Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Brain Sci ; 14(8)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39199471

RESUMEN

This study explores the potential of using a Siamese Network as a biomarker for assessing the effectiveness of Dolphin-Assisted Therapy (DAT) in children with Spastic Cerebral Palsy (SCP). The problem statement revolves around the need for objective measures to evaluate the impact of DAT on patients with SCP, considering the subjective nature of traditional assessment methods. The methodology involves training a Siamese network, a type of neural network designed to compare similarities between inputs, using data collected from SCP patients undergoing DAT sessions. The study employed Event-Related Potential (ERP) and Fast Fourier Transform (FFT) analyses to examine cerebral activity and brain rhythms, proposing the use of SNN to compare electroencephalographic (EEG) signals of children with cerebral palsy before and after Dolphin-Assisted Therapy. Testing on samples from four children yielded a high average similarity index of 0.9150, indicating consistent similarity metrics before and after therapy. The network is trained to learn patterns and similarities between pre- and post-therapy evaluations, in order to identify biomarkers indicative of therapy effectiveness. Notably, the Siamese Network's architecture ensures that comparisons are made within the same feature space, allowing for more accurate assessments. The results of the study demonstrate promising findings, indicating different patterns in the output of the Siamese Network that correlate with improvements in symptoms of SCP post-DAT. Confirming these observations will require large, longitudinal studies but such findings would suggest that the Siamese Network could have utility as a biomarker in monitoring treatment responses for children with SCP who undergo DAT and offer them more objective as well as quantifiable manners of assessing therapeutic interventions. Great discrepancies in neuronal voltage perturbations, 7.9825 dB on average at the specific samples compared to the whole dataset (6.2838 dB), imply a noted deviation from resting activity. These findings indicate that Dolphin-Assisted Therapy activates particular brain regions specifically during the intervention.

2.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39000335

RESUMEN

In various domains, including everyday activities, agricultural practices, and medical treatments, the escalating challenge of antibiotic resistance poses a significant concern. Traditional approaches to studying antibiotic resistance genes (ARGs) often require substantial time and effort and are limited in accuracy. Moreover, the decentralized nature of existing data repositories complicates comprehensive analysis of antibiotic resistance gene sequences. In this study, we introduce a novel computational framework named TGC-ARG designed to predict potential ARGs. This framework takes protein sequences as input, utilizes SCRATCH-1D for protein secondary structure prediction, and employs feature extraction techniques to derive distinctive features from both sequence and structural data. Subsequently, a Siamese network is employed to foster a contrastive learning environment, enhancing the model's ability to effectively represent the data. Finally, a multi-layer perceptron (MLP) integrates and processes sequence embeddings alongside predicted secondary structure embeddings to forecast ARG presence. To evaluate our approach, we curated a pioneering open dataset termed ARSS (Antibiotic Resistance Sequence Statistics). Comprehensive comparative experiments demonstrate that our method surpasses current state-of-the-art methodologies. Additionally, through detailed case studies, we illustrate the efficacy of our approach in predicting potential ARGs.


Asunto(s)
Farmacorresistencia Microbiana , Farmacorresistencia Microbiana/genética , Biología Computacional/métodos , Estructura Secundaria de Proteína , Aprendizaje Automático , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Redes Neurales de la Computación
3.
Sensors (Basel) ; 24(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39065941

RESUMEN

Establishing an accurate and robust feature fusion mechanism is key to enhancing the tracking performance of single-object trackers based on a Siamese network. However, the output features of the depth-wise cross-correlation feature fusion module in fully convolutional trackers based on Siamese networks cannot establish global dependencies on the feature maps of a search area. This paper proposes a dynamic cascade feature fusion (DCFF) module by introducing a local feature guidance (LFG) module and dynamic attention modules (DAMs) after the depth-wise cross-correlation module to enhance the global dependency modeling capability during the feature fusion process. In this paper, a set of verification experiments is designed to investigate whether establishing global dependencies for the features output by the depth-wise cross-correlation operation can significantly improve the performance of fully convolutional trackers based on a Siamese network, providing experimental support for rational design of the structure of a dynamic cascade feature fusion module. Secondly, we integrate the dynamic cascade feature fusion module into the tracking framework based on a Siamese network, propose SiamDCFF, and evaluate it using public datasets. Compared with the baseline model, SiamDCFF demonstrated significant improvements.

4.
Sci Rep ; 14(1): 12256, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806573

RESUMEN

The Transformer-based Siamese networks have excelled in the field of object tracking. Nevertheless, a notable limitation persists in their reliance on ResNet as backbone, which lacks the capacity to effectively capture global information and exhibits constraints in feature representation. Furthermore, these trackers struggle to effectively attend to target-relevant information within the search region using multi-head self-attention (MSA). Additionally, they are prone to robustness challenges during online tracking and tend to exhibit significant model complexity. To address these limitations, We propose a novel tracker named ASACTT, which includes a backbone network, feature fusion network and prediction head. First, we improve the Swin-Transformer-Tiny to enhance its global information extraction capabilities. Second, we propose an adaptive sparse attention (ASA) to focus on target-specific details within the search region. Third, we leverage position encoding and historical candidate data to develop a dynamic template updater (DTU), which ensures the preservation of the initial frame's integrity while gracefully adapting to variations in the target's appearance. Finally, we optimize the network model to maintain accuracy while minimizing complexity. To verify the effectiveness of our proposed tracker, ASACTT, experiments on five benchmark datasets demonstrated that the proposed tracker was highly comparable to other state-of-the-art methods. Notably, in the GOT-10K1 evaluation, our tracker achieved an outstanding success score of 75.3% at 36 FPS, significantly surpassing other trackers with comparable model parameters.

5.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38701419

RESUMEN

It is a vital step to recognize cyanobacteria promoters on a genome-wide scale. Computational methods are promising to assist in difficult biological identification. When building recognition models, these methods rely on non-promoter generation to cope with the lack of real non-promoters. Nevertheless, the factitious significant difference between promoters and non-promoters causes over-optimistic prediction. Moreover, designed for E. coli or B. subtilis, existing methods cannot uncover novel, distinct motifs among cyanobacterial promoters. To address these issues, this work first proposes a novel non-promoter generation strategy called phantom sampling, which can eliminate the factitious difference between promoters and generated non-promoters. Furthermore, it elaborates a novel promoter prediction model based on the Siamese network (SiamProm), which can amplify the hidden difference between promoters and non-promoters through a joint characterization of global associations, upstream and downstream contexts, and neighboring associations w.r.t. k-mer tokens. The comparison with state-of-the-art methods demonstrates the superiority of our phantom sampling and SiamProm. Both comprehensive ablation studies and feature space illustrations also validate the effectiveness of the Siamese network and its components. More importantly, SiamProm, upon our phantom sampling, finds a novel cyanobacterial promoter motif ('GCGATCGC'), which is palindrome-patterned, content-conserved, but position-shifted.


Asunto(s)
Cianobacterias , Regiones Promotoras Genéticas , Cianobacterias/genética , Biología Computacional/métodos , Algoritmos
6.
Sci Rep ; 14(1): 11723, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778145

RESUMEN

In the realm of ophthalmology, precise measurement of tear film break-up time (TBUT) plays a crucial role in diagnosing dry eye disease (DED). This study aims to introduce an automated approach utilizing artificial intelligence (AI) to mitigate subjectivity and enhance the reliability of TBUT measurement. We employed a dataset of 47 slit lamp videos for development, while a test dataset of 20 slit lamp videos was used for evaluating the proposed approach. The multistep approach for TBUT estimation involves the utilization of a Dual-Task Siamese Network for classifying video frames into tear film breakup or non-breakup categories. Subsequently, a postprocessing step incorporates a Gaussian filter to smooth the instant breakup/non-breakup predictions effectively. Applying a threshold to the smoothed predictions identifies the initiation of tear film breakup. Our proposed method demonstrates on the evaluation dataset a precise breakup/non-breakup classification of video frames, achieving an Area Under the Curve of 0.870. At the video level, we observed a strong Pearson correlation coefficient (r) of 0.81 between TBUT assessments conducted using our approach and the ground truth. These findings underscore the potential of AI-based approaches in quantifying TBUT, presenting a promising avenue for advancing diagnostic methodologies in ophthalmology.


Asunto(s)
Aprendizaje Profundo , Síndromes de Ojo Seco , Lágrimas , Síndromes de Ojo Seco/diagnóstico , Humanos , Reproducibilidad de los Resultados , Grabación en Video
7.
Sensors (Basel) ; 24(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38676180

RESUMEN

Non-intrusive load monitoring (NILM) can identify each electrical load and its operating state in a household by using the voltage and current data measured at a single point on the bus, thereby behaving as a key technology for smart grid construction and effective energy consumption. The existing NILM methods mainly focus on the identification of pre-trained loads, which can achieve high identification accuracy and satisfying outcomes. However, unknown load identification is rarely involved among those methods and the scalability of NILM is still a crucial problem at the current stage. In light of this, we have proposed a non-intrusive load identification method based on a Siamese network, which can be retrained after the detection of an unknown load to increase the identification accuracy for unknown loads. The proposed Siamese network comprises a fixed convolutional neural network (CNN) and two retrainable back propagation (BP) networks. When an unknown load is detected, the low-dimensional features of its voltage-current (V-I) trajectory are extracted by using the fixed CNN model, and the BP networks are retrained online. The finetuning of BP network parameters through retraining can improve the representation ability of the network model; thus, a high accuracy of unknown load identification can be achieved by updating the Siamese network in real time. The public WHITED and PLAID datasets are used for the validation of the proposed method. Finally, the practicality and scalability of the method are demonstrated using a real-house environment test to prove the ability of online retraining on an embedded Linux system with STM32MP1 as the core.

8.
J Imaging ; 10(3)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38535150

RESUMEN

While Siamese object tracking has witnessed significant advancements, its hard real-time behaviour on embedded devices remains inadequately addressed. In many application cases, an embedded implementation should not only have a minimal execution latency, but this latency should ideally also have zero variance, i.e., be predictable. This study aims to address this issue by meticulously analysing real-time predictability across different components of a deep-learning-based video object tracking system. Our detailed experiments not only indicate the superiority of Field-Programmable Gate Array (FPGA) implementations in terms of hard real-time behaviour but also unveil important time predictability bottlenecks. We introduce dedicated hardware accelerators for key processes, focusing on depth-wise cross-correlation and padding operations, utilizing high-level synthesis (HLS). Implemented on a KV260 board, our enhanced tracker exhibits not only a speed up, with a factor of 6.6, in mean execution time but also significant improvements in hard real-time predictability by yielding 11 times less latency variation as compared to our baseline. A subsequent analysis of power consumption reveals our approach's contribution to enhanced power efficiency. These advancements underscore the crucial role of hardware acceleration in realizing time-predictable object tracking on embedded systems, setting new standards for future hardware-software co-design endeavours in this domain.

9.
Comput Med Imaging Graph ; 113: 102346, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38364600

RESUMEN

This study conducts collateral evaluation from ischemic damage using a deep learning-based Siamese network, addressing the challenges associated with a small and imbalanced dataset. The collateral network provides an alternative oxygen and nutrient supply pathway in ischemic stroke cases, influencing treatment decisions. Research in this area focuses on automated collateral assessment using deep learning (DL) methods to expedite decision-making processes and enhance accuracy. Our study employed a 3D ResNet-based Siamese network, referred to as SCANED, to classify collaterals as good/intermediate or poor. Utilizing non-contrast computed tomography (NCCT) images, the network automates collateral identification and assessment by analyzing tissue degeneration around the ischemic site. Relevant features from the left/right hemispheres were extracted, and Euclidean Distance (ED) was employed for similarity measurement. Finally, dichotomized classification of good/intermediate or poor collateral is performed by SCANED using an optimal threshold derived from ROC analysis. SCANED provides a sensitivity of 0.88, a specificity of 0.63, and a weighted F1 score of 0.86 in the dichotomized classification.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Curva ROC , Isquemia Encefálica/diagnóstico , Aprendizaje Profundo , Accidente Cerebrovascular Isquémico/diagnóstico , Humanos
10.
Biomimetics (Basel) ; 9(2)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38392146

RESUMEN

This paper introduces a novel method that enables robots to identify objects based on user gaze, tracked via eye-tracking glasses. This is achieved without prior knowledge of the objects' categories or their locations and without external markers. The method integrates a two-part system: a category-agnostic object shape and pose estimator using superquadrics and Siamese networks. The superquadrics-based component estimates the shapes and poses of all objects, while the Siamese network matches the object targeted by the user's gaze with the robot's viewpoint. Both components are effectively designed to function in scenarios with partial occlusions. A key feature of the system is the user's ability to move freely around the scenario, allowing dynamic object selection via gaze from any position. The system is capable of handling significant viewpoint differences between the user and the robot and adapts easily to new objects. In tests under partial occlusion conditions, the Siamese networks demonstrated an 85.2% accuracy in aligning the user-selected object with the robot's viewpoint. This gaze-based Human-Robot Interaction approach demonstrates its practicality and adaptability in real-world scenarios.

11.
Sensors (Basel) ; 24(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38203136

RESUMEN

Most single-object trackers currently employ either a convolutional neural network (CNN) or a vision transformer as the backbone for object tracking. In CNNs, convolutional operations excel at extracting local features but struggle to capture global representations. On the other hand, vision transformers utilize cascaded self-attention modules to capture long-range feature dependencies but may overlook local feature details. To address these limitations, we propose a target-tracking algorithm called CVTrack, which leverages a parallel dual-branch backbone network combining CNN and Transformer for feature extraction and fusion. Firstly, CVTrack utilizes a parallel dual-branch feature extraction network with CNN and transformer branches to extract local and global features from the input image. Through bidirectional information interaction channels, the local features from the CNN branch and the global features from the transformer branch are able to interact and fuse information effectively. Secondly, deep cross-correlation operations and transformer-based methods are employed to fuse the template and search region features, enabling comprehensive interaction between them. Subsequently, the fused features are fed into the prediction module to accomplish the object-tracking task. Our tracker achieves state-of-the-art performance on five benchmark datasets while maintaining real-time execution speed. Finally, we conduct ablation studies to demonstrate the efficacy of each module in the parallel dual-branch feature extraction backbone network.

12.
Neural Netw ; 170: 548-563, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38052151

RESUMEN

Siamese tracking has witnessed tremendous progress in tracking paradigm. However, its default box estimation pipeline still faces a crucial inconsistency issue, namely, the bounding box decided by its classification score is not always best overlapped with the ground truth, thus harming performance. To this end, we explore a novel simple tracking paradigm based on the intersection over union (IoU) value prediction. To first bypass this inconsistency issue, we propose a concise target state predictor termed IoUformer, which instead of default box estimation pipeline directly predicts the IoU values related to tracking performance metrics. In detail, it extends the long-range dependency modeling ability of transformer to jointly grasp target-aware interactions between target template and search region, and search sub-region interactions, thus neatly unifying global semantic interaction and target state prediction. Thanks to this joint strength, IoUformer can predict reliable IoU values near-linear with the ground truth, which paves a safe way for our new IoU-based siamese tracking paradigm. Since it is non-trivial to explore this paradigm with pleased efficacy and portability, we offer the respective network components and two alternative localization ways. Experimental results show that our IoUformer-based tracker achieves promising results with less training data. For its applicability, it still serves as a refinement module to consistently boost existing advanced trackers.


Asunto(s)
Benchmarking , Semántica
13.
Sensors (Basel) ; 23(23)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38067768

RESUMEN

The growing on-board processing capabilities have led to more complex sensor configurations, enabling autonomous car prototypes to expand their operational scope. Nowadays, the joint use of LiDAR data and multiple cameras is almost a standard and poses new challenges for existing multi-modal perception pipelines, such as dealing with contradictory or redundant detections caused by inference on overlapping images. In this paper, we address this last issue in the context of sequential schemes like F-PointNets, where object candidates are obtained in the image space, and the final 3D bounding box is then inferred from point cloud information. To this end, we propose the inclusion of a re-identification branch into the 2D detector, i.e., Faster R-CNN, so that objects seen from adjacent cameras can be handled before the 3D box estimation takes place, removing duplicates and completing the object's cloud. Extensive experimental evaluations covering both the 2D and 3D domains affirm the effectiveness of the suggested methodology. The findings indicate that our approach outperforms conventional Non-Maximum Suppression (NMS) methods. Particularly, we observed a significant gain of over 5% in terms of accuracy for cars in camera overlap regions. These results highlight the potential of our upgraded detection and re-identification system in practical scenarios for autonomous driving.

14.
Math Biosci Eng ; 20(10): 18695-18716, 2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-38052575

RESUMEN

Prescription data is an important focus and breakthrough in the study of clinical treatment rules, and the complex multidimensional relationships between Traditional Chinese medicine (TCM) prescription data increase the difficulty of extracting knowledge from clinical data. This paper proposes a complex prescription recognition algorithm (MTCMC) based on the classification and matching of TCM prescriptions with classical prescriptions to identify the classical prescriptions contained in the prescriptions and provide a reference for mining TCM knowledge. The MTCMC algorithm first calculates the importance level of each drug in the complex prescriptions and determines the core prescription combinations of patients through the Analytic Hierarchy Process (AHP) combined with drug dosage. Secondly, a drug attribute tagging strategy was used to quantify the functional features of each drug in the core prescriptions; finally, a Bidirectional Long Short-Term Memory Network (BiLSTM) was used to extract the relational features of the core prescriptions, and a vector representation similarity matrix was constructed in combination with the Siamese network framework to calculate the similarity between the core prescriptions and the classical prescriptions. The experimental results show that the accuracy and F1 score of the prescription matching dataset constructed based on this paper reach 94.45% and 94.34% respectively, which is a significant improvement compared with the models of existing methods.


Asunto(s)
Medicamentos Herbarios Chinos , Humanos , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China , Prescripciones , Algoritmos
15.
Sensors (Basel) ; 23(24)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38139754

RESUMEN

Face verification, crucial for identity authentication and access control in our digital society, faces significant challenges when comparing images taken in diverse environments, which vary in terms of distance, angle, and lighting conditions. These disparities often lead to decreased accuracy due to significant resolution changes. This paper introduces an adaptive face verification solution tailored for diverse conditions, particularly focusing on Unmanned Aerial Vehicle (UAV)-based public safety applications. Our approach features an innovative adaptive verification threshold algorithm and an optimised operation pipeline, specifically designed to accommodate varying distances between the UAV and the human subject. The proposed solution is implemented based on a UAV platform and empirically compared with several state-of-the-art solutions. Empirical results have shown that an improvement of 15% in accuracy can be achieved.

16.
Sensors (Basel) ; 23(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37960366

RESUMEN

Due to high maneuverability as well as hardware limitations of Unmanned Aerial Vehicle (UAV) platforms, tracking targets in UAV views often encounter challenges such as low resolution, fast motion, and background interference, which make it difficult to strike a compatibility between performance and efficiency. Based on the Siamese network framework, this paper proposes a novel UAV tracking algorithm, SiamHSFT, aiming to achieve a balance between tracking robustness and real-time computation. Firstly, by combining CBAM attention and downward information interaction in the feature enhancement module, the provided method merges high-level and low-level feature maps to prevent the loss of information when dealing with small targets. Secondly, it focuses on both long and short spatial intervals within the affinity in the interlaced sparse attention module, thereby enhancing the utilization of global context and prioritizing crucial information in feature extraction. Lastly, the Transformer's encoder is optimized with a modulation enhancement layer, which integrates triplet attention to enhance inter-layer dependencies and improve target discrimination. Experimental results demonstrate SiamHSFT's excellent performance across diverse datasets, including UAV123, UAV20L, UAV123@10fps, and DTB70. Notably, it performs better in fast motion and dynamic blurring scenarios. Meanwhile, it maintains an average tracking speed of 126.7 fps across all datasets, meeting real-time tracking requirements.

17.
Comput Biol Med ; 166: 107533, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37793205

RESUMEN

DNA N6-methyladenine (6mA) is one of the most common and abundant modifications, which plays essential roles in various biological processes and cellular functions. Therefore, the accurate identification of DNA 6mA sites is of great importance for a better understanding of its regulatory mechanisms and biological functions. Although significant progress has been made, there still has room for further improvement in 6mA site prediction in DNA sequences. In this study, we report a smart but accurate 6mA predictor, termed as SNN6mA, using Siamese network. To be specific, DNA segments are firstly encoded into feature vectors using the one-hot encoding scheme; then, these original feature vectors are mapped to a low-dimensional embedding space derived from Siamese network to capture more discriminative features; finally, the obtained low-dimensional features are fed to a fully connected neural network to perform final prediction. Stringent benchmarking tests on the datasets of two species demonstrated that the proposed SNN6mA is superior to the state-of-the-art 6mA predictors. Detailed data analyses show that the major advantage of SNN6mA lies in the utilization of Siamese network, which can map the original features into a low-dimensional embedding space with more discriminative capability. In summary, the proposed SNN6mA is the first attempt to use Siamese network for 6mA site prediction and could be easily extended to predict other types of modifications. The codes and datasets used in the study are freely available at https://github.com/YuXuan-Glasgow/SNN6mA for academic use.

18.
ISA Trans ; 143: 205-220, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37704556

RESUMEN

The interference of complex environments on object detection tasks dramatically limits the application of object detection algorithms. Improving the detection accuracy of the object detection algorithms is able to effectively enhance the stability and reliability of the object detection algorithm-based tasks in complex environments. In order to ameliorate the detection accuracy of object detection algorithms under various complex environment transformations, this work proposes the Siamese Attention YOLO (SAYOLO) object detection algorithm based on ingenious siamese attention structure. The ingenious siamese attention structure includes three aspects: Attention Neck YOLOv4 (ANYOLOv4), siamese neural network structure and special designed network scoring module. In the Complex Mini VOC dataset, the detection accuracy of SAYOLO algorithm is 12.31%, 48.93%, 17.80%, 10.12%, 18.79% and 1.12% higher than Faster-RCNN (Resnet50), SSD (Mobilenetv2), YOLOv3, YOLOv4, YOLOv5-l and YOLOX-x, respectively. Compared with traditional object detection algorithms based on image preprocessing, the detection accuracy of SAYOLO is 4.88%, 11.51%, 1.73%, 23.27%, 18.12%, and 5.76% higher than Image-Adaptive YOLO, MSBDN-DFF + YOLOv4, Dark Channel Prior + YOLOv4, Zero-DCE + YOLOv4, MSBDN-DFF + Zero-DCE + YOLOv4, and Dark Channel Prior + Zero-DCE + YOLOv4, respectively.

19.
Sensors (Basel) ; 23(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37766012

RESUMEN

The inverse synthetic aperture radar (ISAR) image is a kind of target feature data acquired by radar for moving targets, which can reflect the shape, structure, and motion information of the target, and has attracted a great deal of attention from the radar automatic target recognition (RATR) community. The identification of ISAR image components in radar satellite identification missions has not been carried out in related research, and the relevant segmentation methods of optical images applied to the research of semantic segmentation of ISAR images do not achieve ideal segmentation results. To address this problem, this paper proposes an ISAR image part recognition method based on semantic segmentation and mask matching. Furthermore, a reliable automatic ISAR image component labeling method is designed, and the satellite target component labeling ISAR image samples are obtained accurately and efficiently, and the satellite target component labeling ISAR image data set is obtained. On this basis, an ISAR image component recognition method based on semantic segmentation and mask matching is proposed in this paper. U-Net and Siamese Network are designed to complete the ISAR image binary semantic segmentation and binary mask matching, respectively. The component label of the ISAR image is predicted by the mask matching results. Experiments based on satellite component labeling ISAR image datasets confirm that the proposed method is feasible and effective, and it has greater comparative advantages compared to other classical semantic segmentation networks.

20.
Sensors (Basel) ; 23(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37766058

RESUMEN

Today, hyperspectral imaging plays an integral part in the remote sensing and precision agriculture field. Identifying the matching key points between hyperspectral images is an important step in tasks such as image registration, localization, object recognition, and object tracking. Low-pixel resolution hyperspectral imaging is a recent introduction to the field, bringing benefits such as lower cost and form factor compared to traditional systems. However, the use of limited pixel resolution challenges even state-of-the-art feature detection and matching methods, leading to difficulties in generating robust feature matches for images with repeated textures, low textures, low sharpness, and low contrast. Moreover, the use of narrower optics in these cameras adds to the challenges during the feature-matching stage, particularly for images captured during low-altitude flight missions. In order to enhance the robustness of feature detection and matching in low pixel resolution images, in this study we propose a novel approach utilizing 3D Convolution-based Siamese networks. Compared to state-of-the-art methods, this approach takes advantage of all the spectral information available in hyperspectral imaging in order to filter out incorrect matches and produce a robust set of matches. The proposed method initially generates feature matches through a combination of Phase Stretch Transformation-based edge detection and SIFT features. Subsequently, a 3D Convolution-based Siamese network is utilized to filter out inaccurate matches, producing a highly accurate set of feature matches. Evaluation of the proposed method demonstrates its superiority over state-of-the-art approaches in cases where they fail to produce feature matches. Additionally, it competes effectively with the other evaluated methods when generating feature matches in low-pixel resolution hyperspectral images. This research contributes to the advancement of low pixel resolution hyperspectral imaging techniques, and we believe it can specifically aid in mosaic generation of low pixel resolution hyperspectral images.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA