Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Food Microbiol ; 363: 109491, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-34862040

RESUMEN

Biopreservation is a strategy that has been extensively covered by the scientific literature from a variety of perspectives. However, the development of quantitative modelling approaches has received little attention, despite the usefulness of these tools for the food industry to assess the performance and to set the optimal application conditions. The objective of this study was to evaluate and model the interaction between the antilisteria strain Latilactobacillus sakei CTC494 (sakacin K producer) and Listeria monocytogenes in vacuum-packaged sliced cooked ham. Cooked ham was sliced under aseptic conditions and inoculated with L. monocytogenes CTC1034 and/or L. sakei CTC494 in monoculture and coculture at 10:10, 10:103 and 10:105 cfu/g ratios of pathogen:bioprotective cultures. Samples were vacuum packaged and stored at isothermal temperature (2, 5, 10 and 15 °C). The growth of the two bacteria was monitored by plate counting. The Logistic growth model was applied to estimate the growth kinetic parameters (N0, λ, µmax, Nmax). The effect of storage temperature was modelled using the hyperbola (λ) and Ratkowsky (µmax) models. The simple Jameson-effect model, its modifications including the Ncri and the interaction γ factor, and the predator-prey Lotka Volterra model were used to characterize the interaction between both microorganisms. Two additional experiments at non-isothermal temperature conditions were also carried out to assess the predictive performance of the developed models through the Acceptable Simulation Zone (ASZ) approach. In monoculture conditions, L. monocytogenes and L. sakei CTC494 grew at all temperatures. In coculture conditions, L. sakei CTC494 had an inhibitory effect on L. monocytogenes by lowering the Nmax, especially with increasing levels of L. sakei CTC494 and lowering the storage temperature. At the lowest temperature (2 °C) L. sakei CTC494 was able to completely inhibit the growth of L. monocytogenes when added at a concentration 3 and 5 Log higher than that of the pathogen. The inhibitory effect of the L. sakei CTC494 against L. monocytogenes was properly characterized and modelled using the modified Jameson-effect with interaction γ factor model. The developed interaction model was tested under non-isothermal conditions, resulting in ASZ values ≥83%. This study shows the potential of L. sakei CTC494 in the biopreservation of vacuum-packaged cooked ham against L. monocytogenes. The developed interaction model can be useful for the industry as a risk management tool to assess and set biopreservation strategies for the control of L. monocytogenes in cooked ham.


Asunto(s)
Latilactobacillus sakei , Listeria monocytogenes , Productos de la Carne , Recuento de Colonia Microbiana , Culinaria , Microbiología de Alimentos , Embalaje de Alimentos , Conservación de Alimentos , Modelos Teóricos , Temperatura , Vacio
2.
Int J Food Microbiol ; 290: 150-158, 2019 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-30340113

RESUMEN

The aim of the present study was to understand growth and survival responses of Listeria monocytogenes during the storage of high pressure processed (HPP) cooked ham formulated with organic acids to inhibit growth of the pathogen. Cooked ham batches were manufactured without organic acids (control), with potassium lactate (2.8% or 4%) or with potassium lactate and sodium diacetate (2.0% + 0.11% or 2.0% + 0.45%). Products were aseptically sliced and inoculated with 107 cfu/g or 102 cfu/g of either L. monocytogenes CTC1034 (a meat isolate) or a cocktail of three isolates (12MOB045Lm, 12MOB089Lm and Scott A). Vacuum-packed samples with 107 cfu/g were HPP at 600 MPa for 3 min, whereas samples with 102 cfu/g were not HPP. Growth or survival of L. monocytogenes was determined during subsequent storage at 8, 12 and 20 °C. Growth or survival was characterized by fitting the experimental data using the primary logistic model and the log-linear with shoulder model, respectively. Secondary models were fitted to characterize the effect of temperature on growth kinetic parameters without or with HPP. For cooked ham without organic acids, growth rates of L. monocytogenes were slightly increased by HPP and lag times were longer. Interestingly, for cooked ham with organic acids, the HPP had a significant stimulating effect on subsequent growth of L. monocytogenes (piezo-stimulation). At 20 °C, the growth rates of L. monocytogenes in cooked ham with lactate were up to 4-fold higher than those of the same product without HPP. The observed enhancement of the piezo-stimulating effect of organic acids on growth rates during storage of HPP cooked ham represents a challenge for the use of organic acids as antimicrobials in these products. A predictive model available as part of the Food Spoilage and Safety Predictor (FSSP) software seemed useful to predict growth and growth boundary of L. monocytogenes in non-pressurised cooked ham. This model was calibrated to take into account the observed piezo-stimulating effect and to predict growth of L. monocytogenes in HPP cooked ham with organic acids.


Asunto(s)
Acetatos/farmacología , Microbiología de Alimentos/métodos , Lactatos/farmacología , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/crecimiento & desarrollo , Carne/microbiología , Presión , Animales , Antibacterianos/farmacología , Recuento de Colonia Microbiana , Culinaria , Porcinos , Temperatura , Vacio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA