearrangement were synthesized and evaluated as dual-target tumor inhibitors. The study on the anti-proliferation activity on cancer cells showed that the sulfonamide derivative with pyrimidine nucleus had much better activities compared with those with quinazoline nucleus. Among them, compound 19e exhibited excellent activity against H1975 cancer cell lines (EGFRT790M/L858R high express) and H2228 cells (ALK rearrangement) with the IC50 values of 0.0215 µM and 0.011 µM, respectively. The ALK and EGFR kinase inhibition assays also provided similar results. Genotype selectivity of EGFR on kinase and cell level, cytotoxicity towards human normal cell lines and cell morphology assay implied that 19e had acceptable selectivity and low toxicity. In addition, the inhibitory activity of 19e on H1975 and H2228 cells cloning and its apoptosis-inducing effect on the two cell lines were studied, and its inhibitory effect on the invasion and migration of tumor cells were also investigated. All the results show that 19e is worthy of further study.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Humanos , Receptores ErbB , Proliferación Celular , Relación Estructura-Actividad , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Inhibidores de Proteínas Quinasas , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales
9.
Int J Biol Macromol ; 239: 124280, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37019200

RESUMEN

Chitosan (Ch), a linear cationic biopolymer, has broad medical applications. In this paper, new sustainable hydrogels (Ch-3, Ch-5a, Ch-5b) based on chitosan/sulfonamide derivatives 2-chloro-N-(4-sulfamoylphenethyl) acetamide (3) and/or 5-[(4-sulfamoylphenethyl) carbamoyl] isobenzofuran-1,3-dione (5) were prepared. Hydrogels (Ch-3, Ch-5a, Ch-5b) were loaded (Au, Ag, ZnO) NPs to form its nanocomposites to improve the antimicrobial efficacy of chitosan. The structures of hydrogels and its nanocomposites were characterized using different tools. All hydrogels displayed irregular surface morphology in SEM, however hydrogel (Ch-5a) revealed the highest crystallinity. The highest thermal stability was shown by hydrogel (Ch-5b) compared to chitosan. The nanocomposites represented nanoparticle sizes <100 nm. Antimicrobial activity was assayed for hydrogels using disc diffusion method exhibited great inhibition growth of bacteria compared to chitosan against S. aureus, B. subtilis and S. epidermidis as Gram-positive, E. coli, Proteus, and K. pneumonia as Gram-negative and antifungal activity against Aspergillus Niger and Candida. Hydrogel (Ch-5b) and nanocomposite hydrogel (Ch-3/Ag NPs) showed higher colony forming unit (CFU) and reduction% against S. aureus and E. coli reaching 97.96 % and 89.50 % respectively in comparison with 74.56 % and 40.30 % for chitosan respectively. Overall, fabricated hydrogels and its nanocomposites enhanced the biological activity of chitosan and it can be potential candidates as antimicrobial drugs.


Asunto(s)
Antiinfecciosos , Quitosano , Nanocompuestos , Quitosano/química , Staphylococcus aureus , Hidrogeles/química , Sulfonamidas/farmacología , Escherichia coli , Antiinfecciosos/farmacología , Antiinfecciosos/química , Sulfanilamida , Nanocompuestos/química , Antibacterianos/farmacología , Antibacterianos/química
10.
Huan Jing Ke Xue ; 44(3): 1214-1227, 2023 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-36922184

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) have attracted extensive attention because of their persistence, long-distance migration ability, bioaccumulation, and biological toxicity. Currently, regulatory strategies concerning PFASs in the environment primarily focus on perfluoroalkyl acids (PFAAs). However, most polyfluoroalkyl compounds can be degraded to PFAAs by environmental microorganisms, also known as precursors. Exploring the microbial transformation behavior of precursors is fundamental to comprehensively evaluate the environmental risk of PFASs and formulate control and remediation schemes of PFAS-contaminated sites. Furthermore, anaerobic microbial reductive defluorination of PFAAs is a potential and challenging remediation technology. This review summarizes degradation rules and transformation pathways of precursors (fluorotelomer compounds and perfluorooctane sulfonamide derivatives), PFAAs, and novel PFASs by microorganisms and discusses factors affecting the microbial degradation. Finally, the future research directions are put forward.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Fluorocarburos/metabolismo
11.
Environ Sci Technol ; 57(47): 18462-18472, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36633968

RESUMEN

Per- and polyfluoroalkyl substances (PFASs), including perfluorohexanesulfonic acid (PFHxS), as emerging persistent organic pollutants widely detected in drinking water, have drawn increasing concern. The PFHxS contamination of drinking water always results from direct and indirect sources, especially the secondary generations through environmental transformations of precursors. However, the mechanism of the transformation of precursors to PFHXS during the drinking water treatment processes remains unclear. Herein, the potential precursors and formation mechanisms of PFHxS were explored during drinking water disinfection. Simultaneously, the factors affecting PFHxS generation were also examined. This study found PFHxS could be generated from polyfluoroalkyl sulfonamide derivatives during chlorination and chloramination. The fate and yield of PFHxS varied from different precursors and disinfection processes. In particular, monochloramine more favorably formed PFHxS. Several perfluoroalkyl oxidation products and decarboxylation intermediates were detected and identified in the chloraminated samples using Fourier-transform ion cyclotron resonance mass spectrometry. Combined with density functional theory calculations, the results indicated that the indirect oxidation via the attack of the nitrogen atom in sulfonamide groups might be the dominant pathway for generating PFHxS during chloramination, and the process could be highly affected by the monochloramine dose, pH, and temperature. This study provides important evidence of the secondary formation of PFHxS during drinking water disinfection and scientific support for chemical management of PFHxS and PFHxS-related compounds.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Agua Potable/análisis , Contaminantes Químicos del Agua/análisis , Desinfección , Sulfonamidas/análisis , Halogenación , Purificación del Agua/métodos , Sulfanilamida/análisis , Desinfectantes/análisis
12.
Mol Divers ; 27(3): 1243-1254, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35779170

RESUMEN

A total of 66 sulfonamide derivatives bearing the 4-aminoquinazoline moiety were designed and synthesized, and their structures were fully characterized by 1H NMR, 13C NMR, and HRMS techniques. Among them, the structures of compounds 5A10 and 5B11 were further confirmed through X-ray single-crystal diffraction analyses. The bioassay results indicated that some of the target compounds displayed higher inhibition activities in vitro against the tested phytopathogenic bacteria. For example, compound 5A26 exhibited a strong anti-Xanthomonas oryzae pv. oryzicola (Xoc) efficacy with an EC50 (half-maximal effective concentration) value of 30.6 µg/mL, over twofold more active than control agent bismerthiazol (BMT). Additionally, compound 5B14 had a good antibacterial effect against the phytopathogen Xanthomonas axonopodis pv. citric (Xac) with EC50 = 34.5 µg/mL, significantly better than control agent BMT (71.5 µg/mL). The anti-Xoc mechanistic studies showed that compound 5A26 exerted its antibacterial efficacy by increasing the permeability of bacterial membrane, decreasing the content of extracellular polysaccharides, and triggering morphological changes of bacterial cells.


Asunto(s)
Antibacterianos , Oxadiazoles , Pruebas de Sensibilidad Microbiana , Oxadiazoles/química , Antibacterianos/química , Sulfanilamida , Sulfonamidas/farmacología
13.
Chem Biodivers ; 20(2): e202201020, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36536172

RESUMEN

The discovery of new highly active molecules from natural products is a common method to create new pesticides. Celangulin V targeting Mythimna separate (M. separate) midgut V-ATPase  H subunit, has received considerable attention for its excellent insecticidal activity and unique mechanism of action. Therefore, combined with our preliminary work, thirty-seven sulfonamide derivatives bearing propargyloxy or pyridine groups were systematically synthesized to search for insecticidal candidate compounds with low cost and high efficiency on the  H subunit of V-ATPase. Bioactive results showed that compounds A2-A4 and A6-A7 exhibited a better bioactivity with median effective concentration (LC50 ) values (2.78, 3.11, 3.34, 3.54 and 2.48 mg/mL, respectively) against third-instar larvae of M. separate than Celangulin V (LC50 =18.1 mg/mL). Additionally, molecular docking experiments indicated that these molecules may act on the H subunit of V-ATPase. Based on the above results, these compounds provide new ideas for the discovery of insecticides.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Animales , Simulación del Acoplamiento Molecular , Insecticidas/farmacología , Larva , Sulfonamidas , Adenosina Trifosfatasas , Piridinas , Sulfanilamida , Estructura Molecular , Relación Estructura-Actividad
14.
Molecules ; 27(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35807212

RESUMEN

Sulfonamides are a classic group of chemotherapeutic drugs with a broad spectrum of pharmacological action, including anticancer activity. In this work, reversed-phase high-performance liquid chromatography and biomimetic chromatography were applied to characterize the lipophilicity of sulfonamide derivatives with proven anticancer activities against human colon cancer. Chromatographically determined lipophilicity parameters were compared with obtained logP, employing various computational approaches. Similarities and dissimilarities between experimental and computational logP were studied using principal component analysis, cluster analysis, and the sum of ranking differences. Furthermore, quantitative structure-retention relationship modeling was applied to understand the influences of sulfonamide's molecular properties on lipophilicity and affinity to phospholipids.


Asunto(s)
Quimiometría , Cromatografía de Fase Inversa , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa/métodos , Análisis por Conglomerados , Humanos , Análisis de Componente Principal , Relación Estructura-Actividad Cuantitativa , Sulfonamidas/farmacología
15.
Eur J Med Chem ; 238: 114468, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35635948

RESUMEN

NLRP3 inflammasome dysregulation has been observed in many human diseases including neurodegenerative disorders. Thus, development of small molecule inhibitors targeting this protein complex represents a promising strategy to achieve disease intervention. In our continuing efforts to develop NLRP3 inhibitors, a recently identified lead inhibitor, YQ128, was further modified and optimized. The structure-activity relationship studies of this lead compound suggested its flexibility for structural modifications while the sulfonamide and benzyl moiety demonstrated being important for selectivity. Additionally, the systematic SAR studies also provided insights for designing NLRC4 and AIM2 inflammasome inhibitors. A new lead inhibitor, 19, was identified with improved potency (IC50: 0.12 ± 0.01 µM) and binding affinity (KD: 84 nM). Further characterization of this lead compound using wild type and nlrp3-/- mice confirmed its in vivo selective target engagement. PET studies using a radiotracer based on the structure of 19 also demonstrated its improved brain penetration compared to previous lead compounds. These results strongly encourage further testing of 19 in disease models.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Relación Estructura-Actividad , Sulfonamidas/farmacología
16.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35337173

RESUMEN

The first outbreak in Wuhan, China, in December 2019 was reported about severe acute coronaviral syndrome 2 (SARS-CoV-2). The global coronavirus disease 2019 (COVID-19) pandemic in 2020 resulted in an extremely high potential for dissemination. No drugs are validated in large-scale studies for significant effectiveness in the clinical treatment of COVID-19 patients, despite the worsening trends of COVID-19. This study aims to design a simple and efficient cyclo-condensation reaction of 6-aminouracil derivatives 2a-e and isatin derivatives 1a-c to synthesize spiro-oxindoles 3a-d, 4a-e, and 5a-e. All compounds were tested in vitro against the SARS-CoV-2. Four spiro[indoline-3,5'-pyrido[2,3-d:6,5-d']dipyrimidine derivatives 3a, 4b, 4d, and 4e showed high activities against the SARS-CoV-2 in plaque reduction assay and were subjected to further RNA-dependent-RNA-polymerase (RdRp) and spike glycoprotein inhibition assay investigations. The four compounds exhibited potent inhibitory activity ranging from 40.23 ± 0.09 to 44.90 ± 0.08 nM and 40.27 ± 0.17 to 44.83 ± 0.16 nM, respectively, when compared with chloroquine as a reference standard, which showed 45 ± 0.02 and 45 ± 0.06 nM against RdRp and spike glycoprotein, respectively. The computational study involving the docking studies of the binding mode inside two proteins ((RdRp) (PDB: 6m71), and (SGp) (PDB: 6VXX)) and geometrical optimization used to generate some molecular parameters were performed for the most active hybrids.

17.
Eur J Med Chem ; 229: 114065, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34971876

RESUMEN

Retinoic acid receptor related orphan receptor γt (RORγt), identified as the essential functional regulator of IL-17 producing Th17 cells, is an attractive drug target for treating autoimmune diseases. Starting from the reported GSK2981278 (Phase II), we structurally modified and synthesized a series of 2H-chromone-4-one based sulfonamide derivatives as novel RORγt inverse agonists, which significantly improved their human metabolic stabilities while maintaining a potent RORγt inverse agonist profile. Efforts in reducing the lipophilicity and improving the LLE values led to the discovery of c9, which demonstrated potent RORγt inverse agonistic activity and consistent metabolic stability. During in vivo studies, oral administration of compound c9 exhibited a robust and dose-dependent inhibition of IL-17A cytokine expression and significantly lessened the skin inflammatory symptoms in the mouse imiquimod-induced skin inflammation model. Docking analysis of the binding mode revealed that c9 can suitably occupy the active pocket, and the introduction of the morpholine pyridine group can interact with Leu396, His479, and Cys393. Thus, compound c9 was selected as a preclinical compound for treating Th17-driven autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes/tratamiento farmacológico , Cromonas/química , Inflamación/tratamiento farmacológico , Receptores de Ácido Retinoico/agonistas , Sulfonamidas/síntesis química , Secuencia de Aminoácidos , Animales , Modelos Animales de Enfermedad , Desarrollo de Medicamentos , Agonismo Inverso de Drogas , Femenino , Humanos , Imiquimod/metabolismo , Interleucina-17/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Piranos/farmacología , Piranos/normas , Piel , Relación Estructura-Actividad , Sulfonamidas/administración & dosificación , Sulfonamidas/efectos adversos , Sulfonamidas/farmacocinética , Sulfonamidas/farmacología , Sulfonamidas/normas , Células Th17
18.
Bioorg Chem ; 107: 104565, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33418318

RESUMEN

Simple molecular descriptors of extensive series of 1,3,5-triazinyl sulfonamide derivatives, based on the structure of sulfonamides and their physicochemical properties, were designed and calculated. These descriptors were successfully applied as inputs for artificial neural network (ANN) modelling of the relationship between the structure and biological activity. The optimized ANN architecture was applied to the prediction of the inhibition activity of 1,3,5-triazinyl sulfonamides against human carbonic anhydrase (hCA) II, tumour-associated hCA IX, and their selectivity (hCA II/hCA IX).


Asunto(s)
Redes Neurales de la Computación , Sulfonamidas/química , Triazinas/química , Antígenos de Neoplasias/metabolismo , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica II/metabolismo , Anhidrasa Carbónica IX/antagonistas & inhibidores , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/metabolismo , Diseño de Fármacos , Humanos , Sulfonamidas/metabolismo
19.
J Biomol Struct Dyn ; 39(15): 5449-5460, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32691682

RESUMEN

Sulfonamide derivatives exhibit a wide biological activity and can function as potential medical molecules in the development of a drug. Studies have reported that the compounds have an effect on many enzymes. In this study, the derivatives of amine sulfonamide (1i-11i) were prepared with reduced imine compounds (1-11) with NaBH4 in methanol. The synthesized compounds were fully characterized by spectral data and analytical. The effect of the synthesized derivatives on acetylcholinesterase (AChE), glutathione S-transferase (GST) and α-glycosidase (α-GLY) enzymes were determined. For the AChE and α-GLY, the most powerful inhibition was observed on 10 and 10i series with KI value in the range 2.26 ± 0.45-3.57 ± 0.97 and 95.73 ± 13.67-102.45 ± 11.72 µM, respectively. KI values of the series for GST were found in the range of 22.76 ± 1.23-49.29 ± 4.49. Finally, the compounds have a stronger inhibitor in lower concentrations by the attachment of functional electronegative groups such as two halogens (-Br and -CI), -OH to the benzene ring and -SO2NH2. The crystal structures of AChE, α-GLY, and GST in complex with selected derivatives 4 and 10 show the importance of the functional moieties in the binding modes within the receptors.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Acetilcolinesterasa , Inhibidores de la Colinesterasa , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Glutatión Transferasa , Glicósido Hidrolasas/metabolismo , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Sulfonamidas , Bencenosulfonamidas
20.
Pest Manag Sci ; 77(4): 1724-1738, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33236407

RESUMEN

BACKGROUND: Isoxaflutole (IXF), as a kind of 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor, has been widely used in many kinds of plants. IXF can cause injury in corn including leaf and stem bleaching, plant height reduction or stunting, and reduced crop stand. Safeners are co-applied with herbicides to protect crops without compromising weed control efficacy. With the ultimate goal of addressing Zea mays injury caused by IXF, a series of novel substituted dichloroacetylphenyl sulfonamide derivatives was designed on the basis of scaffold hopping and active substructure splicing. RESULTS: A total of 35 compounds were synthesized via acylation reactions. All the compounds were characterized by infrared (IR), proton and carbon-13 nuclear magnetic resonance (1 H-NMR and 13 C-NMR), and high-resolution mass spectrometry (HRMS). The configuration of compound II-1 was confirmed by single crystal X-ray diffraction. The bioassay results showed that all the title compounds displayed remarkable protection against IXF via improved content of carotenoid. Especially compound II-1 which possessed better glutathione transferases (GSTs) activity and carotenoid content than the contrast safener cyprosulfamide (CSA). All the satisfied parameters suggested that the Comparative Molecular Field Analysis (CoMFA) model was reliable and stable [with a cross-validated coefficient (q2 ) = 0.527, r2 = 0.995, r2 pred = 0.931]. The molecular docking simulation indicated that the compound II-1 and CSA could compete with diketonitrile (DKN) at the active site of HPPD, which is a hydrolyzed product of IXF in plants, causing the herbicide to be ineffective. CONCLUSIONS: The present work revealed that the compound II-1 deserves further attention as the candidate structure of safeners. © 2020 Society of Chemical Industry.


Asunto(s)
Herbicidas , Herbicidas/farmacología , Simulación del Acoplamiento Molecular , Recombinación Genética , Sulfonamidas , Control de Malezas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA