Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
Waste Manag ; 189: 265-275, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217801

RESUMEN

High-solid digestion (HSD) for biogas production is a resource-efficient and sustainable method to treat organic wastes with high total solids content and obtain renewable energy and an organic fertiliser, using a lower dilution rate than in the more common wet digestion process. This study examined the effect of reactor type on the performance of an HSD process, comparing plug-flow (PFR) type reactors developed for continuous HSD processes, and completely stirred-tank reactors (CSTRs) commonly used for wet digestion. The HSD process was operated in thermophilic conditions (52 °C), with a mixture of household waste, garden waste and agricultural residues (total solids content 27-28 %). The PFRs showed slightly better performance, with higher specific methane production and nitrogen mineralisation than the CSTRs, while the reduction of volatile solids was the same in both reactor types. Results from 16S rRNA gene sequencing showed a significant difference in the microbial population, potentially related to large differences in stirring speed between the reactor types (1 rpm in PFRs and 70-150 rpm in CSTRs, respectively). The bacterial community was dominated by the genus Defluviitoga in the PFRs and order MBA03 in the CSTRs. For the archaeal community, there was a predominance of the genus Methanoculleus in the PFRs, and of the genera Methanosarcina and Methanothermobacter in the CSTRs. Despite these shifts in microbiology, the results showed that stable digestion of substrates with high total solids content can be achieved in both reactor types, indicating flexibility in the choice of technique for HSD processes.


Asunto(s)
Reactores Biológicos , Reactores Biológicos/microbiología , Eliminación de Residuos/métodos , Residuos Sólidos/análisis , Biocombustibles/análisis , Metano/análisis , Metano/metabolismo , ARN Ribosómico 16S , Bacterias/metabolismo , Bacterias/genética , Archaea/metabolismo , Archaea/genética
2.
Foods ; 13(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39200403

RESUMEN

Climate change poses several challenges in the wine industry, including increasing risks related to chemical food contaminants such as biogenic amines and ethyl carbamate (EC). In this work, we focused on urea removal in red wines by immobilized acid urease aiming at limiting EC formation during wine storage. By considering separable kinetics of catalyst deactivation and urea hydrolysis, it was possible to model the time course of urea removal in repeated uses in stirred batch reactors. Treatments based on immobilized urease of red wine enriched with 30 mg/L of urea allowed the reduction in the contaminant concentration to <5 mg/L. After 28.5 h of treatment, the observed urea level was reduced to about 0.5 mg/L, corresponding to a decrease in the potential ethyl carbamate (PEC) from 1662 µg/L to 93 µg/L, below the level of the non-enriched wine (187 µg/L). As a comparison, when treating the same wine with the free enzyme at maximum doses allowed by the EU law, urea and PEC levels decreased to only 12 mg/L and 415 µg/L respectively, after 600 h of treatment. These results show that, for red wines, urease immobilization is an effective strategy for urea removal and, thus, effective reduction in ethyl carbamate as a process contaminant. This study provides the scientific background for the future scaling-up of the process at an industrial level.

3.
Bioengineering (Basel) ; 11(7)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39061774

RESUMEN

The assessment of human liver stem cells (HLSCs) as cell therapeutics requires scalable, controlled expansion processes. We first focused on defining appropriate process parameters for HLSC expansion such as seeding density, use of antibiotics, optimal cell age and critical metabolite concentrations in conventional 2D culture systems. For scale-up, we transferred HLSC expansion to multi-plate and stirred-tank bioreactor systems to determine their limitations. A seeding density of 4000 cells cm-2 was needed for efficient expansion. Although growth was not significantly affected by antibiotics, the concentrations of lactate and ammonia were important. A maximum expansion capacity of at least 20 cumulative population doublings (cPDs) was observed, confirming HLSC growth, identity and functionality. For the expansion of HLSCs in the multi-plate bioreactor system Xpansion (XPN), the oxygen supply strategy was optimized due to a low kLa of 0.076 h-1. The XPN bioreactor yielded a final mean cell density of 94 ± 8 × 103 cells cm-2, more than double that of the standard process in T-flasks. However, in the larger XPN50 device, HLSC density reached only 28 ± 0.9 × 103 cells cm-2, while the glucose consumption rate increased 8-fold. In a fully-controlled 2 L stirred-tank bioreactor (STR), HLSCs expanded at a comparable rate to the T-flask and XPN50 processes in a homogeneous microenvironment using advanced process analytical technology. Ultimately, the scale-up of HLSCs was successful using two different bioreactor systems, resulting in sufficient numbers of viable, functional and undifferentiated HLSCs for therapeutic applications.

4.
Front Cell Dev Biol ; 12: 1427171, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39071806

RESUMEN

Cell and gene therapies are an innovative solution to various severe diseases and unfulfilled needs. Adoptive cell therapy (ACT), a form of cellular immunotherapies, has been favored in recent years due to the approval of chimeric antigen receptor CAR-T products. Market research indicates that the industry's value is predicted to reach USD 24.4 billion by 2030, with a compound annual growth rate (CAGR) of 21.5%. More importantly, ACT is recognized as the hope and future of effective, personalized cancer treatment for healthcare practitioners and patients worldwide. The significant global momentum of this therapeutic approach underscores the urgent need to establish it as a practical and standardized method. It is essential to understand how cell culture conditions affect the expansion and differentiation of T-cells. However, there are ongoing challenges in ensuring the robustness and reproducibility of the manufacturing process. The current study evaluated various adoptive T-cell culture platforms to achieve large-scale production of several billion cells and high-quality cellular output with minimal cell death. It examined factors such as bioreactor parameters, media, supplements and stimulation. This research addresses the fundamental challenges of scalability and reproducibility in manufacturing, which are essential for making adoptive T-cell therapy an accessible and powerful new class of cancer therapeutics.

5.
Methods Mol Biol ; 2829: 195-202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38951335

RESUMEN

The Baculovirus Expression Vector System (BEVS) has revolutionized the field of recombinant protein expression by enabling efficient and high yield production. The platform offers many advantages including manufacturing speed, flexible design, and scalability. In this chapter, we describe the methods including strategies and considerations to successfully optimize and scale-up using BEVS as a tool for production (Fig. 1). As an illustrative case study, we present an example focused on the production of a viral glycoprotein.


Asunto(s)
Baculoviridae , Vectores Genéticos , Proteínas Recombinantes , Baculoviridae/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Vectores Genéticos/genética , Animales , Humanos , Células Sf9
6.
Methods Mol Biol ; 2810: 235-247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38926283

RESUMEN

Most pharmaceutical biotechnology companies use stirred-tank bioreactors (STR) for recombinant protein manufacturing. These bioreactors are used at a variety of different scales ranging from bench to production scales, with working volumes from 10 mL to 25,000 L. Bench-scale STRs are commonly used to culture mammalian cells for process development, to troubleshoot production scale bioreactors using scale-down models (SDM), or to conduct fundamental research. In this chapter, we describe the operations of a bench-scale STR for the production of recombinant proteins with suspension-adapted Chinese hamster ovary (CHO) cells. These operations include bioreactor setup and configuration, batching media, inoculation of the seed cell culture, production phase, and harvest of cell-free fluids.


Asunto(s)
Reactores Biológicos , Cricetulus , Proteínas Recombinantes , Células CHO , Animales , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Cricetinae , Técnicas de Cultivo de Célula/métodos , Técnicas de Cultivo Celular por Lotes/métodos , Técnicas de Cultivo Celular por Lotes/instrumentación
7.
Appl Microbiol Biotechnol ; 108(1): 383, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896301

RESUMEN

Herpes simplex virus type 1 (HSV-1) plays an important role in the field of gene therapy and viral vaccines, especially as an oncolytic virus. However, the mass production of HSV-1 viral vectors remains a challenge in the industry. In this study, a microcarrier-mediated serum-reduced medium culture was used to improve the bioprocess of HSV-1 production and increase HSV-1 yields. The composition of the culture media, which included a basal medium, serum concentration, and glutamine additive, was optimized. The process was successfully conducted in a 1 L bioreactor, and virus production was threefold greater than that of conventional processes with a 10% serum medium. The bead-to-bead transfer process was also developed to further increase scalability. In spinner flasks, the detachment rate increased from 49.4 to 80.6% when combined agitation was performed during digestion; the overall recovery proportion increased from 37.9 to 71.1% after the operational steps were optimized. Specifically, microcarrier loss was reduced during aspiration and transfer, and microcarriers and detached cells were separated with filters. Comparable cell growth was achieved with the baseline process using 2D culture as the inoculum by exchanging the subculture medium. To increase virus production after bead-to-bead transfer, critical parameters, including shear stress during digestion, TrypLE and EDTA concentrations in the subculture, and the CCI, were identified from 47 parameters via correlation analysis and principal component analysis. The optimized bead-to-bead transfer process achieved an average of 90.4% overall recovery and comparable virus production compared to that of the baseline process. This study is the first to report the optimization of HSV-1 production in Vero cells cultured on microcarriers in serum-reduced medium after bead-to-bead transfer. KEY POINTS: • An HSV-1 production process was developed that involves culturing in serum-reduced medium, and this process achieved threefold greater virus production than that of traditional processes. • An indirect bead-to-bead transfer process was developed with over 90% recovery yield in bioreactors. • HSV-1 production after bead-to-bead transfer was optimized and was comparable to that achieved with 2D culture as inoculum.


Asunto(s)
Reactores Biológicos , Medios de Cultivo , Herpesvirus Humano 1 , Cultivo de Virus , Herpesvirus Humano 1/crecimiento & desarrollo , Reactores Biológicos/virología , Medios de Cultivo/química , Chlorocebus aethiops , Cultivo de Virus/métodos , Células Vero , Animales
8.
Water Sci Technol ; 89(10): 2796-2811, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38822615

RESUMEN

Anaerobic treatment of oily substrate, known as grease trap waste (GTW), was investigated for its practicability via continuous stirred tank reactor (CSTR) at different operating conditions and selected recovery strategies of feeding frequency efficacy. This study determine the performance of feeding frequency efficacy, namely feeding every 24 hours (R24H) and feeding every 12 hours (R12H). Under organic loading rate (OLR) of 2.2 gCOD/L.day, R12H exhibited methane composition of 57%, methane production rate of 0.27 LCH4/L.day, and methane yield of 0.14 LCH4/gCODremoved. At the same OLR, R24H recorded methane composition of 60%, methane production rate of 0.29 LCH4/L.day and similar methane yield as R12H. Findings indicated that R24H showed performance comparable to that of R12H. Given minor variation observed in performance, it is recommended that plant operators may consider scheduling two feedings per day for low loading conditions and switch to one feeding per day for higher loading conditions. This strategy is designed to balance the system and prevent shock loads, which could lead to plant shutdowns. This mechanism will induce their conversion to volatile fatty acids (VFAs); thus, reducing the risk of acid accumulation and pH drops, which could inhibit methanogens to produce methane, especially for oily substrate.


Asunto(s)
Biocombustibles , Reactores Biológicos , Metano , Anaerobiosis , Metano/metabolismo , Eliminación de Residuos Líquidos/métodos
9.
Adv Mater ; : e2403653, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38803149

RESUMEN

Silver can be recycled from the end-of-life crystalline silicon photovoltaic (PV), yet the recycling and its technology scale-up are still at an early stage especially in continuously operations e.g., continoursely stirred tank reactors (CSTR). Here, the silver recovery from the solar cells is technically understood and optimized in the CSTR system from the point of view of silver recovery efficiency, through integrating experimental and numerical investigations. Specifically, based on the experiments, a kinetics model is developed and scanning electron microscopy surface morphology is characterized; and a computational fluid dynamics-discrete element method (CFD-DEM) particle-scale model is integrated with the kinetics model and validated against the fluid-flow pattern and silver leaching performance results from lab measurements. The validated CFD-DEM model is then applied to understand the particle-scale behavior of silver leaching in the CSTR system in terms of hydrodynamics and AgNO3 distribution under different impeller speeds. The simulation results show that the silver leaching performance is improved in an improved CSTR design with a lower impeller position and doubled impeller layers. This work reveals the effectiveness and underlying hydrodynamics of silver leaching in CSTR systems and lays a foundation for improving silver recovery in PV recycling.

10.
Biotechnol Prog ; : e3480, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38766884

RESUMEN

Laboratory scale conventional single-use bioreactor was used to investigate the effect of different stirrer speeds on the Arthrospira platensis (Spirulina platensis) culture. Experiments were handled in two steps. First step was the selection of the stirring speeds, which was simulated via using CFD, and the second was the long term cultivation with the selected speed. During 10 days of batches as the first step, under identical culture conditions, stirrer speed of 230 rpm gave higher results, compared to 130 and 70 rpm, with respect to dry biomass weight, absorbance value (AB) and chlorophyll-a concentration. Volumetric productivity during the growth phase of the cultures were calculated as 0.39 ± 0.03, 0.28 ± 0.01, and 0.19 ± 0.02 g L-1 d-1, from the fast to the slower speeds. According to the results a 17 day batch was handled with 230 rpm in order to monitor the effects on the culture. The culture reached a volumetric productivity of 0.33 ± 0.04 g L-1 d-1. Statistical analysis showed the significance of the parameters related with the stirring speed.

11.
Microb Cell Fact ; 23(1): 131, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711081

RESUMEN

BACKGROUND: Komagataella phaffii (Pichia pastoris) has emerged as a common and robust biotechnological platform organism, to produce recombinant proteins and other bioproducts of commercial interest. Key advantage of K. phaffii is the secretion of recombinant proteins, coupled with a low host protein secretion. This facilitates downstream processing, resulting in high purity of the target protein. However, a significant but often overlooked aspect is the presence of an unknown polysaccharide impurity in the supernatant. Surprisingly, this impurity has received limited attention in the literature, and its presence and quantification are rarely addressed. RESULTS: This study aims to quantify this exopolysaccharide in high cell density recombinant protein production processes and identify its origin. In stirred tank fed-batch fermentations with a maximal cell dry weight of 155 g/L, the polysaccharide concentration in the supernatant can reach up to 8.7 g/L. This level is similar to the achievable target protein concentration. Importantly, the results demonstrate that exopolysaccharide production is independent of the substrate and the protein production process itself. Instead, it is directly correlated with biomass formation and proportional to cell dry weight. Cell lysis can confidently be ruled out as the source of this exopolysaccharide in the culture medium. Furthermore, the polysaccharide secretion can be linked to a mutation in the HOC1 gene, featured by all derivatives of strain NRRL Y-11430, leading to a characteristic thinner cell wall. CONCLUSIONS: This research sheds light on a previously disregarded aspect of K. phaffii fermentations, emphasizing the importance of monitoring and addressing the exopolysaccharide impurity in biotechnological applications, independent of the recombinant protein produced.


Asunto(s)
Fermentación , Proteínas Recombinantes , Saccharomycetales , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Saccharomycetales/metabolismo , Saccharomycetales/genética , Biomasa , Técnicas de Cultivo Celular por Lotes , Polisacáridos/metabolismo , Polisacáridos/biosíntesis
12.
Front Bioeng Biotechnol ; 12: 1379597, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737536

RESUMEN

Introduction: Engineered 3D models employing human induced pluripotent stem cell (hiPSC) derivatives have the potential to recapitulate the cell diversity and structure found in the human central nervous system (CNS). Therefore, these complex cellular systems offer promising human models to address the safety and potency of advanced therapy medicinal products (ATMPs), such as gene therapies. Specifically, recombinant adeno-associated viruses (rAAVs) are currently considered highly attractive for CNS gene therapy due to their broad tropism, low toxicity, and moderate immunogenicity. To accelerate the clinical translation of rAAVs, in-depth preclinical evaluation of efficacy and safety in a human setting is primordial. The integration of hiPSC-derived CNS models in rAAV development will require, amongst other factors, robust, small-scale, high-throughput culture platforms that can feed the preclinical trials. Methods: Herein, we pioneer the miniaturization and parallelization of a 200 mL stirred-tank bioreactor-based 3D brain cell culture derived from hiPSCs. We demonstrate the applicability of the automated miniaturized Ambr® 15 Cell Culture system for the maintenance of hiPSC-derived neurospheroids (iNSpheroids), composed of neuronal and glial cells. Critical process parameters were optimized, namely, cell density and agitation mode. Results: Under optimized conditions, stable iNSpheroid cultures were attained in the microbioreactors for at least 15 days, with high cell viability and astrocytic and neuronal phenotype maintenance. This culture setup allowed the parallelization of different rAAVs, in different multiplicity of infections (MOIs), to address rAAV-host interactions at a preclinical scale. The iNSpheroids were exposed to rAAV2- and rAAV9-eGFP in the microbioreactors. Transgene expression was detected 14 days post-transduction, revealing different astrocyte/neuron tropism of the two serotypes. Discussion: We advocate that the iNSpheroid cultures in miniaturized bioreactors are reliable and reproducible screening tools for addressing rAAV transduction and tropism, compatible with preclinical demands.

13.
Braz J Microbiol ; 55(2): 1167-1177, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38557863

RESUMEN

It is essential to evaluate the effects of operating conditions in submerged cultures of filamentous microorganisms. In particular, the impeller type influences the flow pattern, power consumption, and energy dissipation, leading to differences in the hydrodynamic environment that affect the morphology of the microorganism. This work investigated the effect of different impeller types, namely the Rushton turbine (RT-RT) and Elephant Ear impellers in up-pumping (EEUP) and down-pumping (EEDP) modes, on cellular morphology and clavulanic acid (CA) production by Streptomyces clavuligerus in a stirred-tank bioreactor. At 800 rpm and 0.5 vvm, the cultivations performed using RT-RT and EEUP impellers provided higher shear conditions and oxygen transfer rates than those observed with EEDP. These conditions resulted in higher clavulanic acid production using RT-RT (380.7 mg/L) and EEUP (453.3 mg/L) impellers, compared to EEDP (196.6 mg/L). Although the maximum CA concentration exhibited the same order of magnitude for RT-RT and EEUP impellers, the latter presented 40% of the specific power consumption (4.9 kW/m3) compared to the classical RT-RT (12.0 kW/m3). The specific energy for CA production ( E CA ), defined as the energy cost to produce 1 mg of CA, was 3.5 times lower using the EEUP impeller (1.91 kJ/mgCA) when compared to RT-RT (5.91 kJ/mgCA). Besides, the specific energy for O2 transfer ( E O 2 ), the energy required to transfer 1 mmol of O2, was 2.3 times lower comparing the EEUP impeller (3.28 kJ/mmolO2) to RT-RT (7.65 kJ/mmolO2). The results demonstrated the importance of choosing the most suitable impeller configuration in conventional bioreactors to manufacture bioproducts.


Asunto(s)
Reactores Biológicos , Ácido Clavulánico , Streptomyces , Ácido Clavulánico/biosíntesis , Streptomyces/metabolismo , Streptomyces/crecimiento & desarrollo , Reactores Biológicos/microbiología , Fermentación , Antibacterianos/biosíntesis
14.
Front Immunol ; 15: 1335932, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655265

RESUMEN

Ex vivo genetically-modified cellular immunotherapies, such as chimeric antigen receptor T cell (CAR-T) therapies, have generated significant clinical and commercial outcomes due to their unparalleled response rates against relapsed and refractory blood cancers. However, the development and scalable manufacture of these novel therapies remains challenging and further process understanding and optimisation is required to improve product quality and yield. In this study, we employ a quality-by-design (QbD) approach to systematically investigate the impact of critical process parameters (CPPs) during the expansion step on the critical quality attributes (CQAs) of CAR-T cells. Utilising the design of experiments (DOE) methodology, we investigated the impact of multiple CPPs, such as number of activations, culture seeding density, seed train time, and IL-2 concentration, on CAR-T CQAs including, cell yield, viability, metabolism, immunophenotype, T cell differentiation, exhaustion and CAR expression. Initial studies undertaken in G-Rex® 24 multi-well plates demonstrated that the combination of a single activation step and a shorter, 3-day, seed train resulted in significant CAR-T yield and quality improvements, specifically a 3-fold increase in cell yield, a 30% reduction in exhaustion marker expression and more efficient metabolism when compared to a process involving 2 activation steps and a 7-day seed train. Similar findings were observed when the CPPs identified in the G-Rex® multi-well plates studies were translated to a larger-scale automated, controlled stirred-tank bioreactor (Ambr® 250 High Throughput) process. The single activation step and reduced seed train time resulted in a similar, significant improvement in CAR-T CQAs including cell yield, quality and metabolism in the Ambr® 250 High Throughput bioreactor, thereby validating the findings of the small-scale studies and resulting in significant process understanding and improvements. This study provides a methodology for the systematic investigation of CAR-T CPPs and the findings demonstrate the scope and impact of enhanced process understanding for improved CAR-T production.


Asunto(s)
Reactores Biológicos , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Linfocitos T , Humanos , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Técnicas de Cultivo de Célula/métodos , Activación de Linfocitos
15.
Sci Total Environ ; 927: 172442, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614336

RESUMEN

The Partial Denitrification-Anammox (PD/A) process established a low-consumption, efficient and sustainable pathway for complete nitrogen removal, which is of great interest to the industry. Rapid initiation and stable operation of the PD/A systems were the main issues limiting its engineering application in wastewater nitrogen removal. A PD/A system was initiated in a continuous stirred-tank reactors (CSTRs) in the presence of low concentration of organic matter, and the effects of organic matter types and COD/NO3--N ratios on the performance of the PD/A system, and microbial community characteristics were explored. The results showed that low concentrations of organic matter could promote the rapid initiation of the Anammox process and then the strategy of gradually replacing NO2--N with NO3--N could successfully initiate the PD/A system at 70 days. The type of organic matter had a significant effect on the initiation of the Anammox and the establishment of the PD/A system. Compared to glucose, sodium acetate was more favorable for rapid start-up and the synergy among microorganisms, and organic matter was lower, with an optimal COD/NO3--N ratio of 3.0. Microorganisms differed in their sensitivity to environmental factors. The relative abundance of Planctomycetota and Proteobacteria in R2 was 51 %, with the presence of three typical anammox bacteria, Candidatus_Brocadia, Candidatus_Kuenenia, and Candidatus_Jettenia in the system. This study provides a new strategy for the rapid initiation and stable operation of the PD/A process.


Asunto(s)
Reactores Biológicos , Desnitrificación , Eliminación de Residuos Líquidos , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Nitrógeno , Anaerobiosis , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo
16.
Pharm Dev Technol ; 29(4): 300-310, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38497925

RESUMEN

In this work, we exploit computational fluid dynamics (CFD) to evaluate stirred tank reactor (STR) process engineer parameters (PEP) and design a scale-down system (SDS) to be representative of the formulation and filling process steps for an Aluminum adjuvanted vaccine drug product (DP). To study the shear history in the SDS we used the concept of number of passages, combined with an appropriate stirring speed down scale strategy comprising of either (i) tip speed equivalence, widely used as a scale-up criterion for a shear-sensitive product, or (ii) rotating shear, a shear metric introduced by Metz and Otto in 1957 but never used as scaling criterion. The outcome of the CFD simulations shows that the tip equivalence generates a worst-case SDS in terms of shear, whereas the rotating shear scaling approach could be used to design a more representative SDS. We monitored the trend over time for "In Vitro Relative Potency" as DP Critical Quality Attribute for both scaling approaches, which highlighted the crucial role of choosing the appropriate scaling-down approach to be representative of the manufacturing scale during process characterization studies.


Asunto(s)
Hidrodinámica , Vacunas , Simulación por Computador , Adyuvantes Inmunológicos/química , Química Farmacéutica/métodos , Tecnología Farmacéutica/métodos
17.
Biotechnol J ; 19(2): e2300384, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38403465

RESUMEN

A new biomanufacturing platform combining intracellular metabolic engineering of the oleaginous yeast Yarrowia lipolytica and extracellular bioreaction engineering provides efficient bioconversion of plant oils/animal fats into high-value products. However, predicting the hydrodynamics and mass transfer parameters is difficult due to the high agitation and sparging required to create dispersed oil droplets in an aqueous medium for efficient yeast fermentation. In the current study, commercial computational fluid dynamic (CFD) solver Ansys CFX coupled with the MUSIG model first predicts two-phase system (oil/water and air/water) mixing dynamics and their particle size distributions. Then, a three-phase model (oil, air, and water) utilizing dispersed air bubbles and a polydispersed oil phase was implemented to explore fermenter mixing, gas dispersion efficiency, and volumetric mass transfer coefficient estimations (kL a). The study analyzed the effect of the impeller type, agitation speed, and power input on the tank's flow field and revealed that upward-pumping pitched blade impellers (PBI) in the top two positions (compared to Rushton-type) provided advantageous oil phase homogeneity and similar estimated kL a values with reduced power. These results show good agreement with the experimental mixing and kL a data.


Asunto(s)
Reactores Biológicos , Hidrodinámica , Animales , Fermentación
18.
Biotechnol J ; 19(2): e2300381, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38403461

RESUMEN

Cell therapies based on multipotent mesenchymal stromal cells (MSCs) are traditionally produced using 2D culture systems and platelet lysate- or serum-containing media (SCM). Although cost-effective for single-dose autologous treatments, this approach is not suitable for larger scale manufacturing (e.g., multiple-dose autologous or allogeneic therapies with banked MSCs); automated, scalable and Good Manufacturing Practices (GMP)-compliant platforms are urgently needed. The feasibility of transitioning was evaluated from an established Wharton's jelly MSCs (WJ-MSCs) 2D production strategy to a new one with stirred-tank bioreactors (STRs). Experimental conditions included four GMP-compliant xeno- and serum-free media (XSFM) screened in 2D conditions and two GMP-grade microcarriers assessed in 0.25 L-STRs using SCM. From the screening, a XSFM was selected and compared against SCM using the best-performing microcarrier. It was observed that SCM outperformed the 2D-selected medium in STRs, reinforcing the importance of 2D-to-3D transition studies before translation into clinical production settings. It was also found that attachment efficiency and microcarrier colonization were essential to attain higher fold expansions, and were therefore defined as critical process parameters. Nevertheless, WJ-MSCs were readily expanded in STRs with both media, preserving critical quality attributes in terms of identity, viability and differentiation potency, and yielding up to 1.47 × 109 cells in a real-scale 2.4-L batch.


Asunto(s)
Células Madre Mesenquimatosas , Gelatina de Wharton , Humanos , Técnicas de Cultivo de Célula , Proliferación Celular , Reactores Biológicos , Células Cultivadas , Diferenciación Celular , Medio de Cultivo Libre de Suero , Cordón Umbilical
19.
Res Microbiol ; 175(1-2): 104112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37549769

RESUMEN

Within the European research project NEMO, a bioleaching strategy was developed for efficient metal extraction from bioleach residue currently heap-leached at Sotkamo (Finland) that still contains sulphidic minerals and valuable metals (Ni, Zn, Co, Cu). The strategy of gradually increasing the solid content with 5% steps allowed the adaptation of the consortium up to 20% (w/w) solid content, with efficient metal dissolution and same dominant bacteria. Largest proportions of Sulfobacillusthermosulfidooxidans while Eh increased suggested it to be most involved in iron oxidation. Acidithiobacilluscaldus was rather found when pH stabilized, in line with a production of protons from sulphur oxidation that maintained low pH. 'Acidithiomicrobium' P2 was favoured towards the end of the runs and at 20% (w/w) solids possibly due to its tolerance to Ni. The use of gene abundance to evaluate biomass in the pulp provided complementary results to classical cell counts in the liquid phase, and suggested a key role of bacteria associated to mineral particles in iron oxidation. Scaling-up in 21-L stirred-tank reactor at 20% (w/w) solids had no detrimental effect on bioleaching and confirmed metal extraction rates. 'Acidithiomicrobium' P2 and Sb. thermosulfidooxidans remained main actors. However, the biological activity was considerably reduced at 30% (w/w) solid concentration, which may be due to a too drastic environmental change for the bacteria to adapt to higher solid concentration. Efficient bioleaching of Sotkamo bioleaching residue at high solid concentration was demonstrated, as well as the robustness of the selected moderately thermophilic consortium, at laboratory and pilot scales.


Asunto(s)
Hierro , Metales , Concentración de Iones de Hidrógeno , Bacterias/genética , Minerales , Sulfuros
20.
Mol Biotechnol ; 66(2): 354-364, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37162721

RESUMEN

This work aimed to assess the Sf9 cell metabolism during growth, and infection steps with recombinant baculovirus bearing rabies virus proteins, to finally obtain rabies VLP in two culture systems: Schott flask (SF) and stirred tank reactor (STR). Eight assays were performed in SF and STR (four assays in each system) using serum-free SF900 III culture medium. Two non-infection growth kinetics assays and six recombinant baculovirus infection assays. The infection runs were carried out at 0.1 pfu/cell multiplicity of infection (MOI) for single baculovirus bearing rabies glycoprotein (BVG) and matrix protein (BVM) and a coinfection with both baculoviruses at MOI of 3 and 2 pfu/cell for BVG and BVM, respectively. The SF assays were done in triplicate. The glucose, glutamine, glutamate, lactate, and ammonium uptake or release specific rates were quantified over the exponential growth phase and infection stage. The highest uptake specific rate was observed for glucose (42.5 × 10-12 mmol cell/h) in SF and for glutamine (30.8 × 10-12 mmol/cell/h) in STR, in the exponential growth phases. A wave pattern was observed for assessed analytes throughout the infection phase and the glucose had the highest wave amplitude within the 10-10 mmol cell/h order. This alternative uptake and release behavior is in harmony with the lytic cycle of baculovirus in insect cells. The virus propagation and VLP generation were not limited by glucose, glutamine, and glutamate, neither by the toxicity of lactate nor ammonium under the conditions appraised in this work. The findings from this work can be useful to set baculovirus infection processes at high cell density to improve rabies VLP yield, purity, and productivity.


Asunto(s)
Compuestos de Amonio , Virus de la Rabia , Rabia , Animales , Células Sf9 , Virus de la Rabia/genética , Glutamina , Baculoviridae/genética , Proteínas Recombinantes/genética , Medio de Cultivo Libre de Suero , Ácido Glutámico , Lactatos , Glucosa , Spodoptera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA