Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37447787

RESUMEN

In a single-observer passive localization system, the velocity and position of the target are estimated simultaneously. However, this can lead to correlated errors and distortion of the estimated value, making independent estimation of the speed and position necessary. In this study, we introduce a novel optimization strategy, suboptimal estimation, for independently estimating the velocity vector in single-observer passive localization. The suboptimal estimation strategy converts the estimation of the velocity vector into a search for the global optimal solution by dynamically weighting multiple optimization criteria from the starting point in the solution space. Simulation verification is conducted using uniform motion and constant acceleration models. The results demonstrate that the proposed method converges faster with higher accuracy and strong robustness.


Asunto(s)
Aceleración , Algoritmos , Movimiento (Física) , Simulación por Computador
2.
Appl Soft Comput ; 141: 110282, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37114000

RESUMEN

The outbreak of the COVID-19 epidemic has had a significant impact in increasing the number of emergency calls, which causes significant problems to emergency medical services centers (EMS) in many countries around the world, such as Saudi Arabia, which attracts a huge number of pilgrims during pilgrimage seasons. Among these issues, we address real-time ambulance dispatching and relocation problems (real-time ADRP). This paper proposes an improved MOEA/D algorithm using Simulated Annealing (G-MOEA/D-SA) to handle the real-time ADRP issue. The simulated annealing (SA) seeks to obtain optimal routes for ambulances to cover all emergency COVID-19 calls through the implementation of convergence indicator based dominance relation (CDR). To prevent the loss of good solutions once they are found in the G-MOEA/D-SA algorithm, we employ an external archive population to store the non-dominated solutions using the epsilon dominance relationship. Several experiments are conducted on real data collected from Saudi Arabia during the Covid-19 pandemic to compare our algorithm with three relevant state-of-art algorithms including MOEA/D, MOEA/D-M2M and NSGA-II. Statistical analysis of the comparative results obtained using ANOVA and Wilcoxon test demonstrate the merits and the outperformance of our G-MOEA/D-SA algorithm.

3.
SLAS Technol ; 28(4): 264-277, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36997066

RESUMEN

During laboratory automation of life science experiments, coordinating specialized instruments and human experimenters for various experimental procedures is important to minimize the execution time. In particular, the scheduling of life science experiments requires the consideration of time constraints by mutual boundaries (TCMB) and can be formulated as the "scheduling for laboratory automation in biology" (S-LAB) problem. However, existing scheduling methods for the S-LAB problems have difficulties in obtaining a feasible solution for large-size scheduling problems at a time sufficient for real-time use. In this study, we proposed a fast schedule-finding method for S-LAB problems, SAGAS (Simulated annealing and greedy algorithm scheduler). SAGAS combines simulated annealing and the greedy algorithm to find a scheduling solution with the shortest possible execution time. We have performed scheduling on real experimental protocols and shown that SAGAS can search for feasible or optimal solutions in practicable computation time for various S-LAB problems. Furthermore, the reduced computation time by SAGAS enables us to systematically search for laboratory automation with minimum execution time by simulating scheduling for various laboratory configurations. This study provides a convenient scheduling method for life science automation laboratories and presents a new possibility for designing laboratory configurations.


Asunto(s)
Algoritmos , Automatización de Laboratorios , Humanos , Laboratorios
4.
Environ Sci Pollut Res Int ; 29(46): 69691-69704, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35576040

RESUMEN

The coupling of ever-increasing consumption of fossil fuels around the globe with the decrease in the availability of fossil fuel supplies has led to an increased cost of energy commodities, which together with ever-expanding requirements for reducing the level of environmental pollutions has resulted in an ever-increasing deal of attention to alternative transportation schemes such as electric vehicles (EVs). Since decades ago, national governments and environmental activists have initiated various efforts towards reducing atmospheric pollutions. A part of such effort has been focused on reducing the use of internal combustion vehicles and rather replacing them with EVs. In this research, we attempt to fill in this research gap by presenting a mathematical model for minimizing the sum of traveled distance and recharging cost of EVs per a given period and then solving it by simulated annealing (SA) algorithm. Results of the proposed algorithm were then compared to those of coding in GAMS for 30 different sample problems with different counts of customers, EVs, and charging stations. Numerical results indicated good efficiency of the metaheuristic algorithm in terms of processing time and solution quality. Indeed, with the SA algorithm, the processing time was seen to increase gradually with increasing the problem complexity, while the rate of increase in processing time was much steeper with the GAMS.


Asunto(s)
Electricidad , Modelos Teóricos , Algoritmos , Combustibles Fósiles , Transportes
5.
Sensors (Basel) ; 21(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073546

RESUMEN

Visible light communications (VLC) is gaining interest as one of the enablers of short-distance, high-data-rate applications, in future beyond 5G networks. Moreover, non-orthogonal multiple-access (NOMA)-enabled schemes have recently emerged as a promising multiple-access scheme for these networks that would allow realization of the target spectral efficiency and user fairness requirements. The integration of NOMA in the widely adopted orthogonal frequency-division multiplexing (OFDM)-based VLC networks would require an optimal resource allocation for the pair or the cluster of users sharing the same subcarrier(s). In this paper, the max-min rate of a multi-cell indoor centralized VLC network is maximized through optimizing user pairing, subcarrier allocation, and power allocation. The joint complex optimization problem is tackled using a low-complexity solution. At first, the user pairing is assumed to follow the divide-and-next-largest-difference user-pairing algorithm (D-NLUPA) that can ensure fairness among the different clusters. Then, subcarrier allocation and power allocation are solved iteratively through both the Simulated Annealing (SA) meta-heuristic algorithm and the bisection method. The obtained results quantify the achievable max-min user rates for the different relevant variants of NOMA-enabled schemes and shed new light on both the performance and design of multi-user multi-carrier NOMA-enabled centralized VLC networks.

6.
Front Neurorobot ; 13: 24, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31156419

RESUMEN

Neurorobotics is one of the most ambitious fields in robotics, driving integration of interdisciplinary data and knowledge. One of the most productive areas of interdisciplinary research in this area has been the implementation of biologically-inspired mechanisms in the development of autonomous systems. Specifically, enabling such systems to display adaptive behavior such as learning from good and bad outcomes, has been achieved by quantifying and understanding the neural mechanisms of the brain networks mediating adaptive behaviors in humans and animals. For example, associative learning from aversive or dangerous outcomes is crucial for an autonomous system, to avoid dangerous situations in the future. A body of neuroscience research has suggested that the neurocomputations in the human brain during associative learning involve re-shaping of sensory responses. The nature of these adaptive changes in sensory processing during learning however are not yet well enough understood to be readily implemented into on-board algorithms for robotics application. Toward this overall goal, we record the simultaneous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI), characterizing one candidate mechanism, i.e., large-scale brain oscillations. The present report examines the use of Functional Source Separation (FSS) as an optimization step in EEG-fMRI fusion that harnesses timing information to constrain the solutions that satisfy physiological assumptions. We applied this approach to the voxel-wise correlation of steady-state visual evoked potential (ssVEP) amplitude and blood oxygen level-dependent imaging (BOLD), across both time series. The results showed the benefit of FSS for the extraction of robust ssVEP signals during simultaneous EEG-fMRI recordings. Applied to data from a 3-phase aversive conditioning paradigm, the correlation maps across the three phases (habituation, acquisition, extinction) show converging results, notably major overlapping areas in both primary and extended visual cortical regions, including calcarine sulcus, lingual cortex, and cuneus. In addition, during the acquisition phase when aversive learning occurs, we observed additional correlations between ssVEP and BOLD in the anterior cingulate cortex (ACC) as well as the precuneus and superior temporal gyrus.

7.
Environ Sci Pollut Res Int ; 26(18): 17927-17938, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29255978

RESUMEN

Distributed power grids generally contain multiple diverse types of distributed generators (DGs). Traditional particle swarm optimization (PSO) and simulated annealing PSO (SA-PSO) algorithms have some deficiencies in site selection and capacity determination of DGs, such as slow convergence speed and easily falling into local trap. In this paper, an improved SA-PSO (ISA-PSO) algorithm is proposed by introducing crossover and mutation operators of genetic algorithm (GA) into SA-PSO, so that the capabilities of the algorithm are well embodied in global searching and local exploration. In addition, diverse types of DGs are made equivalent to four types of nodes in flow calculation by the backward or forward sweep method, and reactive power sharing principles and allocation theory are applied to determine initial reactive power value and execute subsequent correction, thus providing the algorithm a better start to speed up the convergence. Finally, a mathematical model of the minimum economic cost is established for the siting and sizing of DGs under the location and capacity uncertainties of each single DG. Its objective function considers investment and operation cost of DGs, grid loss cost, annual purchase electricity cost, and environmental pollution cost, and the constraints include power flow, bus voltage, conductor current, and DG capacity. Through applications in an IEEE33-node distributed system, it is found that the proposed method can achieve desirable economic efficiency and safer voltage level relative to traditional PSO and SA-PSO algorithms, and is a more effective planning method for the siting and sizing of DGs in distributed power grids.


Asunto(s)
Simulación por Computador , Centrales Eléctricas , Algoritmos , Electricidad , Fuentes Generadoras de Energía/economía , Modelos Teóricos , Centrales Eléctricas/economía
8.
Sensors (Basel) ; 19(1)2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30577503

RESUMEN

Sparse arrays can fix array aperture with a reduced number of elements to maintain resolution while reducing cost. However, grating lobe suppression, high peak side-lobe level reduction (PSLL), and constraints on the location of the array elements in the practical deployment of arrays are challenging problems. Based on simulated annealing, the element locations of a sparse planar array in smart ocean applications with minimum spacing and geographic constraints are optimized in this paper by minimizing the sum of PSLL. The robustness of the deployment-optimized spare planar array with mis-calibration is further considered. Numerical simulations show the effectiveness of the proposed solution.

9.
Polymers (Basel) ; 10(10)2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30961021

RESUMEN

Dissolved gas analysis (DGA) has been widely used in various scenarios of power transformers' online monitoring and diagnoses. However, the diagnostic accuracy of traditional DGA methods still leaves much room for improvement. In this context, numerous new DGA diagnostic models that combine artificial intelligence with traditional methods have emerged. In this paper, a new DGA artificial intelligent diagnostic system is proposed. There are two modules that make up the diagnosis system. The two modules are the optimal feature combination (OFC) selection module based on 3-stage GA⁻SA⁻SVM and the ABC⁻SVM fault diagnosis module. The diagnosis system has been completely realized and embodied in its outstanding performances in diagnostic accuracy, reliability, and efficiency. Comparing the result with other artificial intelligence diagnostic methods, the new diagnostic system proposed in this paper performed superiorly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA