Your browser doesn't support javascript.
loading
ISA: Ingenious Siamese Attention for object detection algorithms towards complex scenes.
Liu, Lianjun; Hu, Ziyu; Dai, Yan; Ma, Xuemin; Deng, Pengwei.
Afiliación
  • Liu L; School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China. Electronic address: llj@stumail.ysu.edu.cn.
  • Hu Z; School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China. Electronic address: hzy@ysu.edu.cn.
  • Dai Y; School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China. Electronic address: daiyan@stumail.ysu.edu.cn.
  • Ma X; School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China. Electronic address: mxm0217@163.com.
  • Deng P; School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China. Electronic address: dpw@stumail.ysu.edu.cn.
ISA Trans ; 143: 205-220, 2023 Dec.
Article en En | MEDLINE | ID: mdl-37704556
The interference of complex environments on object detection tasks dramatically limits the application of object detection algorithms. Improving the detection accuracy of the object detection algorithms is able to effectively enhance the stability and reliability of the object detection algorithm-based tasks in complex environments. In order to ameliorate the detection accuracy of object detection algorithms under various complex environment transformations, this work proposes the Siamese Attention YOLO (SAYOLO) object detection algorithm based on ingenious siamese attention structure. The ingenious siamese attention structure includes three aspects: Attention Neck YOLOv4 (ANYOLOv4), siamese neural network structure and special designed network scoring module. In the Complex Mini VOC dataset, the detection accuracy of SAYOLO algorithm is 12.31%, 48.93%, 17.80%, 10.12%, 18.79% and 1.12% higher than Faster-RCNN (Resnet50), SSD (Mobilenetv2), YOLOv3, YOLOv4, YOLOv5-l and YOLOX-x, respectively. Compared with traditional object detection algorithms based on image preprocessing, the detection accuracy of SAYOLO is 4.88%, 11.51%, 1.73%, 23.27%, 18.12%, and 5.76% higher than Image-Adaptive YOLO, MSBDN-DFF + YOLOv4, Dark Channel Prior + YOLOv4, Zero-DCE + YOLOv4, MSBDN-DFF + Zero-DCE + YOLOv4, and Dark Channel Prior + Zero-DCE + YOLOv4, respectively.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: ISA Trans Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: ISA Trans Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos