Your browser doesn't support javascript.
loading
Thermoelectric Limitations of Graphene Nanodevices at Ultrahigh Current Densities.
Evangeli, Charalambos; Swett, Jacob; Spiece, Jean; McCann, Edward; Fried, Jasper; Harzheim, Achim; Lupini, Andrew R; Briggs, G Andrew D; Gehring, Pascal; Jesse, Stephen; Kolosov, Oleg V; Mol, Jan A; Dyck, Ondrej.
Afiliación
  • Evangeli C; Department of Materials, University of Oxford, Oxford OX1 3PH, U.K.
  • Swett J; Physics Department, Lancaster University, Lancaster LA1 4YW, U.K.
  • Spiece J; Department of Materials, University of Oxford, Oxford OX1 3PH, U.K.
  • McCann E; IMCN/NAPS, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve 1348, Belgium.
  • Fried J; Physics Department, Lancaster University, Lancaster LA1 4YW, U.K.
  • Harzheim A; Department of Materials, University of Oxford, Oxford OX1 3PH, U.K.
  • Lupini AR; Department of Materials, University of Oxford, Oxford OX1 3PH, U.K.
  • Briggs GAD; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.
  • Gehring P; Department of Materials, University of Oxford, Oxford OX1 3PH, U.K.
  • Jesse S; IMCN/NAPS, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve 1348, Belgium.
  • Kolosov OV; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.
  • Mol JA; Physics Department, Lancaster University, Lancaster LA1 4YW, U.K.
  • Dyck O; School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, U.K.
ACS Nano ; 18(17): 11153-11164, 2024 Apr 30.
Article en En | MEDLINE | ID: mdl-38641345
ABSTRACT
Graphene is atomically thin, possesses excellent thermal conductivity, and is able to withstand high current densities, making it attractive for many nanoscale applications such as field-effect transistors, interconnects, and thermal management layers. Enabling integration of graphene into such devices requires nanostructuring, which can have a drastic impact on the self-heating properties, in particular at high current densities. Here, we use a combination of scanning thermal microscopy, finite element thermal analysis, and operando scanning transmission electron microscopy techniques to observe prototype graphene devices in operation and gain a deeper understanding of the role of geometry and interfaces during high current density operation. We find that Peltier effects significantly influence the operational limit due to local electrical and thermal interfacial effects, causing asymmetric temperature distribution in the device. Thus, our results indicate that a proper understanding and design of graphene devices must include consideration of the surrounding materials, interfaces, and geometry. Leveraging these aspects provides opportunities for engineered extreme operation devices.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido Pais de publicación: Estados Unidos