Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39296471

RESUMEN

Immunometabolism is a rapidly developing field that holds great promise for diagnostic and therapeutic benefits to human diseases. The field has emerged based on seminal findings from in vitro and ex vivo studies that established the fundamental role of metabolism in immune cell effector functions. Currently, the field is acknowledging the necessity of investigating cellular metabolism within the natural context of biological processes. Examining cells in their native microenvironment is essential not only to reveal cell-intrinsic mechanisms but also to understand how cross-talk between neighboring cells regulates metabolism at the tissue level in a local niche. This necessity is driving innovation and advancement in multiple imaging-based technologies to enable analysis of dynamic intracellular metabolism at the single-cell level, with spatial and temporal resolution. In this review, we tally the currently available imaging-based technologies and explore the emerging methods of Raman and autofluorescence lifetime imaging microscopy, which hold significant potential and offer broad applications in the field of immunometabolism.

2.
PeerJ ; 12: e17860, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39285924

RESUMEN

The development and progression of diseases in multicellular organisms unfold within the intricate three-dimensional body environment. Thus, to comprehensively understand the molecular mechanisms governing individual development and disease progression, precise acquisition of biological data, including genome, transcriptome, proteome, metabolome, and epigenome, with single-cell resolution and spatial information within the body's three-dimensional context, is essential. This foundational information serves as the basis for deciphering cellular and molecular mechanisms. Although single-cell multi-omics technology can provide biological information such as genome, transcriptome, proteome, metabolome, and epigenome with single-cell resolution, the sample preparation process leads to the loss of spatial information. Spatial multi-omics technology, however, facilitates the characterization of biological data, such as genome, transcriptome, proteome, metabolome, and epigenome in tissue samples, while retaining their spatial context. Consequently, these techniques significantly enhance our understanding of individual development and disease pathology. Currently, spatial multi-omics technology has played a vital role in elucidating various processes in tumor biology, including tumor occurrence, development, and metastasis, particularly in the realms of tumor immunity and the heterogeneity of the tumor microenvironment. Therefore, this article provides a comprehensive overview of spatial transcriptomics, spatial proteomics, and spatial metabolomics-related technologies and their application in research concerning esophageal cancer, gastric cancer, and colorectal cancer. The objective is to foster the research and implementation of spatial multi-omics technology in digestive tumor diseases. This review will provide new technical insights for molecular biology researchers.


Asunto(s)
Neoplasias Gastrointestinales , Metabolómica , Proteómica , Humanos , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/patología , Neoplasias Gastrointestinales/metabolismo , Genómica/métodos , Microambiente Tumoral , Transcriptoma , Multiómica
3.
Metabolism ; : 156034, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299512

RESUMEN

BACKGROUND: Cancer cachexia (CCx) presents a multifaceted challenge characterized by negative protein and energy balance and systemic inflammatory response activation. While previous CCx studies predominantly focused on mouse models or human body fluids, there's an unmet need to elucidate the molecular inter-organ cross-talk underlying the pathophysiology of human CCx. METHODS: Spatial metabolomics were conducted on liver, skeletal muscle, subcutaneous and visceral adipose tissue, and serum from cachectic and control cancer patients. Organ-wise comparisons were performed using component, pathway enrichment and correlation network analyses. Inter-organ correlations in CCx altered pathways were assessed using Circos. Machine learning on tissues and serum established classifiers as potential diagnostic biomarkers for CCx. RESULTS: Distinct metabolic pathway alteration was detected in CCx, with adipose tissues and liver displaying the most significant (P ≤ 0.05) metabolic disturbances. CCx patients exhibited increased metabolic activity in visceral and subcutaneous adipose tissues and liver, contrasting with decreased activity in muscle and serum compared to control patients. Carbohydrate, lipid, amino acid, and vitamin metabolism emerged as highly interacting pathways across different organ systems in CCx. Muscle tissue showed decreased (P ≤ 0.001) energy charge in CCx patients, while liver and adipose tissues displayed increased energy charge (P ≤ 0.001). We stratified CCx patients by severity and metabolic changes, finding that visceral adipose tissue is most affected, especially in cases of severe cachexia. Morphometric analysis showed smaller (P ≤ 0.05) adipocyte size in visceral adipose tissue, indicating catabolic processes. We developed tissue-based classifiers for cancer cachexia specific to individual organs, facilitating the transfer of patient serum as minimally invasive diagnostic markers of CCx in the constitution of the organs. CONCLUSIONS: These findings support the concept of CCx as a multi-organ syndrome with diverse metabolic alterations, providing insights into the pathophysiology and organ cross-talk of human CCx. This study pioneers spatial metabolomics for CCx, demonstrating the feasibility of distinguishing cachexia status at the organ level using serum.

4.
Pathol Res Pract ; 262: 155503, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128411

RESUMEN

Gastric cancer (GC), a globally prevalent and lethal malignancy, continues to be a key research focus. However, due to its considerable heterogeneity and complex pathogenesis, the treatment and diagnosis of gastric cancer still face significant challenges. With the rapid development of spatial omics technology, which provides insights into the spatial information within tumor tissues, it has emerged as a significant tool in gastric cancer research. This technology affords new insights into the pathology and molecular biology of gastric cancer for scientists. This review discusses recent advances in spatial omics technology for gastric cancer research, highlighting its applications in the tumor microenvironment (TME), tumor heterogeneity, tumor genesis and development mechanisms, and the identification of potential biomarkers and therapeutic targets. Moreover, this article highlights spatial omics' potential in precision medicine and summarizes existing challenges and future directions. It anticipates spatial omics' continuing impact on gastric cancer research, aiming to improve diagnostic and therapeutic approaches for patients. With this review, we aim to offer a comprehensive overview to scientists and clinicians in gastric cancer research, motivating further exploration and utilization of spatial omics technology. Our goal is to improve patient outcomes, including survival rates and quality of life.


Asunto(s)
Biomarcadores de Tumor , Genómica , Neoplasias Gástricas , Microambiente Tumoral , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Medicina de Precisión , Proteómica/métodos
5.
J Pharm Anal ; 14(7): 100944, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39131801

RESUMEN

Evaluating toxicity and decoding the underlying mechanisms of active compounds are crucial for drug development. In this study, we present an innovative, integrated approach that combines air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and spatial metabolomics to comprehensively investigate the nephrotoxicity and underlying mechanisms of nitidine chloride (NC), a promising anti-tumor drug candidate. Our quantitive AFADESI-MSI analysis unveiled the region specific of accumulation of NC in the kidney, particularly within the inner cortex (IC) region, following single and repeated dose of NC. High spatial resolution ToF-SIMS analysis further allowed us to precisely map the localization of NC within the renal tubule. Employing spatial metabolomics based on AFADESI-MSI, we identified over 70 discriminating endogenous metabolites associated with chronic NC exposure. These findings suggest the renal tubule as the primary target of NC toxicity and implicate renal transporters (organic cation transporters, multidrug and toxin extrusion, and organic cation transporter 2 (OCT2)), metabolic enzymes (protein arginine N-methyltransferase (PRMT) and nitric oxide synthase), mitochondria, oxidative stress, and inflammation in NC-induced nephrotoxicity. This study offers novel insights into NC-induced renal damage, representing a crucial step towards devising strategies to mitigate renal damage caused by this compound.

6.
Phytochem Anal ; 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39072901

RESUMEN

INTRODUCTION: Stemona tuberosa Lour. (ST) is a significant traditional Chinese medicine (TCM) renowned for its antitussive and insecticidal properties. ST is commonly subjected to processing in clinical practice before being utilized as a medicinal substance. Currently, the customary technique for processing ST is honey-fried. Nevertheless, the specific variations in chemical constituents of ST before and after honey-fried remain unclear. OBJECTIVE: This work aimed to analyze the variations in chemical constituents of ST before and after honey-fried and to study the distribution of differential markers in the roots. METHODS: UPLC-Orbitrap Fusion MS combined with molecular network analysis was used to analyze the metabolome of ST and honey-fried ST (HST) and to screen the differential metabolites by multivariate statistical analysis. Spatial metabolomics was applied to study the distribution of differential metabolites by desorption electrospray ionization mass spectrometry imaging (DESI-MSI). RESULTS: The ST and HST exhibited notable disparities, with 56 and 61 chemical constituents found from each, respectively. After processing, the types of alkaloids decreased, and 12 differential metabolites were screened from the common compounds. The notable component variations were epibisdehydro-tuberostemonine J, neostenine, tuberostemonine, croomine, neotuberostemonine, and so forth. MSI visualized the spatial distribution of differential metabolites. CONCLUSIONS: Our research provided a rapid and effective visualization method for the identification and spatial distribution of metabolites in ST. Compared with the traditional method, this method offered more convincing data supporting the processing mechanism investigations of Stemona tuberosa from a macroscopic perspective.

7.
Development ; 151(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38912552

RESUMEN

The field of developmental metabolism is experiencing a technological revolution that is opening entirely new fields of inquiry. Advances in metabolomics, small-molecule sensors, single-cell RNA sequencing and computational modeling present new opportunities for exploring cell-specific and tissue-specific metabolic networks, interorgan metabolic communication, and gene-by-metabolite interactions in time and space. Together, these advances not only present a means by which developmental biologists can tackle questions that have challenged the field for centuries, but also present young scientists with opportunities to define new areas of inquiry. These emerging frontiers of developmental metabolism were at the center of a highly interactive 2023 EMBO workshop 'Developmental metabolism: flows of energy, matter, and information'. Here, we summarize key discussions from this forum, emphasizing modern developmental biology's challenges and opportunities.


Asunto(s)
Biología Evolutiva , Biología Evolutiva/tendencias , Humanos , Animales , Metabolómica , Redes y Vías Metabólicas
8.
J Cereb Blood Flow Metab ; : 271678X241261949, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886876

RESUMEN

Postoperative cognitive dysfunction (POCD) is a common complication after cardiac surgery. Numerous evidence suggest that dysregulation of lipid metabolism is associated with cognitive impairment; however, its precise role in the development of POCD is still obscure. In this study, we established a cardiopulmonary bypass (CPB) model in rats and employed the Barnes maze to assess cognitive function, selecting POCD rats for subsequent experimentation. Utilizing mass spectrometry imaging, we detected plenty of lipids accumulates within the hippocampal CA1in the POCD group. Immunofluorescence staining revealed a significant reduction in the fluorescence intensity of calcium-independent phospholipases A2 (iPLA2) in the POCD group compared to the control, while serine palmitoyl transferase (SPT) was markedly increased in the POCD group. Transmission electron microscopy revealed that the number of synapses in hippocampal CA1decreased significantly and postsynaptic density became thinner in POCD group. Furthermore, after reversing the metabolic disorders of iPLA2 and SPT in the rat brain with docosahexaenoic acid and myriocin, the incidence of POCD after CPB was significantly reduced and the disrupted lipid metabolism in the hippocampus was also normalized. These findings may offer a novel perspective for exploring the etiology and prevention strategies of POCD after CPB.

9.
Eur J Pharmacol ; 975: 176639, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38729415

RESUMEN

Anlotinib, an orally administered small molecule inhibitor of receptor tyrosine kinases (RTKs), exerts significant anti-angiogenic and vascular normalization effects. However, the mechanisms underlying its involvement in tumor metabolic reprogramming are still unclear. This study aims to investigate the distribution and expression levels of metabolites within tumors after anlotinib treatment using spatial metabolomics analysis. Subsequently, by integrating the transcriptomics and proteomics analyses, we identified that anlotinib treatment primarily modulated four metabolic pathways, including taurine and hypotaurine metabolism, steroid synthesis, pentose phosphate pathway, and lipid biosynthesis. This regulation significantly influenced the metabolic levels of compounds such as sulfonic acids, cholesterol, inositol phosphate pyrophosphate, and palmitoyl-CoA in the tumor, thereby impacting tumor initiation and progression. This study provides potential metabolic biomarkers for anlotinib treatment in tumors.


Asunto(s)
Indoles , Quinolinas , Quinolinas/farmacología , Indoles/farmacología , Indoles/uso terapéutico , Animales , Humanos , Metabolómica , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ratones , Proteómica , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Masculino , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Multiómica
10.
Metabolites ; 14(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38786761

RESUMEN

Depression is associated with pathological changes and metabolic abnormalities in multiple brain regions. The simultaneous comprehensive and in situ detection of endogenous molecules in all brain regions is essential for a comprehensive understanding of depression pathology, which is described in this paper. A method based on desorption electrospray ionization mass spectrometry imaging (DESI-MSI) technology was developed to classify mouse brain regions using characteristic lipid molecules and to detect the metabolites in mouse brain tissue samples simultaneously. The results showed that characteristic lipid molecules can be used to clearly distinguish each subdivision of the mouse brain, and the accuracy of this method is higher than that of the conventional staining method. The cerebellar cortex, medial prefrontal cortex, hippocampus, striatum, nucleus accumbens-core, and nucleus accumbens-shell exhibited the most significant differences in the chronic social defeat stress model. An analysis of metabolic pathways revealed that 13 kinds of molecules related to energy metabolism and purine metabolism exhibited significant changes. A DESI-MSI method was developed for the detection of pathological brain sections. We found, for the first time, that there are characteristic changes in the energy metabolism in the cortex and purine metabolism in the striatum, which is highly important for obtaining a deeper and more comprehensive understanding of the pathology of depression and discovering regulatory targets.

11.
J Pharm Anal ; 14(4): 100910, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38655398

RESUMEN

Eclipta prostrata L. has been used in traditional medicine and known for its liver-protective properties for centuries. Wedelolactone (WEL) and demethylwedelolactone (DWEL) are the major coumarins found in E. prostrata L. However, the comprehensive characterization of these two compounds on non-alcoholic fatty liver disease (NAFLD) still remains to be explored. Utilizing a well-established zebrafish model of thioacetamide (TAA)-induced liver injury, the present study sought to investigate the impacts and mechanisms of WEL and DWEL on NAFLD through integrative spatial metabolomics with liver-specific transcriptomics analysis. Our results showed that WEL and DWEL significantly improved liver function and reduced the accumulation of fat in the liver. The biodistributions and metabolism of these two compounds in whole-body zebrafish were successfully mapped, and the discriminatory endogenous metabolites reversely regulated by WEL and DWEL treatments were also characterized. Based on spatial metabolomics and transcriptomics, we identified that steroid biosynthesis and fatty acid metabolism are mainly involved in the hepatoprotective effects of WEL instead of DWEL. Our study unveils the distinct mechanism of WEL and DWEL in ameliorating NAFLD, and presents a "multi-omics" platform of spatial metabolomics and liver-specific transcriptomics to develop highly effective compounds for further improved therapy.

12.
J Pharm Anal ; 14(2): 196-210, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38464782

RESUMEN

Adjuvant chemotherapy improves the survival outlook for patients undergoing operations for lung metastases caused by colorectal cancer (CRC). However, a multidisciplinary approach that evaluates several factors related to patient and tumor characteristics is necessary for managing chemotherapy treatment in metastatic CRC patients with lung disease, as such factors dictate the timing and drug regimen, which may affect treatment response and prognosis. In this study, we explore the potential of spatial metabolomics for evaluating metabolic phenotypes and therapy outcomes during the local delivery of the anticancer drug, oxaliplatin, to the lung. 12 male Yorkshire pigs underwent a 3 h left lung in vivo lung perfusion (IVLP) with various doses of oxaliplatin (7.5, 10, 20, 40, and 80 mg/L), which were administered to the perfusion circuit reservoir as a bolus. Biocompatible solid-phase microextraction (SPME) microprobes were combined with global metabolite profiling to obtain spatiotemporal information about the activity of the drug, determine toxic doses that exceed therapeutic efficacy, and conduct a mechanistic exploration of associated lung injury. Mild and subclinical lung injury was observed at 40 mg/L of oxaliplatin, and significant compromise of the hemodynamic lung function was found at 80 mg/L. This result was associated with massive alterations in metabolic patterns of lung tissue and perfusate, resulting in a total of 139 discriminant compounds. Uncontrolled inflammatory response, abnormalities in energy metabolism, and mitochondrial dysfunction next to accelerated kynurenine and aldosterone production were recognized as distinct features of dysregulated metabolipidome. Spatial pharmacometabolomics may be a promising tool for identifying pathological responses to chemotherapy.

13.
Front Plant Sci ; 15: 1346853, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495374

RESUMEN

The impact of water-deficit (WD) stress on plant metabolism has been predominantly studied at the whole tissue level. However, plant tissues are made of several distinct cell types with unique and differentiated functions, which limits whole tissue 'omics'-based studies to determine only an averaged molecular signature arising from multiple cell types. Advancements in spatial omics technologies provide an opportunity to understand the molecular mechanisms underlying plant responses to WD stress at distinct cell-type levels. Here, we studied the spatiotemporal metabolic responses of two poplar (Populus tremula× P. alba) leaf cell types -palisade and vascular cells- to WD stress using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI). We identified unique WD stress-mediated metabolic shifts in each leaf cell type when exposed to early and prolonged WD stresses and recovery from stress. During water-limited conditions, flavonoids and phenolic metabolites were exclusively accumulated in leaf palisade cells. However, vascular cells mainly accumulated sugars and fatty acids during stress and recovery conditions, respectively, highlighting the functional divergence of leaf cell types in response to WD stress. By comparing our MALDI-MSI metabolic data with whole leaf tissue gas chromatography-mass spectrometry (GC-MS)-based metabolic profile, we identified only a few metabolites including monosaccharides, hexose phosphates, and palmitic acid that showed a similar accumulation trend at both cell-type and whole leaf tissue levels. Overall, this work highlights the potential of the MSI approach to complement the whole tissue-based metabolomics techniques and provides a novel spatiotemporal understanding of plant metabolic responses to WD stress. This will help engineer specific metabolic pathways at a cellular level in strategic perennial trees like poplars to help withstand future aberrations in environmental conditions and to increase bioenergy sustainability.

14.
Am J Nephrol ; 55(4): 421-438, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38432206

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) presents a persistent global health challenge, characterized by complex pathophysiology and diverse progression patterns. Metabolomics has emerged as a valuable tool in unraveling the intricate molecular mechanisms driving CKD progression. SUMMARY: This comprehensive review provides a summary of recent progress in the field of metabolomics in kidney disease with a focus on spatial metabolomics to shed important insights to enhancing our understanding of CKD progression, emphasizing its transformative potential in early disease detection, refined risk assessment, and the development of targeted interventions to improve patient outcomes. KEY MESSAGE: Through an extensive analysis of metabolic pathways and small-molecule fluctuations, bulk and spatial metabolomics offers unique insights spanning the entire spectrum of CKD, from early stages to advanced disease states. Recent advances in metabolomics technology have enabled spatial identification of biomarkers to provide breakthrough discoveries in predicting CKD trajectory and enabling personalized risk assessment. Furthermore, metabolomics can help decipher the complex molecular intricacies associated with kidney diseases for exciting novel therapeutic approaches. A recent example is the identification of adenine as a key marker of kidney fibrosis for diabetic kidney disease using both untargeted and targeted bulk and spatial metabolomics. The metabolomics studies were critical to identify a new biomarker for kidney failure and to guide new therapeutics for diabetic kidney disease. Similar approaches are being pursued for acute kidney injury and other kidney diseases to enhance precision medicine decision-making.


Asunto(s)
Adenina , Toma de Decisiones Clínicas , Metabolómica , Insuficiencia Renal Crónica , Humanos , Metabolómica/métodos , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/diagnóstico , Adenina/metabolismo , Biomarcadores/metabolismo , Progresión de la Enfermedad
15.
Cell Metab ; 36(5): 1105-1125.e10, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38513647

RESUMEN

A large-scale multimodal atlas that includes major kidney regions is lacking. Here, we employed simultaneous high-throughput single-cell ATAC/RNA sequencing (SHARE-seq) and spatially resolved metabolomics to profile 54 human samples from distinct kidney anatomical regions. We generated transcriptomes of 446,267 cells and chromatin accessibility profiles of 401,875 cells and developed a package to analyze 408,218 spatially resolved metabolomes. We find that the same cell type, including thin limb, thick ascending limb loop of Henle and principal cells, display distinct transcriptomic, chromatin accessibility, and metabolomic signatures, depending on anatomic location. Surveying metabolism-associated gene profiles revealed non-overlapping metabolic signatures between nephron segments and dysregulated lipid metabolism in diseased proximal tubule (PT) cells. Integrating multimodal omics with clinical data identified PLEKHA1 as a disease marker, and its in vitro knockdown increased gene expression in PT differentiation, suggesting possible pathogenic roles. This study highlights previously underrepresented cellular heterogeneity underlying the human kidney anatomy.


Asunto(s)
Epigenómica , Riñón , Metabolómica , Transcriptoma , Humanos , Riñón/metabolismo , Masculino , Perfilación de la Expresión Génica , Femenino
16.
J Pharm Biomed Anal ; 242: 116030, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382318

RESUMEN

Liver's distinctive function renders it highly susceptible to diverse damage sources. Characterizing the metabolic profiles and spatial signatures in different liver injuries is imperative for early diagnosis and etiology-oriented treatment. In this comparative study, we conducted whole-body spatial metabolomics on zebrafish with liver injury induced by ethanol (EtOH), acetaminophen (APAP), and thioacetamide (TAA). The two specific levels, the whole-body and liver-specific metabolic profiles, as well as their regional distributions, were systematically mapped in situ by mass spectrometry imaging, which is distinct from conventional LC-MS and GC-MS methods. We found that liver injury regions exhibited more pronounced metabolic reprogramming than the entire organism, leading to significant alterations in eight fatty acids, three phospholipids, and four low-molecular-weight metabolites. More importantly, fatty acids as well as small molecule metabolites including glutamine, glutamate, taurine and malic acid displayed contrasting changes between alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). In addition, phospholipids, including Lyso PC (16:0) and Lyso PE (18:0), demonstrated notable down-regulation in all damaged liver, whereas PC (34:1) underwent upregulation. This study not only deepens insights into distinct potential biomarkers for liver injuries, but also underscores spatial metabolomics as a powerful tool to elucidate possible pathogenic mechanisms in other metabolic diseases.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Pez Cebra , Animales , Pez Cebra/metabolismo , Hígado/metabolismo , Metabolómica/métodos , Espectrometría de Masas , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácidos Grasos/metabolismo , Fosfolípidos/metabolismo
17.
Methods Mol Biol ; 2769: 199-209, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38315399

RESUMEN

Liver cancers are characterized by interindividual and intratumoral heterogeneity, which makes early diagnosis and the development of therapies challenging. Desorption electrospray ionization mass spectrometry (DESI-MS) imaging is a potent and sensitive MS ionization technique for direct, unaltered 2D and 3D imaging of metabolites in complex biological samples. Indeed, DESI gently desorbs and ionizes analyte molecules from the sample surface using an electrospray source of highly charged aqueous spray droplets in ambient conditions. DESI-MS imaging of biological samples allows untargeted analysis and characterization of metabolites in liver cancers to identify new biomarkers of malignancy. In this chapter, we described a detailed protocol using liver cancer samples collected and stored for histopathology examination, either as frozen or as formalin-fixed, paraffin-embedded specimens. Such hepatocellular carcinoma samples can be subjected to DESI-MS analyses, illustrating the capacity of spatially resolved metabolomics to distinguish malignant lesions from adjacent normal liver tissue.


Asunto(s)
Neoplasias Hepáticas , Espectrometría de Masa por Ionización de Electrospray , Humanos , Espectrometría de Masa por Ionización de Electrospray/métodos , Metabolómica , Neoplasias Hepáticas/diagnóstico por imagen , Biomarcadores
18.
Se Pu ; 42(2): 150-158, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38374595

RESUMEN

Environmental exposures have significant impacts on human health and can contribute to the occurrence and development of diseases. Pollutants can enter the body through ingestion, inhalation, dermal absorption, or mother-to-child transmission, and can metabolize and/or accumulate in different tissues and organs. These pollutants can recognize and interact with various biomolecules, including DNA, RNA, proteins, and metabolites, disrupting biological processes and leading to adverse effects in living organisms. Thus, it is crucial to analysis the exogenous pollutants in the body, identify potential biomarkers and investigate their toxic effects. Numerous studies have shown that the metabolism rate of environmental pollutants greatly differs in various tissues and organs, their accumulation is also heterogeneous and dynamically changing. Moreover, the synthesis and accumulation of endogenous metabolites exhibit precise spatial distributions in tissues and cells. Mapping the spatial distributions of both pollutants and endogenous metabolites can discover relevant exposure biomarkers and provide a better understanding of their toxic effects and molecular mechanisms. Mass spectrometry is currently the preferred method for the qualitative and quantitative analysis of various compounds, and has been extensively utilized in pollutant and metabolomics analyses. Mass spectrometry imaging (MSI) is an emerging technology for molecular imaging that combines the information obtained by mass spectrometry with the visualization of the two- and three-dimensional spatial distributions of various molecular species in thin sample sections. Unlike other molecular imaging techniques, MSI can perform the label-free and untargeted analysis of thousands of molecules, such as elements, metabolites, lipids, peptides, proteins, pollutants, and drugs, in a single experiment with high sensitivity and throughput. Different MSI technologies, such as matrix-assisted laser desorption ionization mass spectrometry imaging, secondary ion mass spectrometry imaging, desorption electrospray ionization mass spectrometry imaging, and laser ablation inductively coupled plasma mass spectrometry imaging, have been introduced for the mapping of compounds and elements in biological, medical, and clinical research. MSI technologies have recently been utilized to characterize the spatial distribution of pollutants in the whole body and specific tissues of organisms, assess the toxic effects of pollutants at the molecular level, and identify exposure biomarkers. Such developments have brought new perspectives to investigate the toxicity of environmental pollutants. In this review, we provide an overview of the principles, characteristics, mass analyzers, and workflows of different MSI techniques and introduce their latest application advances in the analysis of environmental pollutants and their toxic effects.


Asunto(s)
Contaminantes Ambientales , Femenino , Humanos , Contaminantes Ambientales/toxicidad , Transmisión Vertical de Enfermedad Infecciosa , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Tecnología , Biomarcadores
19.
Cancer Biother Radiopharm ; 39(1): 35-45, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181185

RESUMEN

With the development of the social economy and the deepening understanding of cancer, cancer has become a significant cause of death, threatening human health. Although researchers have made rapid progress in cancer treatment strategies in recent years, the overall survival of cancer patients is still not optimistic. Therefore, it is essential to reveal the spatial pattern of gene expression, spatial heterogeneity of cell populations, microenvironment interactions, and other aspects of cancer. Spatiotemporal transcriptomics can help analyze the mechanism of cancer occurrence and development, greatly help precise cancer treatment, and improve clinical prognosis. Here, we review the integration strategies of single-cell RNA sequencing and spatial transcriptomics data, summarize the recent advances in spatiotemporal transcriptomics in cancer studies, and discuss the combined application of spatial multiomics, which provides new directions and strategies for the precise treatment and clinical prognosis of cancer.


Asunto(s)
Neoplasias , Medicina de Precisión , Humanos , Perfilación de la Expresión Génica , Neoplasias/genética , Neoplasias/terapia , Microambiente Tumoral/genética
20.
Adv Sci (Weinh) ; 11(12): e2306515, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38229179

RESUMEN

In South and Southeast Asia, the habit of chewing betel nuts is prevalent, which leads to oral submucous fibrosis (OSF). OSF is a well-established precancerous lesion, and a portion of OSF cases eventually progress to oral squamous cell carcinoma (OSCC). However, the specific molecular mechanisms underlying the malignant transformation of OSCC from OSF are poorly understood. In this study, the leading-edge techniques of Spatial Transcriptomics (ST) and Spatial Metabolomics (SM) are integrated to obtain spatial location information of cancer cells, fibroblasts, and immune cells, as well as the transcriptomic and metabolomic landscapes in OSF-derived OSCC tissues. This work reveals for the first time that some OSF-derived OSCC cells undergo partial epithelial-mesenchymal transition (pEMT) within the in situ carcinoma (ISC) region, eventually acquiring fibroblast-like phenotypes and participating in collagen deposition. Complex interactions among epithelial cells, fibroblasts, and immune cells in the tumor microenvironment are demonstrated. Most importantly, significant metabolic reprogramming in OSF-derived OSCC, including abnormal polyamine metabolism, potentially playing a pivotal role in promoting tumorigenesis and immune evasion is discovered. The ST and SM data in this study shed new light on deciphering the mechanisms of OSF-derived OSCC. The work also offers invaluable clues for the prevention and treatment of OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Fibrosis de la Submucosa Bucal , Humanos , Fibrosis de la Submucosa Bucal/genética , Fibrosis de la Submucosa Bucal/metabolismo , Fibrosis de la Submucosa Bucal/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeza y Cuello , Transcriptoma , Microambiente Tumoral , Transformación Celular Neoplásica , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA