Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2409839, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279547

RESUMEN

Multiscale particle size functional pesticide carriers can provide more efficient protection for plants, but this protection is difficult to achieve via single-scale formulation technology. This study presents a novel one-step method for the preparation of lignin-based micro/nanocapsules with controllable proportions within a unified system. This strategy enables the adjustment of the proportion of nanocapsules to between 18.81% and 85.21%. The microcapsules (MCs) vary in diameter from 2 to 3 µm, whereas the nanocapsules (NCs) span from 160 to 220 nm, with an encapsulation efficiency exceeding 90%. An increased proportion of NCs in the system leads to faster release, heightened sensitivity to UV light, and enhanced penetration into the leaves. During Phytophthora capsici (P. capsici) infection, the NCs in the leaves interact with the defensive enzymes of the plant to quickly respond. Moreover, an optimal balance of MCs and NCs is key to effective fungicide use, not just a higher concentration of NCs. A 65:35 ratio of NCs to MCs ensures effective inhibition of P. capsici outside leaves and a rapid response to leaf invasion. This study enhances fungicide efficiency and advances the development of nanoresponsive fungicides to promote sustainable agricultural practices.

2.
Int J Biol Macromol ; 273(Pt 2): 132945, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38851614

RESUMEN

The extensive utilization of non-biodegradable plastic agricultural mulch in the past few decades has resulted in severe environmental pollution and a decline in soil fertility. The present study involves the fabrication of environmentally friendly paper-based mulch with dual functionality, incorporating agrochemicals and heavy metal ligands, through a sustainable papermaking/coating technique. The functional paper-based mulch consists of a cellulose fiber web incorporated with Emamectin Benzoate (EB)@ Aminated sodium lignosulfonate (ASL). The spherical microcapsules loaded with the pesticide EB exhibited an optimal core-shell structure for enhanced protection and controlled release of the photosensitizer EB (Sustained release >75 % in 50 h). Meanwhile, the ASL, enriched with metal chelating groups (-COOH, -OH, and -NH2, etc.), served as a stabilizing agent for heavy metal ions, enhancing soil remediation efficiency. The performance of paper-based mulch was enhanced by the application of a hydrophobic layer composed of natural chitosan/carnauba wax, resulting in exceptional characteristics such as superior tensile strength, hydrophobicity, heat insulation, moisture retention, as well as compostability and biodegradability (biodegradation >80 % after 70 days). This study developed a revolutionary lignocellulosic eco-friendly mulch that enables controlled agrochemical release and soil heavy metal remediation, leading to a superior substitute to conventional and non-biodegradable plastic mulch used in agriculture.


Asunto(s)
Lignina , Metales Pesados , Plaguicidas , Metales Pesados/química , Lignina/química , Lignina/análogos & derivados , Plaguicidas/química , Preparaciones de Acción Retardada , Plásticos/química , Contaminantes del Suelo/química , Agricultura/métodos , Quitosano/química , Fármacos Fotosensibilizantes/química , Biodegradación Ambiental , Suelo/química
3.
Int J Biol Macromol ; 273(Pt 2): 133110, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876230

RESUMEN

In food packaging, sodium lignosulfonate nanoparticles (SLS NPs) showed significant antibacterial properties, antioxidant and UV barrier activities. Herein, the SLS NPs were synthesized via a sustainable green method and were added into egg albumin/sodium alginate mixture (EA/SA) to fabricate a safe, edible EA/SA/SNPs food packaging. A composite film EA/SA/SNP was examined microstructurally and physicochemically. The mechanical characteristics, UV protection, water resistance, and the composite film's thermal stability were all enhanced by the inclusion of SLS NPs, and water vapor permeability reduced by 44 %. This composite film exhibited robust antioxidative properties with DPPH and ABTS free radical scavenging rates reaching 76.84 % and 92.56 %, and effective antimicrobial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) with antibacterial rates reaching 98.25 % and 97.13 % for the positively charged nanoparticles interacting with the cell membrane. Freshness tests showed that the EA/SA/SNPs packaging film could delay the quality deterioration of fresh tomatoes. This composite film can slow down spoilage bacteria proliferation and prolongs food's preservation period by eight days at ambient temperature.


Asunto(s)
Alginatos , Antibacterianos , Antioxidantes , Embalaje de Alimentos , Lignina , Nanopartículas , Alginatos/química , Alginatos/farmacología , Embalaje de Alimentos/métodos , Nanopartículas/química , Antioxidantes/farmacología , Antioxidantes/química , Antibacterianos/farmacología , Antibacterianos/química , Lignina/química , Lignina/análogos & derivados , Lignina/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Permeabilidad , Vapor
4.
Int J Biol Macromol ; 270(Pt 1): 132148, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723800

RESUMEN

Herein, a straightforward protocol was developed for the one-pot synthesis of N-doped lignosulfonate-derived carbons (NLDCs) with a tunable porous structure using natural amino acids-templated self-assembly strategy. Specifically, histidine was employed as a template reagent, leading to the preparation of 10-NLDC-21 with remarkable characteristics, including the large specific surface area (SBET = 1844.5 m2/g), pore volume (Vmes = 1.22 cm3/g) and efficient adsorption for atrazine (ATZ) removal. The adsorption behavior of ATZ by NLDCs followed the Langmuir and pseudo-second-order models, suggesting a monolayer chemisorption nature of ATZ adsorption with the maximum adsorption capacity reached up to 265.77 mg/g. Furthermore, NLDCs exhibited excellent environmental adaptability and recycling performance. The robust affinity could be attributed to multi-interactions including pore filling, electrostatic attraction, hydrogen bonding and π-π stacking between the adsorbents and ATZ molecules. This approach offers a practical method for exploring innovative bio-carbon materials for sewage treatment.


Asunto(s)
Atrazina , Carbono , Lignina , Contaminantes Químicos del Agua , Atrazina/química , Lignina/química , Lignina/análogos & derivados , Porosidad , Adsorción , Carbono/química , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Cinética
5.
Int J Biol Macromol ; 268(Pt 1): 131639, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641278

RESUMEN

The phenomenon of overlapping double layers due to micropores inhibits capacitive deionization performance, which is improved by increasing the pore size. In this study, a novel ternary composite electrode (sodium lignosulfonate/reduced graphene oxide/cobalt sulfide, LGC) was designed using a two-step hydrothermal method. CoS with high pseudocapacitance modifies sodium lignosulfonate and graphene connected by hydrogen bonding, benefiting from the constitutive steric structure. The electrochemical performance was significantly enhanced, and the desalination capacity substantially improved. The LGC electrode specific capacitance was as high as 354.47 F g-1 at a 1 A g-1 current density. The desalination capacity of the capacitive deionization device comprising LGC and activated carbon in 1 M NaCl electrolyte reached 28.04 mg g-1 at an operating condition of 1.2 V, 7 mL min-1. Additionally, the LGC electrodes degraded naturally post the experiment by simply removing the CoS, suggesting that the LGC composites are promising material for capacitive deionization electrodes.


Asunto(s)
Cobalto , Electrodos , Grafito , Lignina , Grafito/química , Lignina/química , Lignina/análogos & derivados , Cobalto/química , Porosidad , Purificación del Agua/métodos , Capacidad Eléctrica , Cloruro de Sodio/química
6.
J Colloid Interface Sci ; 664: 251-262, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38467090

RESUMEN

Ruthenium (Ru) nanoparticles dispersed on carbon support are promising electrocatalysts for hydrogen evolution reaction (HER) due to strong electronic metal-carbon interactions (EMCIs). Defects engineering in carbon supports is an effective strategy to adjust EMCIs. We prepared nitrogen/sulfur co-doped carbon supported Ru nanoparticles (Ru@N/S-LC) using sodium lignosulfonate and urea as feedstocks. Intrinsic S dopants from sodium lignosulfonate create rich S defects, thus enhancing the EMCIs within Ru@N/S-LC, leading a faster electron transfer between Ru nanoparticles and N/S-LC compared with N-doped carbon supported Ru nanoparticles (Ru@N-CC). The resulting Ru@N/S-LC exhibits an enhanced work function and a down-shifted d-band center, inducing stronger electron capturing ability and weaker hydrogen desorption energy than Ru@N-CC. Ru@N/S-LC requires only 7 and 94 mV overpotential in acidic medium and alkaline medium to achieve a current density of 10 mA cm-2. Density Functional Theory (DFT) calculations were utilized to clarify the impact of sulfur (S) doping and the mechanism underlying the notable catalytic activity of Ru@N/S-LC. This study offers a perspective for utilizing the natural dopants of biomass to adjust the EMCIs for electrocatalysts.

7.
Materials (Basel) ; 17(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38473518

RESUMEN

The aminated sodium lignosulfonate (AELS) was prepared through a Mannich reaction and characterized via FT-IR, TG, SEM and XPS in this study. Subsequently, the adsorption capacity of AELS for methyl blue (MB) was evaluated under various conditions such as pH, adsorbent dosage, contact time, initial concentration and temperature. The adsorption kinetics, isotherms and thermodynamics of AELS for methyl blue were investigated and analyzed. The results were found to closely adhere to the pseudo-second-order kinetic model and Langmuir isotherm model, suggesting a single-molecular-layer adsorption process. Notably, the maximum adsorption capacity of AELS for methyl blue (153.42 mg g-1) was achieved under the specified conditions (T = 298 K, MAELS = 0.01 g, pH = 6, VMB = 25 mL, C0 = 300 mg L-1). The adsorption process was determined to be spontaneous and endothermic. Following five adsorption cycles, the adsorption capacity exhibited a minimal reduction from 118.99 mg g-1 to 114.33 mg g-1, indicating good stability. This study contributes to the advancement of utilizing natural resources effectively and sustainably.

8.
Materials (Basel) ; 17(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38473686

RESUMEN

Synthetic dyes are prone to water pollution during use, jeopardizing biodiversity and human health. This study aimed to investigate the adsorption and photocatalytic assist potential of sodium lignosulfonate (LS) in in situ reduced silver nanoparticles (AgNPs) and chitosan (CS)-loaded silver nanoparticles (CS-LS/AgNPs) as adsorbents for Rhodamine B (RhB). The AgNPs were synthesized by doping LS on the surface of chitosan for modification. Fourier transform infrared (FT-IR) spectrometry, energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to confirm the synthesis of nanomaterials. The adsorption and photocatalytic removal experiments of RhB were carried out under optimal conditions (initial dye concentration of 20 mg/L, adsorbent dosage of 0.02 g, time of 60 min, and UV power of 250 W), and the kinetics of dye degradation was also investigated, which showed that the removal rate of RhB by AgNPs photocatalysis can reach 55%. The results indicated that LS was highly effective as a reducing agent for the large-scale production of metal nanoparticles and can be used for dye decolorization. This work provides a new catalyst for the effective removal of dye from wastewater, and can achieve high-value applications of chitosan and lignin.

9.
Int J Biol Macromol ; 265(Pt 2): 130981, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513894

RESUMEN

High-value utilization of bleached lignin has been widely used in different fields, whereas the investigation on darkened lignin in composite materials was often ignored. In this work, a sort of eco-friendly and structurally robust sodium carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA)/sodium lignosulfonate (SLS) black composite mulch film was elaborately designed. The chelation and redox reaction effect between Fe ions and SLS lead to the formation of a more quinones structure on lignin, darkening both lignin and the mulch films. The chelation effect between Fe ions and biopolymer formed three-dimensional structures, which can be used as sacrifice bonds to dissipate energy and improve the mechanical properties of the composite films. In particular, the maximum elongation at break and toughness increased from 48.4 % and 1141 kJ/m3 for the CMC/PVA film to 210.9 % and 1426 kJ/m3 for the optimized CMC/PVA/SLS/Fe black mulch film, respectively. In addition, the optimized black mulch film also possesses good soil water retention, thermal preservation effect, controlled urea release, and well biodegradability. This work offered a novel strategy for designing eco-friendly black mulch with reinforced mechanical strength, slow-release urea, soil moisture retention, and heat preservation performances.


Asunto(s)
Hierro , Lignina , Agricultura/métodos , Suelo , Alcohol Polivinílico/química , Urea , Sodio
10.
Heliyon ; 10(4): e26047, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38384565

RESUMEN

Chronic wounds represent one of the complications that might occur from the disruption of wound healing process. Recently, there has been a rise in interest in employing nanotechnology to develop novel strategies for accelerating wound healing. The aim of the present study was to use a green synthesis method to obtain AgNPs/NaLS systems useful for wounds management and perform an in-depth investigation of their behavior during and post-synthesis as well as of their biological properties. The colloids obtained from silver nanoparticles (AgNPs) and commercial sodium lignosulfonate (NaLS) in a single-pot aqueous procedure have been fully characterized by UV-Vis, FT-IR, DLS, TEM, XRD, and XPS to evaluate the synthesis efficiency and to provide new insights in the process of AgNPs formation and NaLS behavior in aqueous solutions. The effects of various concentrations of NaLS (0-16 mg/mL) and AgNO3 (0-20 mM) and of two different temperatures on AgNPs formation have been analyzed. Although the room temperature is feasible for AgNPs synthesis, the short mixing at 70 °C significantly increases the speed of nanoparticle formation and storage stability. In all experimental conditions AgNPs of 20-40 nm in size have been obtained. The antimicrobial activity assessed quantitatively on clinical and reference bacterial strains, both in suspension and biofilm growth state, revealed a broad antimicrobial spectrum, the most intensive inhibitory effect being noticed against Pseudomonas aeruginosa and Escherichia coli strains. The AgNP/NaLS enhanced the NO extracellular release, potentially contributing to the microbicidal and anti-adherence activity by protein oxidation. Both AgNP/NaLS and NaLS were non-hemolytic (hemolytic index<5%, 2.26 ± 0.13% hemolysis) and biocompatible (102.17 ± 3.43 % HaCaT cells viability). The presence of AgNPs increased the antioxidative activity and induced a significant cytotoxicity on non-melanoma skin cancer cells (62.86 ± 8.27% Cal-27 cells viability). Taken together, all these features suggest the multivalent potential of these colloids for the development of novel strategies for wound management, acting by preventing infection-associated complications and supporting the tissue regeneration.

11.
Small ; 20(28): e2312085, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38342594

RESUMEN

Developing high-performance lignin anti-corrosive waterborne epoxy (WEP) coatings is conducive to the advancement of environmentally friendly coatings and the value-added utilization of lignin. In this work, a functionalized biomass waterborne epoxy composite coating is prepared using quaternized sodium lignosulfonate (QLS) as a functional nanofiller for mild carbon steel protection. The results showed that QLS has excellent dispersion and interface compatibility within WEP, and its abundant phenolic hydroxyl, sulfonate, quaternary ammonium groups, and nanoparticle structure endowed the coating with excellent corrosion inhibition and superior barrier properties. The corrosion inhibition efficiency of 100 mg L-1 QLS in carbon steel immersed in a 3.5 wt% NaCl solution reached 95.76%. Furthermore, the coating maintained an impedance modulus of 2.29 × 106 Ω cm2 (|Z|0.01 Hz) after being immersed for 51 days in the high-salt system. In addition, QLS imparted UV-blocking properties and thermal-oxygen aging resistance to the coating, as evidenced by a |Z|0.01 Hz of 1.04 × 107 Ω cm2 after seven days of UV aging while still maintaining a similar magnitude as before aging. The green lignin/WEP functional coatings effectively withstand the challenging outdoor environment characterized by high salt concentration and intense UV radiation, thereby demonstrating promising prospects for application in metal protection.

12.
Int J Biol Macromol ; 260(Pt 2): 129570, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246456

RESUMEN

Sodium lignosulfonate, an abundant natural resource, is regarded as an ideal precursor for the synthesis of hard carbon. The development of high-performance, low-cost and sustainable anode materials is a significant challenge facing lithium-ion batteries (LIBs). The modulation of morphology and defect structure during thermal transformation is crucial to improve Li+ storage behavior. Synthesized using sodium lignosulfonate as a precursor, two-dimensional carbon nanosheets with a high density of defects were produced. The synergistic influence of ice templates and KCl was leveraged, where the ice prevented clumping of potassium chloride during drying, and the latter served as a skeletal support during pyrolysis. This resulted in the formation of an interconnected two-dimensional nanosheet structure through the combined action of both templates. The optimized sample has a charging capacity of 712.4 mA h g-1 at 0.1 A g-1, which is contributed by the slope region. After 200 cycles at 0.2 A g-1, the specific charge capacity remains 514.4 mA h g-1, and a high specific charge capacity of 333.8 mA h g-1 after 800 cycles at 2 A g-1. The proposed investigation offers a promising approach for developing high-performance, low-cost carbon-based anode materials that could be used in advanced lithium-ion batteries.


Asunto(s)
Hielo , Lignina/análogos & derivados , Litio , Cristalización , Carbono
13.
Talanta ; 271: 125657, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38218056

RESUMEN

Nanozymes have made remarkable progress in the field of sensing assays by replacing native enzyme functions. However, it is still a challenge to rationally design active centers from molecular structure to enhance the catalytic performance and develop low-cost nanozymes. In this work, guided by the catalytic site of horseradish peroxidase (HRP), iron source and histidine were coupled to the main chain of aminated sodium lignosulfonate (SL) through the self-assembly biomimetic strategy to construct His-SL-Fe with peroxidase activity. The inherent functional groups and basic framework of aminated SL provide a robust environment and promote the formation of active sites. His-SL-Fe shows excellent robustness over multiple test cycles and has a strong affinity for the substrate compared to HRP. His-SL-Fe had been effectively integrated in the sensing system for catalytic detection of uric acid (UA) to achieve accurate recognition of UA in the range of 0.5-100 µM with the limit of detection as low as 0.18 µM. The recovery of human urine samples is in the range of 96.8%-106.1 % and the error is within 4 %. This work not only provides a new approach for the directed design of high-performance nanozymes, but also demonstrates promising ideas for the refined application of biomass resources.


Asunto(s)
Carbono , Ácido Úrico , Humanos , Carbono/química , Lignina , Biomimética , Peroxidasa de Rábano Silvestre , Colorimetría , Peroxidasa/química , Peróxido de Hidrógeno
14.
Int J Biol Macromol ; 255: 128347, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37995788

RESUMEN

Extensively used agricultural mulch fabricated from nonbiodegradable polyolefin plastic causes tremendous environmental pollution. In this work, a paper-based mulch, composed of the cellulose fiber networks incorporated with Emamectin benzoate (EB)@sodium lignosulfonate (SL), has been developed with facile papermaking/coating methods. The spherical microcapsule loaded with pesticide EB has a desirable core-shell structure for better protection and sustained release of photosensitive EB. The loading rate and encapsulation efficiency reached 78.5 % and 52.3 %, respectively. Furthermore, microcapsules exhibited excellent slow-release behavior and resistance to photolysis. Natural carnauba wax was coated on the surface of the paper-based mulch to form a hydrophobic layer and increase the physical intertwinement of fibers in the mulch, thereby exhibiting superior performance, such as enhanced tensile strength, excellent hydrophobicity, high air permeability, and high light transmittance at reasonable level. Moreover, unlike conventional polyethylene mulch film, the functionalized paper-based mulch almost completely biodegraded after 75 days in the soil. Thus, multifunctional, eco-friendly mulch from lignocellulose is an innovative approach to obtaining the sustained release of agrochemicals, and it provides an excellent alternative to conventional agricultural plastic mulch.


Asunto(s)
Plaguicidas , Plaguicidas/análisis , Preparaciones de Acción Retardada , Agricultura/métodos , Suelo/química , Cápsulas
15.
Int J Biol Macromol ; 258(Pt 2): 128918, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38134986

RESUMEN

Applications for polylactic acid (PLA) are significantly impacted by its poor mechanical properties and lack of thermal stability. The goal of this work is to bridge the gap of poor compatibility among the components and enhance their interface interlocking capability to improve the toughness and thermal stability. Ultrafine bamboo charcoal (UFBC) was treated through deep eutectic solvent (DES) method to deposit sodium lignosulfonate (LS) on its surface. LS was used with PLA as a bio-coupling agent to create an eco-friendly PLA composite film with a wide range of characteristics. Benefiting from the penetration of PLA to the internal pores in UFBC, the resultant L-UFBC/PLA film has a good mechanical interlocking structure. Ls can increase the compatibility and strengthen the interface interlocking capability through DES method, which greatly improves the mechanical properties of the system. In comparison to pure PLA one, the elongation at break was 136.24 % greater, and the crystallinity (Xc) increased from 1.09 % to 3.33 %. Furthermore, the thermal stability of the system was also improved, and the residual at 600 °C rose by 4.83 %. These characteristics offer the prepared L-UFBC/PLA film a wide range of potential applications in the packaging, medical, agricultural, and other sectors.


Asunto(s)
Agricultura , Carbón Orgánico , Análisis por Conglomerados , Poliésteres
16.
Molecules ; 28(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37836748

RESUMEN

The application of lithium metal batteries is limited by the drawbacks of safety problems and Li dendrite formation. Quasi-solid-state electrolytes (QSSEs) are the most promising alternatives to commercial liquid electrolytes due to their high safety and great compatibility with electrodes. However, Li dendrite formation and the slow Li+ diffusion in QSSEs severely hinder uniform Li deposition, thus leading to Li dendrite growth and short circuits. Herein, an eco-friendly and low-cost sodium lignosulfonate (LSS)-assisted PVDF-based QSSE is proposed to induce uniform Li deposition and inhibit Li dendrite growth. Li symmetric cells with 5%-LSS QSSE possess a high Li+ transfer number of 0.79, and they exhibit a long cycle life of 1000 h at a current density/areal capacity of 1 mA cm-2/5 mAh cm-2. Moreover, due to the fast electrochemical dynamics endowed by the improved compatibility of the electrodes and fast Li+ diffusion, the LFP/5%-LSS/Li full cells still maintain a high capacity of 110 mAh g-1 after 250 cycles at 6C. This work provides a novel and promising choice that uses eco-friendly LSS as an additive to PVDF-based QSSE in Li metal batteries.

17.
Int J Biol Macromol ; 253(Pt 4): 126800, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37717865

RESUMEN

This study focuses on the formulation of polyvinyl alcohol (PVA)-based films with pH-sensitive properties and ultraviolet (UV) resistance by incorporating sodium lignosulfonate (LS) and varying concentrations of black rice anthocyanin extract (BRE) into PVA matrix. The films were characterized through Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), tensile test, water vapor permeability (WVP), and ultraviolet-visible (UV-vis) spectroscopy. The results indicated that BRE and LS effectively formed strong hydrogen bonds with PVA, leading to reduced film crystallinity, improved mechanical properties, and lowered WVP as the BRE content increased. The addition of LS and BRE improved the UV resistance of the films, and BRE imparted films with excellent pH-sensitive properties. Among the film variants, the PVA/LS/BRE film containing 1 wt% BRE exhibited excellent mechanical performance, boasting an elongation at a break of 360.66 % and a strength of 35.68 MPa. Additionally, soil pH visualization holds significant potential within agriculture. In this study, the PVA/LS/BRE film containing 2 wt% BRE exhibited minimum UV transparency (0.9 %) and displayed the most distinct color response across varying pH environments. Therefore, the PVA/LS/BRE film containing 2 wt% BRE excelled in both UV resistance and pH sensitivity, positioning it as the most suitable material for the development of agricultural films integrated with soil pH monitoring capabilities.


Asunto(s)
Oryza , Alcohol Polivinílico , Alcohol Polivinílico/química , Antocianinas , Suelo , Espectroscopía Infrarroja por Transformada de Fourier , Concentración de Iones de Hidrógeno , Agricultura
18.
Molecules ; 28(16)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37630310

RESUMEN

The development of the paper industry has led to the discharge of a large amount of papermaking waste liquid containing lignosulfonate. These lignin black liquids cause a lot of pollution in nature, which runs counter to the current environmental protection strategy under the global goal. Through the development and use of lignosulfonate in papermaking waste liquid to increase the utilization of harmful substances in waste liquid, we aim to promote waste liquid treatment and reduce environmental pollution. This paper proposes a new strategy to synthesize novel glue-free biocomposites with high-performance interfacial compatibility from papermaking by-product sodium lignosulfonate/chitosan (L/C) and waste bamboo. This L/C bamboo biocomposite material has good mechanical properties and durability, low formaldehyde emissions, a high recovery rate, meets the requirements of wood-based panels, and reduces environmental pollution. This method is low in cost, has the potential for large-scale production, and can effectively reduce the environmental pollution of the paper industry, promoting the recycling of biomass and helping the future manufacture of glue-free panels, which can be widely used in the preparation of bookcase, furniture, floor and so on.

19.
J Colloid Interface Sci ; 651: 514-524, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37556908

RESUMEN

Tin dioxide (SnO2) is widely recognized as a high-performance anode material for lithium-ion batteries. To simultaneously achieve satisfactory electrochemical performances and lower manufacturing costs, engineering nano-sized SnO2 and further immobilizing SnO2 with supportive carbon frameworks via eco-friendly and cost-effective approaches are challenging tasks. In this work, biomass sodium lignosulfonate (LS-Na), stannous chloride (SnCl2) and a small amount of few-layered graphene oxide (GO) are employed as raw materials to engineer a hierarchical carbon framework supported SnO2 nanocomposite. The spontaneous chelation reaction between LS-Na and SnCl2 under mild hydrothermal condition generates the corresponding SnCl2@LS sample with a uniform distribution of Sn2+ in the LS domains, and the SnCl2@LS sample is further dispersed by GO sheets via a redox coprecipitation reaction. After a thermal treatment, the SnCl2@LS@GO sample is converted to the final SnO2/LSC/RGO sample with an improved microstructure. The SnO2/LSC/RGO nanocomposite exhibits excellent lithium-ion storage performances with a high specific capacity of 938.3 mAh/g after 600 cycles at 1000 mA g-1 in half-cells and 517.1 mAh/g after 50 cycles at 200 mA g-1 in full-cells. This work provides a potential strategy of engineering biomass derived high-performance electrode materials for rechargeable batteries.

20.
Chemosphere ; 335: 139006, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37257657

RESUMEN

In the work, S-doped iron-based carbon nanocomposites (Fe-S@CN) for activating persulfate (PS) were prepared by calcining iron-loaded sodium lignosulfonate. The characterization revealed that the main substances of Fe-S@CN were FeS and Fe3C, which were distributed on porous carbon nanosheets in rod-like morphology. In the Fe-S@CN/PS system, carbamazepine could be completely removed within 30 min, and the relative contribution of hydroxyl radicals (OH·), sulfate radicals (SO4·-) and total singlet oxygen (1O2) and superoxide radicals (O2·-) for carbamazepine removal were approximated as 8.7%, 19.2% and 72.1%, respectively. Electron paramagnetic resonance spectroscopy demonstrated that S doping promoted the formation of various active species. Compared with the catalyst without S doping, Fe-S@CN exhibited higher activation performance (1.48-fold) for PS due to the enhanced electron transfer rate and facilitated Fe2+/Fe3+ cycle. Density functional theory calculations showed that S doping promoted the binding between the catalyst and PS, and enhanced the overall internal electron density of the catalyst. Fe-S@CN exhibited excellent catalytic performance over a wide pH range (3.0-11.0). The active sites of Fe-S@CN used in the cycling experiments was also largely recovered after thermal regeneration. Overall, this study shows for the first time the impact of SLS as an S dopant on enhanced PS activation.


Asunto(s)
Contaminantes Ambientales , Nanocompuestos , Contaminantes Químicos del Agua , Hierro/química , Oxidación-Reducción , Carbono , Nanocompuestos/química , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA