Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2406770, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39099342

RESUMEN

Thermoelectric textile devices represent an intriguing avenue for powering wearable electronics. The lack of air-stable n-type polymers has, until now, prevented the development of n-type multifilament yarns, which are needed for textile manufacturing. Here, the thermomechanical properties of the recently reported n-type polymer poly(benzodifurandione) (PBFDO) are explored and its suitability as a yarn coating material is assessed. The outstanding robustness of the polymer facilitates the coating of silk yarn that, as a result, displays an effective bulk conductivity of 13 S cm-1, with a projected half-life of 3.2 ± 0.7 years at ambient conditions. Moreover, the n-type PBFDO coated silk yarn with a Young's modulus of E = 0.6 GPa and a strain at break of εbreak = 14% can be machine washed, with only a threefold decrease in conductivity after seven washing cycles. PBFDO and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) coated silk yarns are used to fabricate two out-of-plane thermoelectric textile devices: a thermoelectric button and a larger thermopile with 16 legs. Excellent air stability is paired with an open-circuit voltage of 17 mV and a maximum output power of 0.67 µW for a temperature difference of 70 K. Evidently, PBFDO coated multifilament silk yarn is a promising component for the realization of air stable thermoelectric textile devices.

2.
Nano Lett ; 24(35): 10921-10927, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39186321

RESUMEN

We measured the Seebeck coefficient for junctions comprising self-assembled monolayers and bilayers of the fullerene moiety PTEG-1 on Au using eutectic Ga-In in a controlled anhydrous atmosphere by varying the temperature gradient from -12 to 12 °C, observing a linear response in thermovoltage across the range. The sign of the coefficient was positive for monolayers of PTEG-1, (195 ± 8) µV K-1 and negative for bilayers of PTEG-1, (-209 ± 14) µV K-1, indicating a change from HOMO-mediated to LUMO-mediated charge-transport. Charge-transport is nonresonant tunneling for both monolayers and bilayers, but the former self-assembles with the fullerene cage at the chemisorbed interface while the latter includes a fullerene cage at the physisorbed interface, demonstrating that the physical position of the fullerene cage determines the energetic position of the frontier molecular orbitals of PTEG-1.

3.
ACS Appl Mater Interfaces ; 16(35): 46191-46199, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39166740

RESUMEN

The pursuit of high-performance thermoelectric materials is of paramount importance in addressing energy sustainability and environmental concerns. Here, we explore the multifaceted impact of sulfur passivation in the matrix of tellurium nanowires (TeNWs), encompassing environmental control, thermoelectric properties, and charge carrier mobility. In this study, we present the facile production of TeNWs using an aqueous solution synthesis approach. The synthesized TeNWs were subsequently subjected to surface modification involving sulfur moieties. Our findings demonstrate that sulfur passivation not only effectively safeguards the nanowires from environmental degradation but also significantly augments their thermoelectric properties. Notably, the highest recorded values were achieved at 560 K for passivated tellurium nanowires, exhibiting a Seebeck coefficient of 246 µV/K, an electrical conductivity of 14.2 S/cm, and power factors of 86.7 µW/m-K2. This strategy presents a promising avenue for the development of advanced thermoelectric materials for applications in energy harvesting, waste heat recovery, and sustainable energy conversion technologies.

4.
Adv Sci (Weinh) ; : e2400802, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044364

RESUMEN

Organic-inorganic hybrid thermoelectric (TE) materials have attracted tremendous interest for harvesting waste heat energy. Due to their mechanical flexibility, inorganic-organic hybrid TE materials are considered to be promising candidates for flexible energy harvesting devices. In this work, enhanced TE properties of Tellurium (Te) nanowires (NWs)- poly (3-hexylthiophene-2, 5-diyl) (P3HT) hybrid materials are reported by improving the charge transport at interfacial layer mediated via controlled oxidation. A power factor of ≈9.8 µW (mK2)-1 is obtained at room temperature for oxidized P3HT-TeNWs hybrid materials, which increases to ≈64.8 µW (mK2)-1 upon control of TeNWs oxidation. This value is sevenfold higher compared to P3HT-TeNWs-based hybrid materials reported in the literature. MD simulation reveals that oxidation-free TeNWs demonstrate better templating for P3HT polymer compared to oxidized TeNWs. The Kang-Snyder model is used to study the charge transport in these hybrid materials. A large σE0 value is obtained which is related to better templating of P3HT on oxygen-free TeNWs. This work provides evidence that oxidation control of TeNWs is critical for better interface-driven charge transport, which enhances the thermoelectric properties of TeNWs-P3HT hybrid materials. This work provides a new avenue to improve the thermoelectric properties of a new class of hybrid thermoelectric materials.

5.
Nanomaterials (Basel) ; 14(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38998764

RESUMEN

Thermoelectric nanoantennas have been extensively investigated due to their ability to directly convert infrared (IR) radiation into direct current without an additional rectification device. In this study, we introduce a thermoelectric nanoantenna geometry for maximum output voltage (Voc) and propose an optimal series array configuration with a finite number of antennas to enhance the Voc. A finite and open-ended SiO2 substrate, with a thickness of a quarter-effective wavelength at a frequency of 28.3 THz, is used to generate standing waves within the substrate. An array of antennas is then positioned optimally on the substrate to maximize the temperature difference (∆T) between hot and cold areas, thereby increasing the average Voc per antenna element. In numerical simulations, a linearly polarized incident wave with a power density of 1.42 W/cm2 is applied to the structure. The results show that a single antenna with the optimum geometry on a substrate measuring 35 µm × 35 µm generates a ∆T of 64.89 mK, corresponding to a Voc of 1.75 µV. Finally, a series array of 5 × 6 thermoelectric nanoantennas on a 150 µm × 75 µm substrate including measurement pads achieves an average ∆T of 49.60 mK with a total Voc of 40.18 µV, resulting in an average Voc of 1.34 µV per antenna element and a voltage responsivity (ßv) of 0.77 V/W. This value, achieved solely by optimizing the antenna geometry and open-ended substrate, matches or exceeds the Voc and ßv of approximately 1 µV and 0.66 V/W, respectively, from suspended thermoelectric antenna arrays over air cavities. Therefore, the proposed thermoelectric nanoantenna array device, characterized by high stability and ease of fabrication, is suitable for manufacturing massive nanoantenna arrays for high-output IR-DC energy harvesters.

6.
ACS Appl Mater Interfaces ; 16(27): 35438-35446, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38937139

RESUMEN

Moiré superlattices with a robust twist proximity effect in the low-dimensional regime can facilitate nanoscale thermoelectric devices. In pristine systems, the low efficiency and lack of proficient control of thermoelectric properties impede desirable advancements in the field of energy conversion. In the present study, we demonstrate remarkable macroscopic thermoelectric response as a consequence of microscopic band structure modulation via the twist proximity in an engineered CrI3/1T-MoS2 moiré superlattice. The local twist effect, which leads to the microscopic phenomena of electron localization, results in a comprehensive electronic structure modulation. Consequently, these local effects convolute the macroscopic thermoelectric effect. Additionally, flat bands and angle-dependent metallic to semiconducting transitions are observed at 10.89, 23.41, and 30° twist angles. We correlate the observed phenomenon with the augmented spin-charge transport and interconversion via the twist proximity effect in its semiconducting phase. The estimated ultralow electronic and lattice thermal conductivities further corroborate with the observed large figure of merit and Seebeck coefficient. The maximum values of the Seebeck coefficient and figure of merit are estimated to be ∼413 µV/K and ∼4.3 at 200 K for 30° under the constant time relaxation approach. The twist-endowed outstanding thermoelectric effect in moiré superlattices with band modulation unveils a distinctive approach to establish efficient thermoelectric devices.

7.
Nanotechnology ; 35(39)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38861969

RESUMEN

A novel two-dimensional (2D) half-HeuslerZrNiSn nanosheetfor thermoelectric applications was designed from bulk half-Heusler ZrNiSn through first-principles calculation. Investigation of bulk half-Heusler and 2D nanosheet ZrNiSn was performed with the Quantum Espresso code based on a density functional theory plane wave basis set. Electronic band structure and density of states calculations were used to study the confinement effects. On moving from bulk to 2D a change of structure is observed from face-centered cubic to trigonal due to confinement effects. The semiconducting nature of bulk ZrNiSn is undisturbed while moving to a 2D nanosheet; however, the band gap is widened from 0.46 to 1.3 eV due to the restricted motion of electrons in one direction. Compared with bulk ZrNiSn, 2D nanosheets were found to have a higher Seebeck coefficient a lower thermal conductivity and higher figure of merit, which makes 2D ZrNiSn nanosheets suitable for thermoelectric applications. Atomically thin 2D structures with a flat surface have the potential to form van der Waals heterojunctions, paving the way for device fabrication at the nanoscale level.

8.
Sci Rep ; 14(1): 13067, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844480

RESUMEN

In the area of energy storage and conversion, Metal-Organic Frameworks (MOFs) are receiving more and more attention. They combine organic nature with long-range order and low thermal conductivity, giving them qualities to be potentially attractive for thermoelectric applications. To make the framework electrically conductive so far, thermoelectricity in this class of materials requires infiltration by outside conductive guest molecules. In this study, an in-situ polymerization of conductive polyaniline inside the porous structure of MOF-801 was conducted to synthesize PANi@MOF-801 nanocomposites for thermoelectrical applications. The growth of polyaniline chains of different loadings inside the host MOF matrix generally enhanced bulk electrical conductivity by about 6 orders of magnitude, leading to Seebeck coefficient value of -141 µVK-1 and improved thermal stability. The unusual increase in electrical conductivity was attributed to the formation of highly oriented conductive PANi chains inside the MOF pores, besides host-guest physical interaction, while the Seebeck coefficient enhancement was because of the energy filtering effect of the developed structure. Modulating the composition of PANi@MOF-801 composites by varying the aniline: MOF-801 ratio in the synthesis bath from 2:1 and 1:1 to 1:2 leads to a change in the semiconductor properties from p-type semiconductor to n-type. Among the examined composites with n-type semiconducting properties exhibited the highest ZT value, 0.015, and lowest thermal conductivity, 0.24 Wm-1 K-1. The synthesized composites have better performance than those recently reported for a similar category of thermoelectric materials related to MOF-based composites.

9.
Chem Asian J ; 19(15): e202400329, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38736306

RESUMEN

It is of great significance to develop high-performance thermoelectric (TE) materials, because they can be used to harvest waste heat into electricity and there is abundant waste heat on earth. The conventional TE materials are inorganic semimetals or semiconductors like Bi2Te3 and its derivatives. However, they have problems of high cost, scarce/toxic elements, high thermal conductivity, and poor mechanical flexibility. Organic TE materials emerged as the next-generation TE materials because of their merits including solution processability, low cost, abundant element, low intrinsic thermal conductivity, and high mechanical flexibility. Organic TE materials are mainly conducting polymers because of their high conductivity. Both the conductivity and Seebeck coefficient depend on the doping level, and they are interdependent. Hence, the TE properties of polymers can be improved through doping/dedoping engineering. There are three types of doping forms, oxidative (or reductive) doping, protonic acid doping, and charge transfer doping. Accordingly, they can be dedoped by different approaches. In this article, we review the methods to dope and dedope p-type and n-type TE polymers and the combination of doping and dedoping to optimize their TE properties. Secondary doping is also covered, since it can significantly enhance the conductivity of some TE polymers.

10.
Sensors (Basel) ; 24(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38793910

RESUMEN

Thermoelectric gas sensor (THGS) devices with catalysts and Si0.8Ge0.2 thin films of different boron doping levels of 1018, 1019, and 1020 cm-3 were fabricated, and their transport properties are investigated. SiGe films were deposited on Si3N4/SiO2 multilayers on Si substrates using low-pressure chemical vapor deposition (LPCVD) and thermally annealed at 1050 °C. The Seebeck coefficients of the SiGe films were increased after thermal annealing, ranging from 191 to 275 µV/K at temperatures of 74 to 468 °C in air, and reaching the highest power factor of 6.78 × 10-4 W/mK2 at 468 °C. The thermal conductivity of the SiGe films varied from 2.4 to 3.0 W/mK at 25 °C. The THGS detection performance was tested for the H2 gas in air from 0.01 to 1.0%, and compared to the thermoelectric properties of the SiGe films. The high-temperature annealing treatment process was successful in enhancing the thermoelectric performance of both the SiGe films and sensor devices, achieving the best THGS performance with the sensor device fabricated from the annealed SiGe film with 1018 cm-3 boron-doped Si0.8Ge0.2.

11.
ACS Nano ; 18(17): 11153-11164, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38641345

RESUMEN

Graphene is atomically thin, possesses excellent thermal conductivity, and is able to withstand high current densities, making it attractive for many nanoscale applications such as field-effect transistors, interconnects, and thermal management layers. Enabling integration of graphene into such devices requires nanostructuring, which can have a drastic impact on the self-heating properties, in particular at high current densities. Here, we use a combination of scanning thermal microscopy, finite element thermal analysis, and operando scanning transmission electron microscopy techniques to observe prototype graphene devices in operation and gain a deeper understanding of the role of geometry and interfaces during high current density operation. We find that Peltier effects significantly influence the operational limit due to local electrical and thermal interfacial effects, causing asymmetric temperature distribution in the device. Thus, our results indicate that a proper understanding and design of graphene devices must include consideration of the surrounding materials, interfaces, and geometry. Leveraging these aspects provides opportunities for engineered extreme operation devices.

12.
J Phys Condens Matter ; 36(25)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38498945

RESUMEN

The present paper is primarily focused to understand the strain driven alterations in thermoelectric (TE) properties of two-dimensional SiH and GeH monolayers from first-principle calculations. Electronic band structures and the associated TE properties of the compounds under ambient and external strains have been critically unveiled in terms of Seebeck coefficients, electrical conductivities, power factors and electronic thermal conductivities. The phonon dispersion relations have also been investigated to estimate the lattice thermal conductivities of the systems. The TE figure of merits of SiH and GeH monolayers under ambient and external strains have been explored from the collective effects of their Seebeck coefficients, electrical conductivities, electronic and lattice thermal conductivities. The present study will be helpful in exploring the strain induced TE responses of SiH and GeH compounds which in turn may bear potential applications in clean and global energy conservation.

13.
Small ; 20(24): e2311811, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38372500

RESUMEN

Amid growing interest in using body heat for electricity in wearables, creating stretchable devices poses a major challenge. Herein, a hydrogel composed of two core constituents, namely the negatively-charged 2-acrylamido-2-methylpropanesulfonic acid and the zwitterionic (ZI) sulfobetaine acrylamide, is engineered into a double-network hydrogel. This results in a significant enhancement in mechanical properties, with tensile stress and strain of up to 470.3 kPa and 106.6%, respectively. Moreover, the ZI nature of the polymer enables the fabrication of a device with polar thermoelectric properties by modulating the pH. Thus, the ionic Seebeck coefficient (Si) of the ZI hydrogel ranges from -32.6 to 31.7 mV K-1 as the pH is varied from 1 to 14, giving substantial figure of merit (ZTi) values of 3.8 and 3.6, respectively. Moreover, a prototype stretchable ionic thermoelectric supercapacitor incorporating the ZI hydrogel exhibits notable power densities of 1.8 and 0.9 mW m-2 at pH 1 and 14, respectively. Thus, the present work paves the way for the utilization of pH-sensitive, stretchable ZI hydrogels for thermoelectric applications, with a specific focus on harvesting low-grade waste heat within the temperature range of 25-40 °C.

14.
Nanotechnology ; 35(19)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38306692

RESUMEN

Motivated by the excellent thermoelectric (TE) performance of bulk SnSe, extensive attention has been drawn to the TE properties of the monolayer SnSe. To uncover the fundamental mechanism of manipulating the TE performance of the SnSe monolayer, we perform a systematic study on the TE properties of five monolayer SnSe allotropes such asα-,ß-,γ-,δ-, andε-SnSe based on the density functional theory and the non-equilibrium Green's functions. By comparing the TE properties of the Na-doped SnSe allotropes with the undoped ones, the influences of the Na doping and the temperature on the TE properties are deeply investigated. It is shown that the figure of meritZTwill increase as the temperature increases, which is the same for almost all the Na-doped and undoped cases. The Na doping can enhance or suppress theZTin different SnSe allotropes at different temperatures, implying the presence of the anomalous suppression of theZT. The Na doping inducedZTsuppression may be caused basically by the sharp decrease of the power factor and the weak decrease of the electronic thermal conductance, rather than by the decrease of the phononic thermal conductance. We hope this work will be able to enrich the understanding of the manipulation of TE properties by means of dimensions, structurization, doping, and temperature.

15.
Micromachines (Basel) ; 15(2)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38398917

RESUMEN

Previous studies have shown that undoped and doped SnO2 thin films have better optical and electrical properties. This study aims to investigate the thermoelectric properties of two distinct semiconducting oxide thin films, namely SnO2 and F-doped SnO2 (FTO), by the nebulizer spray pyrolysis technique. An X-ray diffraction study reveals that the synthesized films exhibit a tetragonal structure with the (200) preferred orientation. The film structural quality increases from SnO2 to FTO due to the substitution of F- ions into the host lattice. The film thickness increases from 530 nm for SnO2 to 650 nm for FTO films. Room-temperature electrical resistivity decreases from (8.96 ± 0.02) × 10-2 Ω·cm to (4.64 ± 0.01) × 10-3 Ω·cm for the SnO2 and FTO thin films, respectively. This is due to the increase in the carrier density of the films, (2.92 ± 0.02) × 1019 cm-3 (SnO2) and (1.63 ± 0.03) × 1020 cm-3 (FTO), caused by anionic substitution. It is confirmed that varying the temperature (K) enhances the electron transport properties. The obtained Seebeck coefficient (S) increases as the temperature is increased, up to 360 K. The synthesized films exhibit the S value of -234 ± 3 µV/K (SnO2) and -204 ± 3 µV/K (FTO) at 360 K. The estimated power factor (PF) drastically increases from ~70 (µW/m·K2) to ~900 (µW/m·K2) for the SnO2 and FTO film, respectively.

16.
J Comput Chem ; 45(13): 1008-1016, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38205659

RESUMEN

The structural, optoelectronics, and transport properties of TlTaO3 compounds were determined utilizing the full potential augmented plane wave approach using first-principle method. We have considered the generalized gradient approximation for structural optimization and modified Becke-Johnson for electronic properties. The electronic properties reveal that the studied TlTaO3 possesses direct bandgap of magnitude 1.52 eV. Between 0 and 12 eV, optical spectra calculations are made, taking into account the real and imaginary parts of the dielectric function, refractive index, and loss function. The transport properties are estimated considering Boltzmann transport theory. The Seebeck coefficient, electrical conductivity, thermal conductivity, and power factor are all assessed using the Boltzmann transport theory. The optimized thermoelectric response of the examined TlTaO3 is produced by the improved carrier mobility, which also improves the thermoelectric efficiency of the TlTaO3. The obtained results will act as a theoretical road map for upcoming experimental and commercial TlTaO3 applications.

17.
Nano Lett ; 24(6): 1988-1995, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38270106

RESUMEN

Underpotential deposition (UPD) is an intriguing means for tailoring the interfacial electronic structure of an adsorbate at a substrate. Here we investigate the impact of UPD on thermoelectricity occurring in molecular tunnel junctions based on alkyl self-assembled monolayers (SAMs). We observed noticeable enhancements in the Seebeck coefficient of alkanoic acid and alkanethiol monolayers, by up to 2- and 4-fold, respectively, upon replacement of a conventional Au electrode with an analogous bimetallic electrode, Cu UPD on Au. Quantum transport calculations indicated that the increased Seebeck coefficients are due to the UPD-induced changes in the shape or position of transmission resonances corresponding to gateway orbitals, which depend on the choice of the anchor group. Our work unveils UPD as a potent means for altering the shape of the tunneling energy barrier at the molecule-electrode contact of alkyl SAM-based junctions and hence enhancing thermoelectric performance.

18.
Nano Lett ; 23(22): 10473-10479, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37930154

RESUMEN

Molecular junctions are potentially highly efficient devices for thermal energy harvesting since their transmission properties can be tailored to break electron-hole transport symmetry and consequently yield high Seebeck and Peltier coefficients. Full harnessing of this potential requires, however, a capability to precisely position their Fermi level within the transmission landscape. Currently, with the lack of such a "knob" for two-lead junctions, their thermoelectric performance is too low for applications. Here we report that the requested capability can be realized by using junctions with a semimetal lead and molecules with a tailored effect of their monolayers on the work function of the semimetal. The approach is demonstrated by junctions with monolayers of alkanethiols on bismuth (Bi). Fermi-level tuning enables in this case increasing the Seebeck coefficient by more than 2 orders of magnitude. The underlying mechanism of this capability is discussed, as well as its general applicability.

19.
J Phys Condens Matter ; 35(50)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659399

RESUMEN

We have theoretically investigated the underlying physics of observed high electrical conductivity (σ), simultaneous increase of σ and Seebeck coefficient (S) with temperature, and large power factors (PFs) in nominally undoped SnSe nanoflakes sintered at different temperatures, reported recently in Mandavaet al(2022Nanotechnology33155710). Given the fact that S and σ show unusual temperature trends and that the undoped SnSe samples are highly porous and disordered, the conventional Boltzmann theory does not appear to be an appropriate model to describe their transport properties. We have, instead, used a strong disorder model based on percolation theory where charge and energy transport take place through hopping between localized states to understand these observations. Our model is able to explain the observed temperature dependence of σ and S with temperature. Large σ can be explained by a high density of localized states and a large hopping rate. The sample sintered at a higher temperature has lower disorder (σDOS) and higher hopping rate (1/τ0). We findσDOS= 0.151 eV and 1/τ0= 0.143 × 1015s-1for sample sintered at 673 K andσDOS= 0.044 eV and 1/τ0= 2.023 × 1015s-1for sample sintered at 703 K. These values are comparable to the reported values of transition frequencies, confirming that the dominant charge transport mechanism in these SnSe nanoflakes is hopping transport. Finally, we suggest that hopping transport via localized states can result in enhanced thermoelectric properties in disordered polycrystalline materials.

20.
Nanomaterials (Basel) ; 13(16)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37630875

RESUMEN

Effective low-grade waste heat harvesting and its conversion into electric energy by the means of thermoelectrochemical cells (TECs) are a strong theme in the field of renewable energy investigation. Despite considerable scientific research, TECs have not yet been practically applied due to the high cost of electrode materials and low effectiveness levels. A large hypothetical Seebeck coefficient allow the harvest of the low-grade waste heat and, particularly, to use TECs for collecting human body heat. This paper demonstrates the investigation of estimated hypothetical Seebeck coefficient dependency on KOH electrolyte concentration for TECs with hollow nanostructured Ni/NiO microsphere electrodes. It proposes a thermoelectrochemical cell with power density of 1.72 W·m-2 and describes the chemistry of electrodes and near-electrode space. Also, the paper demonstrates a decrease in charge transfer resistance from 3.5 to 0.52 Ω and a decrease in capacitive behavior with increasing electrolyte concentration due to diffusion effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA