Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros











Intervalo de año de publicación
1.
Heliyon ; 10(17): e36865, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39281458

RESUMEN

Liquid cooling is widely used on high power motors. Optimal design of the coolant loop could help rise the power density. The coolant channels are placed across the stator core in this research. The heat dissipation performances of the coolant channel with different designs are compared and analyzed through simulation. Experiments were carried out to verify the simulation results and the feasibility of the cooling method. The results show that the coolant loop should be placed tightly close to the slots. The heat dissipation performance of the optimized coolant loop is efficient compared to the jacket cooling design. The coolant channels across the stator core could remain sealed under a 0.5 Mpa pressure at least according to the air proof test. The coolant pressure within the channels could be reduced efficiently through increasing the parallel loop number or moving the channels away from the slots properly. The winding temperature of the measured values and the simulated results of the motor with jacket cooling is within 2 °C.

2.
J Bacteriol ; : e0014024, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283106

RESUMEN

Powered by ion transport across the cell membrane, conserved ion-powered rotary motors (IRMs) drive bacterial motility by generating torque on the rotor of the bacterial flagellar motor. Homologous heteroheptameric IRMs have been structurally characterized in ion channels such as Tol/Ton/Exb/Gld, and most recently in phage defense systems such as Zor. Functional stator complexes synthesized from chimeras of PomB/MotB (PotB) have been used to study flagellar rotation at low ion-motive force achieved via reduced external sodium concentration. The function of such chimeras is highly sensitive to the location of the fusion site, and these hybrid proteins have thus far been arbitrarily designed. To date, no chimeras have been constructed using interchange of components from Tol/Ton/Exb/Gld and other ion-powered motors with more distant homology. Here, we synthesized chimeras of MotAB, PomAPotB, and ExbBD to assess their capacity for cross-compatibility. We generated motile strains powered by stator complexes with B-subunit chimeras. This motility was further optimized by directed evolution. Whole-genome sequencing of these strains revealed that motility-enhancing residue changes occurred in the A-subunit and at the peptidoglycan binding domain of the B-unit, which could improve motility. Overall, our work highlights the complexity of stator architecture and identifies the challenges associated with the rational design of chimeric IRMs. IMPORTANCE: Ion-powered rotary motors (IRMs) underpin the rotation of one of nature's oldest wheels, the flagellar motor. Recent structures show that this complex appears to be a fundamental molecular module with diverse biological utility where electrical energy is coupled to torque. Here, we attempted to rationally design chimeric IRMs to explore the cross-compatibility of these ancient motors. We succeeded in making one working chimera of a flagellar motor and a non-flagellar transport system protein. This had only a short hybrid stretch in the ion-conducting channel, and function was subsequently improved through additional substitutions at sites distant from this hybrid pore region. Our goal was to test the cross-compatibility of these homologous systems and highlight challenges arising when engineering new rotary motors.

3.
Sci Rep ; 14(1): 18636, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128964

RESUMEN

This research paper introduces the Double Stator (DS) Hybrid Excitation (HE) Halbach Permanent Magnet (HPM) Flux Switching (FS) machine. The machine construction and its optimization specifically designed for electric vehicle (EV)/hybrid electric vehicle (HEV) traction applications are investigated. The optimization using a multi-objective Genetic Algorithm is conducted following a sensitivity analysis-based identification of key optimization parameters and constraints. The finite element results are compared with the performance of a state-of-the-art benchmark FSPM machine having identical PM volume and winding current densities. The proposed design is shown to outperform the benchmark with 16.2% increase in back-electromotive force and 14.7% reduction in cogging torque. Furthermore, the average torque is improved at flux-enhancing operation by 20.8%, and the torque ripple is reduced by 9.9%. Notably, the proposed machine also is capable of flux regulation thereby having the ability to operate in a wide speed range. A detailed explanation of the reasons for the significant improvements in the proposed machine structure is provided to offer a comprehensive understanding of its rationale. These research findings indicate that this innovative DS-HE-HPM-FS machine can enhance the performance of EVs and HEVs.

4.
Materials (Basel) ; 17(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39124372

RESUMEN

Given the friction and drag reduction effects observed in various biological hexagonal structures in nature, a new design was implemented on the rubber surface of the stator of a submersible screw pump. This design featured a multilayer concentric hexagonal groove structure. Furthermore, a composite multilayer hexagonal structure integrating grooves and pits was also developed and applied. This study investigated the influence of groove layer number, groove depth, pit depth, and multilayer hexagonal groove texture arrangement on the rubber surface flow characteristics. Additionally, the pressure field state, the degree of influence on the oil film-bearing capacity, and the biomimetic and hydrodynamic lubrication theories were tested using the finite element analysis method. Tribological experiments were conducted on nanosecond laser-processed rubber textures under simulated liquid lubrication conditions, reflecting actual shale oil well experiments. These experiments aimed to investigate the influence of multilayer hexagonal shape parameters on the tribological characteristics of the stator-rotor friction pair of a submersible screw pump. The results indicated that with a constant overall size, a multilayer hexagonal structure with ~0.1 mm groove depth enhanced the oil film-bearing capacity, providing significant friction and drag reduction. For composite textures, a deeper pit depth within the study area enhanced the oil film-bearing capacity. Furthermore, a gradient arrangement of groove textures featuring wider outer grooves and shallower depth exhibited superior performance in terms of bearing capacity.

5.
Polymers (Basel) ; 16(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39065353

RESUMEN

The effects of complex well conditions in shale oil wells on the swelling and tribological properties of high-acrylonitrile stator rubber used in screw pumps were investigated in this study. Tests were conducted considering the combined effects of immersion medium, temperature, and duration. The key parameters measured included mass change rate, volume change rate, hardness, elongation at break, tensile strength, surface micro-morphology of the rubber after thermal expansion and swelling, friction coefficient, and wear quantity. The results indicated that in the actual well fluids, the mass change rate of high-acrylonitrile rubber ranged from -1.08% to 1.29%, with a maximum volume change rate of 2.78%. In diesel oil, the greatest mass change rate of the rubber was 4.68%, and the volume change rate did not exceed ±1%, indicating superior swelling resistance. In both actual well fluids and diesel oil, the maximum decreases in hardness were 8.7% and 9.5%, respectively. Tensile strength and elongation at break decreased with increasing immersion temperature, with elongation at break in 80 °C diesel oil decreasing by over 50%, indicating a significant decline in the tensile properties of the rubber. The average friction coefficient of rubber specimens immersed in actual well fluids at three temperatures, as well as in diesel oil at 25 and 50 °C, decreased compared with the high-acrylonitrile rubber without thermal expansion and swelling. However, the average friction coefficient of rubber specimens immersed in diesel oil at 80 °C increased. The wear quantity of the rubber increased following immersion in both media. Additionally, the friction coefficient and wear quantity of the rubber increased with increasing immersion temperatures. The results of the study can offer valuable insights into assessing the durability of properties in high-acrylonitrile stator rubber under complex well conditions.

6.
mBio ; 15(8): e0071524, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39037271

RESUMEN

The bacterial predator Bdellovibrio bacteriovorus is considered to be obligatorily prey (host)-dependent (H-D), and thus unable to form biofilms. However, spontaneous host-independent (H-I) variants grow axenically and can form robust biofilms. A screen of 350 H-I mutants revealed that single mutations in stator genes fliL or motA were sufficient to generate flagellar motility-defective H-I strains able to adhere to surfaces but unable to develop biofilms. The variants showed large transcriptional shifts in genes related to flagella, prey-invasion, and cyclic-di-GMP (CdG), as well as large changes in CdG cellular concentration relative to the H-D parent. The introduction of the parental fliL allele resulted in a full reversion to the H-D phenotype, but we propose that specific interactions between stator proteins prevented functional complementation by fliL paralogs. In contrast, specific mutations in a pilus-associated protein (Bd0108) mutant background were necessary for biofilm formation, including secretion of extracellular DNA (eDNA), proteins, and polysaccharides matrix components. Remarkably, fliL disruption strongly reduced biofilm development. All H-I variants grew similarly without prey, showed a strain-specific reduction in predatory ability in prey suspensions, but maintained similar high efficiency in prey biofilms. Population-wide allele sequencing suggested additional routes to host independence. Thus, stator and invasion pole-dependent signaling control the H-D and the H-I biofilm-forming phenotypes, with single mutations overriding prey requirements, and enabling shifts from obligate to facultative predation, with potential consequences on community dynamics. Our findings on the facility and variety of changes leading to facultative predation also challenge the concept of Bdellovibrio and like organisms being obligate predators. IMPORTANCE: The ability of bacteria to form biofilms is a central research theme in biology, medicine, and the environment. We show that cultures of the obligate (host-dependent) "solitary" predatory bacterium Bdellovibrio bacteriovorus, which cannot replicate without prey, can use various genetic routes to spontaneously yield host-independent (H-I) variants that grow axenically (as a single species, in the absence of prey) and exhibit various surface attachment phenotypes, including biofilm formation. These routes include single mutations in flagellar stator genes that affect biofilm formation, provoke motor instability and large motility defects, and disrupt cyclic-di-GMP intracellular signaling. H-I strains also exhibit reduced predatory efficiency in suspension but high efficiency in prey biofilms. These changes override the requirements for prey, enabling a shift from obligate to facultative predation, with potential consequences on community dynamics.


Asunto(s)
Proteínas Bacterianas , Bdellovibrio bacteriovorus , Biopelículas , Flagelos , Biopelículas/crecimiento & desarrollo , Flagelos/genética , Flagelos/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bdellovibrio bacteriovorus/genética , Bdellovibrio bacteriovorus/fisiología , Mutación , Regulación Bacteriana de la Expresión Génica , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo
7.
Sensors (Basel) ; 24(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38894202

RESUMEN

Centrifugal pumps are essential in many industrial processes. An accurate operation diagnosis of centrifugal pumps is crucial to ensure their reliable operation and extend their useful life. In real industry applications, many centrifugal pumps lack flowmeters and accurate pressure sensors, and therefore, it is not possible to determine whether the pump is operating near its best efficiency point (BEP). This paper investigates the detection of off-design operation and cavitation for centrifugal pumps with accelerometers and current sensors. To this end, a centrifugal pump was tested under off-design conditions and various levels of cavitation. A three-axis accelerometer and three Hall-effect current sensors were used to collect vibration and stator current signals simultaneously under each state. Both kinds of signals were evaluated for their effectiveness in operation diagnosis. Signal processing methods, including wavelet threshold function, variational mode decomposition (VMD), Park vector modulus transformation, and a marginal spectrum were introduced for feature extraction. Seven families of machine learning-based classification algorithms were evaluated for their performance when used for off-design and cavitation identification. The obtained results, using both types of signals, prove the effectiveness of both approaches and the advantages of combining them in achieving the most reliable operation diagnosis results for centrifugal pumps.

8.
Angew Chem Int Ed Engl ; 63(14): e202401221, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38342759

RESUMEN

Metal-free molecular antiferroelectric (AFE) holds a promise for energy storage on account of its unique physical attributes. However, it is challenging to explore high-curie temperature (Tc) molecular AFEs, due to the lack of design strategies regarding the rise of phase transition energy barriers. By renewing the halogen substitution strategy, we have obtained a series of high-Tc molecular AFEs of the halogen-substituted phenethylammonium bromides (x-PEAB, x=H/F/Cl/Br), resembling the binary stator-rotator system. Strikingly, the p-site halogen substitution of PEA+ cationic rotators raises their phase transition energy barrier and greatly enhances Tc up to ~473 K for Br-PEAB, on par with the record-high Tc values for molecular AFEs. As a typical case, the member 4-fluorophenethylammonium bromide (F-PEAB) shows notable AFE properties, including high Tc (~374 K) and large electric polarization (~3.2 µC/cm2). Further, F-PEAB also exhibits a high energy storage efficiency (η) of 83.6 % even around Tc, catching up with other AFE oxides. This renewing halogen substitution strategy in the molecular AFE system provides an effective way to design high-Tc AFEs for energy storage devices.

9.
Microbiology (Reading) ; 170(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38226962

RESUMEN

Bacteria swim using membrane-spanning, electrochemical gradient-powered motors that rotate semi-rigid helical filaments. This primer provides a brief overview of the basic synthesis, structure and operation of these nanomachines. Details and variations on the basic system can be found in suggested further reading.


Asunto(s)
Citoesqueleto , Flagelos
10.
Bioresour Technol ; 393: 130094, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38000640

RESUMEN

Microalgae is a sustainable alternative source to traditional proteins. Existing pretreatment methods for protein extraction from microalgae still lack scalability, are uneconomical and inefficient. Herein, high shear mixing (HSM) was applied to disrupt the rigid cell walls and was found to assist in protein release from microalgae. This study integrates HSM in liquid biphasic system with seven parameters being investigated on extraction efficiency (EE) and protein yield (Y). The highest EE and Y obtained are 96.83 ± 0.47 % and 40.98 ± 1.27 %, respectively, using 30% w/v K3PO4 salt, 60 % v/v alcohol, volume ratio of 1:1 and 0.5 % w/v biomass loading under shearing rate of 16,000 rpm for 1 min.


Asunto(s)
Chlorella vulgaris , Chlorella , Microalgas , Chlorella/metabolismo , Microalgas/metabolismo , Biomasa , Pared Celular
11.
ISA Trans ; 145: 373-386, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142172

RESUMEN

Induction motors (IMs) are extensively used in industrial sector. This kind of machine is subjected to several stresses that could interrupt their normal operation. An excessive stress can generate some symptoms before the IM fall in failure situation. Therefore, incipient detection of these symptoms permits the shutdown of IMs in order to avoid total destruction. Fault detection is then the main objective of diagnosis systems. Stator inter-turn short-circuits (SITSC) constitutes an important amount of cause of IM breakdown. However; unbalance supply voltage (USV) is one of the advantageous factors that affect IMs operation. Thus, in order to avoid false alarm induced by USV, the diagnosis system must make difference between USV and SITSC faults. This paper presents an efficient approach to estimate SITSC percentage and detect USV occurrence using Artificial Intelligent (AI) tool. Artificial neuronal network (ANN) plays the key-role of the proposed diagnosis system. A fault Classifier of SITSC and USV is carried out using multi-layer perceptron neuronal network (MLP-NN). The training, testing and validation phases of MLP-NN need the dataset creation. The required data is obtained from both simulated mathematical model of IM and laboratory test-bed. The reached results show the sensitivity and the well-functioning of the proposed diagnosis system.

12.
Chemosphere ; 340: 139848, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37595693

RESUMEN

The treatment of flue gas containing HCl and CO2 has garnered significant attention. This study proposes an integrated high-gravity process based on a rotor-stator reactor (RSR) for HCl removal and CO2 capture through mineralization using carbide slag slurry (CSS), an industrial waste. Experimental and modeling studies were conducted to investigate the absorption performance and mass-transfer mechanism. Considering the properties of CSS, Ca(OH)2 slurry was used to simulate CSS for HCl and CO2 absorption in the RSR. The influences of solid content, rotational speed, gas flow rate, and liquid flow rate were investigated, resulting in HCl and CO2 absorption efficiencies of 87.3%-98.9% and 33.8%-65.7%, respectively. Two mechanistic mass-transfer models were established based on surface renewal theory and penetration theory, respectively, to depict the process. The predicted values aligned well with the experimental results, with deviations generally less than 25%. The study further explored the absorption of HCl and CO2 using an actual CSS operated in recycle in the RSR and investigated the characteristics of the solids in fresh and carbonated CSS using XRD, TGA, and SEM. The results indicated that the actual CSS had excellent absorption performance, generally consistent with Ca(OH)2 slurry, and that Ca(OH)2 in CSS was almost completely converted to CaCO3 (calcite).


Asunto(s)
Dióxido de Carbono , Escarabajos , Animales , Carbonato de Calcio , Residuos Industriales , Compuestos Orgánicos
13.
Micromachines (Basel) ; 14(4)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37421027

RESUMEN

When rotating at a high speed in a microscale flow field in confined spaces, rotors are subject to a complex flow due to the joint effect of the centrifugal force, hindering of the stationary cavity and the scale effect. In this paper, a rotor-stator-cavity (RSC) microscale flow field simulation model of liquid-floating rotor micro gyroscopes is built, which can be used to study the flow characteristics of fluids in confined spaces with different Reynolds numbers (Re) and gap-to-diameter ratios. The Reynolds stress model (RSM) is applied to solve the Reynolds averaged Navier-Stokes equation for the distribution laws of the mean flow, turbulence statistics and frictional resistance under different working conditions. The results show that as the Re increases, the rotational boundary layer gradually separates from the stationary boundary layer, and the local Re mainly affects the distribution of velocity at the stationary boundary, while the gap-to-diameter ratio mainly affects the distribution of velocity at the rotational boundary. The Reynolds stress is mainly distributed in boundary layers, and the Reynolds normal stress is slightly greater than the Reynolds shear stress. The turbulence is in the state of plane-strain limit. As the Re increases, the frictional resistance coefficient increases. When Re is within 104, the frictional resistance coefficient increases as the gap-to-diameter ratio decreases, while the frictional resistance coefficient drops to the minimum when the Re exceeds 105 and the gap-to-diameter ratio is 0.027. This study can enable a better understanding of the flow characteristics of microscale RSCs under different working conditions.

14.
Microorganisms ; 11(6)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37374991

RESUMEN

This study aimed to evaluate the survival of the probiotic Lactobacillus fermentum when it is encapsulated in powdered macroemulsions to develop a probiotic product with low water activity. For this purpose, the effect of the rotational speed of the rotor-stator and the spray-drying process was assessed on the microorganism survival and physical properties of probiotic high-oleic palm oil (HOPO) emulsions and powders. Two Box-Behnken experimental designs were carried out: in the first one, for the effect of the macro emulsification process, the numerical factors were the amount of HOPO, the velocity of the rotor-stator, and time, while the factors for the second one, the drying process, were the amount of HOPO, inoculum, and the inlet temperature. It was found that the droplet size (ADS) and polydispersity index (PdI) were influenced by HOPO concentration and time, ζ-potential by HOPO concentration and velocity, and creaming index (CI) by speed and time of homogenization. Additionally, HOPO concentration affected bacterial survival; the viability was between 78-99% after emulsion preparation and 83-107% after seven days. The spray-drying process showed a similar viable cell count before and after the drying process, a reduction between 0.04 and 0.8 Log10 CFUg-1; the moisture varied between 2.4% and 3.7%, values highly acceptable for probiotic products. We concluded that encapsulation of L. fermentum in powdered macroemulsions at the conditions studied is effective in obtaining a functional food from HOPO with optimal physical and probiotic properties according to national legislation (>106 CFU mL-1 or g-1).

15.
Microlife ; 4: uqad011, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223728

RESUMEN

The bacterial flagellar motor (BFM) is a rotary nanomachine powered by the translocation of ions across the inner membrane through the stator complex. The stator complex consists of two membrane proteins: MotA and MotB (in H+-powered motors), or PomA and PomB (in Na+-powered motors). In this study, we used ancestral sequence reconstruction (ASR) to probe which residues of MotA correlate with function and may have been conserved to preserve motor function. We reconstructed 10 ancestral sequences of MotA and found four of them were motile in combination with contemporary Escherichia coli MotB and in combination with our previously published functional ancestral MotBs. Sequence comparison between wild-type (WT) E. coli MotA and MotA-ASRs revealed 30 critical residues across multiple domains of MotA that were conserved among all motile stator units. These conserved residues included pore-facing, cytoplasm-facing, and MotA-MotA intermolecular facing sites. Overall, this work demonstrates the role of ASR in assessing conserved variable residues in a subunit of a molecular complex.

16.
Ultrason Sonochem ; 95: 106374, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37004412

RESUMEN

Sludge palm oil (SPO) with high free fatty acid (FFA) content was processed using a continuous and double-step esterification production process in a rotor-stator-type hydrodynamic cavitation reactor. Three-dimensional printed rotor was made of plastic filament and acted as a major element in minimizing the FFA content in SPO. To evaluate the reduced level of FFAs using both methods, five independent factors were varied: methanol content, sulphuric acid content (H2SO4), hole diameter, hole depth, and rotor speed. The first-step conditions for the esterification process included 60.8 vol% methanol content, 7.2 vol% H2SO4 content, 5.0 mm diameter of the hole, 6.1 mm depth of the hole, and 3000 rpm speed of the rotor. The initial free fatty acid content decreased from 89.16 wt% to 35.00 wt% by the predictive model, while 36.69 wt% FFA level and 94.4 vol% washed first-esterified oil yield were obtained from an actual experiment. In the second-step, 1.0 wt% FFA was achieved under the following conditions: 44.5 vol% methanol content, 3.0 vol% H2SO4 content, 4.6 mm hole diameter, 5.8 mm hole depth, and 3000 rpm rotor speed. The actual experiment produced 0.94 wt% FFA content and 93.9 vol% washed second-esterified oil yield. The entire process required an average electricity of 0.137 kWh/L to reduce the FFA level in the SPO below 1 wt%.

17.
Data Brief ; 47: 108952, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36852000

RESUMEN

Permanent magnet synchronous motors (PMSM) are widely used in industry applications such as home appliances, manufacturing process, high-speed trains, and electric vehicles. Unexpected faults of PMSM are directly related to the significant losses in the engineered systems. The majority of motor faults are bearing fault (mechanical) and stator fault (electrical). This article reports vibration and driving current dataset of three-phase PMSM with three different motor powers under eight different severities of stator fault. PMSM conditions including normal, inter-coil short circuit fault, and inter-turn short circuit fault in three motors are demonstrated with different powers of 1.0 kW, 1.5 kW and 3.0 kW, respectively. The PMSMs are operated under the same torque load condition and rotating speed. Dataset is acquired using one integrated electronics piezo-electric (IEPE) based accelerometer and three current transformers (CT) with National Instruments (NI) data acquisition (DAQ) board under international organization for standardization standard (ISO 10816-1:1995). Established dataset can be used to verify newly developed state-of-the-art methods for PMSM stator fault diagnosis. Mendeley Data. DOI: 10.17632/rgn5brrgrn.5.

18.
Methods Mol Biol ; 2646: 71-82, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36842107

RESUMEN

The bacterial flagellum employs a rotary motor embedded on the cell surface. The motor consists of the stator and rotor elements and is driven by ion influx (typically H+ or Na+) through an ion channel of the stator. Ion influx induces conformational changes in the stator, followed by changes in the interactions between the stator and rotor. The driving force to rotate the flagellum is thought to be generated by changing the stator-rotor interactions. In this chapter, we describe two methods for investigating the interactions between the stator and rotor: site-directed in vivo photo-crosslinking and site-directed in vivo cysteine disulfide crosslinking.


Asunto(s)
Proteínas Bacterianas , Flagelos , Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Iones/metabolismo , Proteínas Motoras Moleculares/metabolismo
19.
Methods Mol Biol ; 2646: 95-107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36842109

RESUMEN

The flagellar motor of marine Vibrio is driven by the sodium-motive force across the inner membrane. The stator complex, consisting of two membrane proteins PomA and PomB, is responsible for energy conversion in the motor. To understand the coupling of the Na+ flux with torque generation, it is essential to clearly identify the Na+-binding sites and the Na+ flux pathway through the stator channel. Although residues essential for Na+ flux have been identified by using mutational analysis, it has been difficult to observe Na+ binding to the PomAB stator complex. Here we describe a method to monitor the binding of Na+ to purified PomAB stator complex using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. This method demonstrates that Na+-binding sites are formed by critical aspartic acid and threonine residues located in the transmembrane segments of PomAB.


Asunto(s)
Proteínas Bacterianas , Flagelos , Proteínas Bacterianas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Flagelos/metabolismo , Vibrio alginolyticus/metabolismo , Sodio/metabolismo , Proteínas Motoras Moleculares/metabolismo
20.
Ultrasonics ; 129: 106910, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36512990

RESUMEN

Ultrasonic motors (USMs) are expected to be used in special environments: high magnetic field environments and space environments, which require lightweight and multiple degrees of freedom. However, when used as linear ultrasonic motors (LUSMs), a linear guide and a preload mechanism are required, complicating the structure. In the present paper, a hollow cylindrical linear stator without an extra linear guide has been considered. The stator consists of a metal pipe and two piezoelectric (PZT) tubes installed at both ends of the metal pipe. Their connected parts are tapered for the first longitudinal axisymmetric vibration mode of the cylinder, namely L(0,1) mode excitation, and the metal pipe is subjected to radial strain. The vibration of the stator is assumed to be one-dimensional and is modeled by an electromechanical equivalent circuit. The principle that the traveling wave is formed on the metal pipe by dual-PZT-tube phase difference excitation was clarified. Finite element analysis and some measurements were conducted to confirm that the theory was consistent. The analyses and measurements were in good agreement. Therefore, the operating principle was confirmed. The results of the transport experiment showed that the average speed of the 8.5-g slider was 7.9 mm/s.


Asunto(s)
Transductores , Vibración , Diseño de Equipo , Ultrasonido , Análisis de Elementos Finitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA