Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
MedComm (2020) ; 4(2): e229, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36891351

RESUMEN

Interleukin 37 (IL-37), a member of the IL-1 family, is considered a suppressor of innate and adaptive immunity and, hence is a regulator of tumor immunity. However, the specific molecular mechanism and role of IL-37 in skin cancer remain unclear. Here, we report that IL-37b-transgenic mice (IL-37tg) treated with the carcinogenic 7,12-dimethylbenzoanthracene (DMBA)/12-o-tetradecylphorbol-13-acetate (TPA) exhibited enhanced skin cancer and increased tumor burden in the skin by inhibiting the function of CD103+ dendritic cells (DCs). Notably, IL-37 induced rapid phosphorylation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), and via single immunoglobulin IL-1-related receptor (SIGIRR), inhibited the long-term Akt activation. Specifically, by affecting the SIGIRR-AMPK-Akt signaling axis, which is related to the regulation of glycolysis in CD103+DCs, IL-37 inhibited their anti-tumor function. Our results show that a marked correlation between the CD103+DC signature (IRF8, FMS-like tyrosine kinase 3 ligand, CLEC9A, CLNK, XCR1, BATF3, and ZBTB46) and chemokines C-X-C motif chemokine ligand 9, CXCL10, and CD8A in a mouse model with DMBA/TPA-induced skin cancer. In a word, our results highlight that IL-37 as an inhibitor of tumor immune surveillance through modulating CD103+DCs and establishing an important link between metabolism and immunity as a therapeutic target for skin cancer.

2.
Ital J Pediatr ; 49(1): 2, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36600293

RESUMEN

BACKGROUND: Kawasaki disease (KD) is a kind of vasculitis with unidentified etiology. Given that the current diagnosis and therapeutic strategy of KD are mainly dependent on clinical experiences, further research to explore its pathological mechanisms is warranted. METHODS: Enzyme linked immunosorbent assay (ELISA) was used to measure the serum levels of SIGIRR, TLR4 and caspase-8. Western blotting was applied to determine protein levels, and flow cytometry was utilized to analyze cell apoptosis. Hematoxylin eosin (HE) staining and TUNEL staining were respectively used to observe coronary artery inflammation and DNA fragmentation. RESULTS: In this study, we found the level of SIGIRR was downregulated in KD serum and KD serum-treated endothelial cells. However, the level of caspase-8 was increased in serum from KD patients compared with healthy control (HC). Therefore, we hypothesized that SIGIRR-caspase-8 signaling may play an essential role in KD pathophysiology. In vitro experiments demonstrated that endothelial cell apoptosis in the setting of KD was associated with caspase-8 activation, and SIGIRR overexpression alleviated endothelial cell apoptosis via inhibiting caspase-8 activation. These findings were also recapitulated in the Candida albicans cell wall extracts (CAWS)-induced KD mouse model. CONCLUSION: Our data suggest that endothelial cell apoptosis mediated by SIGIRR-caspase-8 signaling plays a crucial role in coronary endothelial damage, providing potential targets to treat KD.


Asunto(s)
Células Endoteliales , Síndrome Mucocutáneo Linfonodular , Animales , Ratones , Humanos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Caspasa 8/metabolismo , Apoptosis , Transducción de Señal
3.
FEBS J ; 290(10): 2721-2743, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36527283

RESUMEN

Inappropriate accumulation of alveolar macrophages (AMs) and subsequent excessive production of immune responses play critical roles in the pathogenesis of acute lung injury (ALI), but the core negative regulators governing innate signalling in AMs are ill defined. We have previously shown that single immunoglobin IL-1 receptor-related protein (SIGIRR), a negative regulator of IL-1 receptor and Toll-like receptor signalling, inhibits lipopolysaccharide (LPS)-induced inflammatory responses in AMs. To address the biological relevance of SIGIRR in vivo, we generated a murine ALI model via intratracheal instillation of LPS. Intriguingly, SIGIRR expression was observed to be decreased in resident and recruited macrophages during ALI. This decrease was associated with parallel induction in CD18 protein levels in LPS-challenged lung tissues. Through intranasal injection of SIGIRR lentiviral particles studies, we showed that the overexpression of SIGIRR attenuated recruitment of macrophages and neutrophils, decreased production of inflammatory cytokines and ameliorated pathological changes in lungs. Whilst exploring the basis for this phenotype, SIGIRR was found to be coexpressed with CD18 in AMs, and SIGIRR potentiated the instability of CD18 protein via enhancement of its ubiquitination and proteasome degradation. Conversely, by using CD18-/- mice, we further observed that CD18 deletion completely abolished the therapeutic effects of overexpression of SIGIRR on LPS-induced ALI. Mover, overexpression of CD18 in AMs promoted adhesion to ECM components, enhanced TLR4-mediated inflammasome activation and thereby potentiated IL-1ß production. These data collectively identify SIGIRR/CD18 as a key negative regulatory circuit maintaining innate immune homeostasis in AMs along the pathogenesis of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Ratones , Animales , Lipopolisacáridos/toxicidad , Pulmón/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Inmunidad Innata/genética , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo
4.
Ann Pediatr Cardiol ; 16(5): 337-344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38766461

RESUMEN

Background: Necrotizing enterocolitis (NEC) is a common gastrointestinal emergency among neonates which is characterized by acute intestinal inflammation and necrosis. The main risk factors for NEC are prematurity, low birth weight, and some preexisting health conditions such as congenital heart defects (CHDs). Investigation of the potential genetic predisposition to NEC is a promising approach that might provide new insights into its pathogenesis. One of the most important proteins that play a significant role in the pathogenesis of NEC is Toll-like receptor 4 (TLR4) which recognizes lipopolysaccharide found in Gram-negative bacteria. In intestinal epithelial cells, a protein encoded by the SIGIRR gene is a major inhibitor of TLR4 signaling. A few SIGIRR variants, including rare p.Y168X and p.S80Y, have already been identified in preterm infants with NEC, but their pathogenic significance remains unclear. This study aimed to investigate the spectrum of SIGIRR genetic variants in term newborns with CHD and to assess their potential association with NEC. Methods and Results: A total of 93 term newborns with critical CHD were enrolled in this study, 33 of them developed NEC. SIGIRR genetic variants were determined by Sanger sequencing of all exons. In total, eight SIGIRR genetic variants were identified, two of which were found only in newborns with NEC (P = 0.12). The rare missense p.S80Y (rs117739035) variant in exon 4 was found in two infants with NEC stage IIA. Two infants with NEC stage III and stage IB carried a novel duplication c. 102_121dup (rs552367848) variant in exon 10 that has not been previously associated with any clinical phenotype. Conclusions: The presence of both variants only in neonates who developed NEC, together with earlier published data, may suggest their potential contribution to the risk of developing NEC in term infants with CHD and allow planning larger cohort studies to clarify their relevance.

5.
Mol Med ; 28(1): 135, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36401167

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is a complex autoimmune disease with multiple etiological factors, among which aberrant memory CD4 T cells activation plays a key role in the initiation and perpetuation of the disease. SIGIRR (single immunoglobulin IL-1R-related receptor), a member of the IL-1 receptor (ILR) family, acts as a negative regulator of ILR and Toll-like receptor (TLR) downstream signaling pathways and inflammation. The aim of this study was to investigate the potential roles of SIGIRR on memory CD4 T cells in RA and the underlying cellular and molecular mechanisms. METHODS: Single-cell transcriptomics and bulk RNA sequencing data were integrated to predict SIGIRR gene distribution on different immune cell types of human PBMCs. Flow cytometry was employed to determine the differential expression of SIGIRR on memory CD4 T cells between the healthy and RA cohorts. A Spearman correlation study was used to determine the relationship between the percentage of SIGIRR+ memory CD4 T cells and RA disease activity. An AIA mouse model (antigen-induced arthritis) and CD4 T cells transfer experiments were performed to investigate the effect of SIGIRR deficiency on the development of arthritis in vivo. Overexpression of SIGIRR in memory CD4 T cells derived from human PBMCs or mouse spleens was utilized to confirm the roles of SIGIRR in the intracellular cytokine production of memory CD4 T cells. Immunoblots and RNA interference were employed to understand the molecular mechanism by which SIGIRR regulates TNF-α production in CD4 T cells. RESULTS: SIGIRR was preferentially distributed by human memory CD4 T cells, as revealed by single-cell RNA sequencing. SIGIRR expression was substantially reduced in RA patient-derived memory CD4 T cells, which was inversely associated with RA disease activity and related to enhanced TNF-α production. SIGIRR-deficient mice were more susceptible to antigen-induced arthritis (AIA), which was attributed to unleashed TNF-α production in memory CD4 T cells, confirmed by decreased TNF-α production resulting from ectopic expression of SIGIRR. Mechanistically, SIGIRR regulates the IL-1/C/EBPß/TNF-α signaling axis, as established by experimental evidence and cis-acting factor bioinformatics analysis. CONCLUSION: Taken together, SIGIRR deficiency in memory CD4 T cells in RA raises the possibility that receptor induction can target key abnormalities in T cells and represents a potentially novel strategy for immunomodulatory therapy.


Asunto(s)
Artritis Reumatoide , Factor de Necrosis Tumoral alfa , Humanos , Ratones , Animales , Linfocitos T CD4-Positivos/metabolismo , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Transducción de Señal/fisiología , Artritis Reumatoide/genética
6.
J Interferon Cytokine Res ; 42(9): 482-492, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35900274

RESUMEN

Colorectal carcinoma is the leading cause of cancer-related death. Previously we have shown that tumor suppressor single immunoglobulin interleukin-1-related receptor (SIGIRR) is frequently inactivated in human colorectal cancer by the increased expression of a novel SIGIRR isoform (SIGIRRΔE8). SIGIRRΔE8 showed increased retention in the cytoplasm and loss of complex glycan modification compared to the full-length SIGIRR. Now we found that the arginine residues located in the C-terminus of SIGIRRΔE8 serve as an endoplasmic reticulum retention signal and are required for resident protein ribophorin 1 (RPN1) interaction. In addition, we found that SIGIRRΔE8 exerts a direct impact on cell metabolism through interaction with the adenosine triphosphate synthase in the colorectal cancer cells. SIGIRRΔE8 expression promoted the metabolic shift through upregulation of mammalian target of rapamycin signaling pathway and dysregulation of mitochondrial function to promote survival and proliferation of colon cancer cells in xenograft model.


Asunto(s)
Neoplasias del Colon , Receptores de Interleucina-1/metabolismo , Adenosina Trifosfato/metabolismo , Arginina/metabolismo , Neoplasias del Colon/patología , Humanos , Inmunoglobulinas/metabolismo , Interleucina-1 , Redes y Vías Metabólicas , Serina-Treonina Quinasas TOR/metabolismo
7.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35887095

RESUMEN

Cystic fibrosis (CF) is a hereditary disease typically characterized by infection-associated chronic lung inflammation. The persistent activation of toll-like receptor (TLR) signals is considered one of the mechanisms for the CF hyperinflammatory phenotype; however, how negative regulatory signals of TLRs associate with CF inflammation is still elusive. Here, we showed that the cell surface expression of a single immunoglobulin interleukin-1 receptor (IL-1R)-related molecule (SIGIRR), a membrane protein essential for suppressing TLRs- and IL-1R-dependent signals, was remarkably decreased in CF airway epithelial cells compared to non-CF cells. Notably, CF airway epithelial cells specifically and highly expressed a unique, alternative splice isoform of the SIGIRR that lacks exon 8 (Δ8-SIGIRR), which results in the production of a C-terminal truncated form of the SIGIRR. Δ8-SIGIRR was expressed intracellularly, and its over-expression abolished the cell surface expression and function of the full-length SIGIRR (WT-SIGIRR), indicating its dominant-negative effect leading to the deficiency of anti-inflammatory activity in CF cells. Consistently, IL-37, a ligand for the SIGIRR, failed to suppress viral dsRNA analogue poly(I:C)-dependent JNK activation and IL-8 production, confirming the reduction in the functional WT-SIGIRR expression in the CF cells. Together, our studies reveal that SIGIRR-dependent anti-inflammatory activity is defective in CF airway epithelial cells due to the unique splicing switch of the SIGIRR gene and provides the first evidence of IL-37-SIGIRR signaling as a target of CF airway inflammation.


Asunto(s)
Fibrosis Quística , Antiinflamatorios/metabolismo , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Receptores de Interleucina-1/metabolismo
8.
Front Oncol ; 12: 894413, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814450

RESUMEN

Renal cell carcinoma is highly inflamed, and tumor cells are embedded into a microenvironment enriched with IL1. While inflammatory pathways are well characterized in the immune system, less is known about these same pathways in epithelial cells; it is unclear if and how innate immune signals directly impact on cancer cells, and if we could we manipulate these for therapeutic purposes. To address these questions, we first focused on the inflammatory receptors belonging to the IL1- and Toll-like receptor family including negative regulators in a small cohort of 12 clear cell RCC (ccRCC) patients' samples as compared to their coupled adjacent normal tissues. Our data demonstrated that renal epithelial cancer cells showed a specific and distinctive pattern of inflammatory receptor expression marked by a consistent downregulation of the inhibitory receptor SIGIRR mRNA. This repression was confirmed at the protein level in both cancer cell lines and primary tissues. When we analyzed in silico data of different kidney cancer histotypes, we identified the clear cell subtype as the one where SIGIRR was mostly downregulated; nonetheless, papillary and chromophobe tumor types also showed low levels as compared to their normal counterpart. RNA-sequencing analysis demonstrated that IL1 stimulation of the ccRCC cell line A498 triggered an intrinsic signature of inflammatory pathway activation characterized by the induction of distinct "pro-tumor" genes including several chemokines, the autocrine growth factor IL6, the atypical co-transcription factor NFKBIZ, and the checkpoint inhibitor PD-L1. When we looked for the macroareas most represented among the differentially expressed genes, additional clusters emerged including pathways involved in cell differentiation, angiogenesis, and wound healing. To note, SIGIRR overexpression in A498 cells dampened IL1 signaling as assessed by a reduced induction of NFKBIZ. Our results suggest that SIGIRR downregulation unleashes IL1 signaling intrinsic to tumor cells and that manipulating this pathway may be beneficial in ccRCC.

9.
Vet Sci ; 9(6)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35737347

RESUMEN

Chronic enteropathy (CE) is a severe multifactorial gastrointestinal disease that affects dogs and is driven by poorly characterized inflammatory pathways. Imbalance of pro-inflammatory response regulators, including IL-1R8, may be due to different factors, among which the infection with Helicobacteraceae is known to lead to a vicious circle in which excessive pro-inflammatory signaling and gastrointestinal injury reinforce each other and boost the disease. We investigated the expression of IL-1R8 in large intestine biopsies of dogs with or without clinical signs of CE and with previously assessed enterohepatic Helicobacter spp. colonization status by mean of quantitative real-time PCR. Our study revealed that IL-1R8 is downregulated in both acutely (p = 0.0074) and chronically (p = 0.0159) CE affected dogs compared to healthy controls. The data also showed that IL-1R8 expression tends to decrease with colonization by Helicobacter spp. Interestingly, a negative correlation was detected between the level of expression of IL-1R8 and the severity of macroscopic lesions identified by endoscopy and the crypt hyperplasia score. We further compared the expression levels between males and females and found no statistically significant difference between the two groups. No significant difference was observed in IL-1R8 expression profiles with the age of the animals either. Interestingly, an association was uncovered between IL-1R8 expression level and dog breed. Together, our data advance knowledge on gastrointestinal pathoimmunology in dogs and highlight the potential utilization of IL-1R8 as a diagnostic, prognostic and therapeutic biomarker for canine chronic enteropathy.

10.
Cell Mol Gastroenterol Hepatol ; 13(2): 425-440, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34563711

RESUMEN

BACKGROUND & AIMS: Single immunoglobulin interleukin-1-related receptor (SIGIRR) is a major inhibitor of Toll-like receptor signaling. Our laboratory identified a novel SIGIRR stop mutation (p.Y168X) in an infant who died of severe necrotizing enterocolitis (NEC). Herein, we investigated the mechanisms by which SIGIRR mutations induce Toll-like receptor hyper-responsiveness in the neonatal gut, disrupting postnatal intestinal adaptation. METHODS: Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 was used to generate transgenic mice encoding the SIGIRR p.Y168X mutation. Ileal lysates, mouse intestinal epithelial cell (IEC) lysates, and intestinal sections were used to assess inflammation, signal transducer and activator of transcription 3 (STAT3) phosphorylation, microRNA (miRNA), and interleukin-1-related-associated kinase 1 (IRAK1) expression. Western blot, quantitative reverse-transcription polymerase chain reaction(qRT-PCR), and luciferase assays were performed to investigate SIGIRR-STAT3 signaling in human intestinal epithelial cells (HIEC) expressing wild-type or SIGIRR (p.Y168X) plasmids. RESULTS: SigirrTg mice showed increased intestinal inflammation and nuclear factor-κB activation concomitant with decreased IEC expression of miR-146a and miR-155. Mechanistic studies in HIECs showed that although SIGIRR induced STAT3-mediated expression of miR-146a and miR-155, the p.Y168X mutation disrupted SIGIRR-mediated STAT3-dependent miRNA expression. Chromatin immunoprecipitation and luciferase assays showed that SIGIRR activation of STAT3-induced miRNA expression is dependent on IRAK1. Both in HIECs and in the mouse intestine, decreased expression of miR-146a observed with the p.Y168X mutation increased expression of IRAK1, a protein whose down-regulation is important for postnatal gut adaptation. CONCLUSIONS: Our results uncover a novel pathway (SIGIRR-STAT3-miRNA-IRAK1 repression) by which SIGIRR regulates postnatal intestine adaptation, which is disrupted by a SIGIRR mutation identified in human NEC. These data provide new insights into how human genetic mutations in SIGIRR identified in NEC result in loss of postnatal intestinal immune tolerance.


Asunto(s)
Enterocolitis Necrotizante , MicroARNs , Animales , Humanos , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Ratones , MicroARNs/genética , Mutación/genética , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
11.
Front Psychiatry ; 12: 698257, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34393859

RESUMEN

Background: Major depressive disorder (MDD) is associated with the activation of the immune/inflammatory system. TNF-α is associated with MDD and poor treatment response. Toll-like receptors (TLR) are responsible in innate immune response, and is associated with MDD and antidepressant response. Some negative regulators of TLR pathway such as SOCS1, TOLLIP, SIGIRR, TNFAIP3, and MyD88s, are reported to be differentially expressed in the peripheral blood samples of patients of MDD. Methods: We recruited patients with MDD and healthy controls, collect their demographic data, and measured their mRNA levels of negative TLR regulators, using peripheral blood mononuclear cells (PBMC) and isolated TNF-α secreting cells. Clinical symptoms were evaluated using Halmiton Depression Rating Scale (Ham-D). Some patients were evaluated again after 4 weeks of antidepressant treatment. Results: Forty-seven patients with MDD and 52 healthy controls were recruited. Between the PBMC samples of 37 MDD patients and 42 controls, mRNA levels of SOCS1, SIGIRR, TNFAIP3, and MyD88s were significantly different. Between TNF-α secreting cells of 10 MDD patients and 10 controls, mRNA levels of SIGIRR and TNFAIP3 were significantly different. Change of Ham-D score only correlated significantly with TOLLIP mRNA level after treatment. Conclusion: SIGIRR and TNFAIP3, two negative regulators of TLR immune response pathways, were differentially expressed in both PBMC and TNF-α secreting cells of patients with MDD as compared to healthy controls. The negative regulations of innate immune response could contribute to the underlying mechanism of MDD.

12.
J Cell Physiol ; 236(8): 5676-5685, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33400290

RESUMEN

Interleukin (IL)-37 diminishes a variety of inflammatory responses through ligation to its receptor IL-1R8/Sigirr. Sigirr is a Toll like receptor/IL-1R family member. We have shown that Sigirr is not stable in response to IL-37 treatment. IL-37-induced Sigirr degradation is mediated by the ubiquitin-proteasome system, and the process is reversed by a deubiquitinase, USP13. However, the molecular mechanisms by which USP13 regulates Sigirr stability have not been revealed. In this study, we investigate the roles of glycogen synthesis kinase 3ß (GSK3ß) in Sigirr phosphorylation and stability. IL-37 stimulation induced Sigirr phosphorylation and degradation, as well as activation of GSK3ß. Inhibition of GSK3ß attenuated IL-37-induced Sigirr phosphorylation, while exogenous expressed GSK3ß promoted Sigirr phosphorylation at threonine (T)372 residue. Sigirr association with GSK3ß was detected. Amino acid residues 51-101 in GSK3ß were identified as the Sigirr binding domain. These data indicate that GSK3ß mediates IL-37-induced threonine phosphorylation of Sigirr. Further, we investigated the role of GSK3ß-mediated phosphorylation of Sigirr in Sigirr degradation. Inhibition of GSK3ß attenuated IL-37-induced Sigirr degradation, while T372 mutant of Sigirr was resistant to IL-37-mediated degradation. Furthermore, inhibition of Sigirr phosphorylation prevented Sigirr internalization and association with USP13, suggesting GSK3ß promotes Sigirr degradation through disrupting Sigirr association with USP13.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/efectos de los fármacos , Interleucina-1/farmacología , Fosforilación/efectos de los fármacos , Receptores de Interleucina-1/efectos de los fármacos , Animales , Células Cultivadas , Células Epiteliales/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores de Interleucina-1/metabolismo , Transducción de Señal , Receptores Toll-Like/metabolismo
13.
Microorganisms ; 8(12)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322398

RESUMEN

BACKGROUND: Phylogroup B2 Escherichia coli have been associated with ulcerative colitis (UC). In this study, we aimed to compare colonization with the UC-associated E. coli p19A in different mice strains, to investigate the role of alpha hemolysin in a UC mouse model. METHODS: In this study, Sigirr -/- and C57BL/6 mice were chosen, and UC was induced by adding dextran sulfate sodium (DSS) to the drinking water. The mice were pre-treated with ciprofloxacin. p19A expressing luminescence and GFP, alpha-hemolysin knock out p19A-ΔhlyI II, and non-pathogenic lab E. coli DH10B were cultured in LB broth, and orally gavaged into the mice. Colonization with p19A WT was visualized using an in vivo imaging system. RESULTS: p19A WT colonized the colon, ileum, Peyer's patches, liver, and spleen of infected C57BL/6 and Sigirr -/- mice. A total of 99% of the p19A WT infected C57BL/6 mice and 29% of the p19A WT infected Sigirr -/- mice survived to the 4th post infection day. CONCLUSION: UC-associated E. coli p19A WT colonized the intestines of DSS-treated mice and caused extra-intestinal infection. Hemolysin is an important factor in this pathogenesis, since isogenic hemolysin mutants did not cause the same inflammation.

14.
J Nutr Biochem ; 82: 108400, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32438122

RESUMEN

Persistent inflammation is one of the main reasons that nonalcoholic fatty liver disease develops into cirrhosis and liver cancer, and reducing the expression of inflammatory factors may be an effective strategy to alleviate the development of nonalcoholic steatohepatitis (NASH). SIGIRR, a member of the interleukin-1 receptor family, has been shown to inhibit the production of inflammatory cytokines, and its down-regulation or deletion has been suggested to be an important cause of inflammatory damage to organs. In this study, we identified that resveratrol efficiently induced the transcriptional activity of the SIGIRR promoter and also increased SIGIRR mRNA levels in human hepatocytes and mouse livers. Furthermore, the potential effects of resveratrol on a methionine/choline-deficient diet-induced NASH mouse model were investigated. Resveratrol maintained the expression level of SIGIRR in the mouse liver. Resveratrol intervention alleviated NASH progression; decreased the levels of alanine aminotransferase and aspartate aminotransferase; and down-regulated tumor necrosis factor-α, interleukin (IL)-6, IL-1ß and transforming growth factor-ß mRNA and protein levels. Additionally, increased SIGIRR potentially blocked the activity of the Toll-like receptor/nuclear factor-κB signaling pathway both in vivo and in vitro. In vitro, resveratrol pretreatment protected against hepatocyte injury caused by foamy macrophage-released inflammatory cytokines, which are involved in the development of NASH. However, resveratrol did not effectively induce hepatocyte SIGIRR gene transcription in the inflammatory cytokine microenvironment. In conclusion, resveratrol is practical and acts as an agonist of the SIGIRR protein to negatively regulate the expression of inflammatory factors in liver, suggesting that appropriate intake may be a potential way to prevent the occurrence and development of NASH.


Asunto(s)
Antioxidantes/farmacología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Receptores de Interleucina-1/genética , Resveratrol/farmacología , Alanina Transaminasa/metabolismo , Animales , Deficiencia de Colina/metabolismo , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Hígado/metabolismo , Masculino , Metionina/deficiencia , Metionina/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores Toll-Like/metabolismo , Transcripción Genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
15.
Immunobiology ; 225(2): 151886, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31812341

RESUMEN

The objective of this study was to investigate the effect of EF24, an NF-κB-inhibitor, on the expression of negative regulators in IL-1R pathway, namely ST2 and SIGIRR. Murine JAWS II dendritic cells (DC) were challenged with lipopolysaccharide (LPS, 100 ng/ml) for 4 h, followed by treatment with 10 µM EF24 for 1 h. ST2 and SIGIRR expression was monitored by qRT-PCR and immunoblotting. ST2L and MyD88 interaction was studied by co-immunoprecipitation, and IL-33, a ST2L ligand, was assayed by ELISA. Activation of transcription factor SP1 was examined by confocal microscopy, immunoblotting, and EMSA. The effect of EF24 on accumulation of ubiquitinated proteins in DCs and proteolysis of fluorogenic peptides by purified proteasome was studied. We found that EF24 upregulated the expression of ST2 and SIGIRR and decreased the interaction of the membrane-bound ST2 (ST2L) with MyD88, and significantly reduced IL-33 levels in LPS-stimulated DCs. Simultaneously it increased the activation of transcription factor SP1and restored the basal level of ubiquitinated proteins in LPS-stimulated DCs. Moreover, EF24 inhibited trypsin- and chymotrypsin-like activity of proteasome by directly interacting with 26S proteasome. The results suggest that EF24 activates endogenous anti-inflammatory arm of IL-1R signaling, most likely by stabilizing SP1 against proteasomal degradation.


Asunto(s)
Antiinflamatorios/farmacología , Compuestos de Bencilideno/farmacología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Mediadores de Inflamación/antagonistas & inhibidores , Proteína 1 Similar al Receptor de Interleucina-1/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Piperidonas/farmacología , Receptores de Interleucina-1/antagonistas & inhibidores , Animales , Línea Celular , Interleucina-33/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores de Interleucina-1/metabolismo , Factor de Transcripción Sp1/metabolismo , Regulación hacia Arriba/efectos de los fármacos
16.
Viruses ; 11(11)2019 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-31684202

RESUMEN

Multisystemic inflammation in pigs affected by porcine circovirus type 2 (PCV2) indicates the disordered expression of inflammatory cytokines. However, the PCV2-induced expression profile of inflammation cytokines and its regulating mechanism remain poorly understood. In this study, inflammatory cytokines and receptors in porcine alveolar macrophages (PAMs) after PCV2 infection were profiled in vitro by an RT2 ProfilerTM PCR array assay. The regulatory mechanism of interleukin-1ß (IL-1ß) expression was investigated. Results showed that 49 of 84 inflammation cytokines and receptors were differentially expressed (p < 0.05, absolute fold change ≥2) in PAMs at different stages post-PCV2 infection. Moreover, the overexpression of single-immunoglobulin interleukin-1 related receptor (SIGIRR) or the blocking of NF-κB activation by its inhibitor markedly decreased IL-1ß secretion. This finding suggested that PCV2-induced overexpression of IL-1ß was associated with the downregulation of SIGIRR and the activation of NF-κB. Furthermore, the excessive activity of NF-κB in SIGIRR-knockout PAMs cell line, indicating that SIGIRR negatively regulated IL-1ß production by inhibiting the activation of NF-κB. Overall, PCV2-induced downregulation of SIGIRR induction of NF-κB activation is a critical process in enhancing IL-1ß production in PAMs. This study may provide insights into the underlying inflammatory response that occurs in pigs following PCV2 infection.


Asunto(s)
Circovirus/patogenicidad , Interleucina-1beta/metabolismo , Macrófagos Alveolares/virología , Receptores de Interleucina-1/metabolismo , Animales , Células Cultivadas , Infecciones por Circoviridae/inmunología , Infecciones por Circoviridae/virología , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Interleucina-1beta/genética , Macrófagos Alveolares/inmunología , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Receptores de Interleucina-1/genética , Transducción de Señal , Porcinos
17.
Histochem Cell Biol ; 152(6): 467-473, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31584126

RESUMEN

IL-37, the anti-inflammatory cytokine of the IL-1 family, plays several key roles in the regulation of autoimmune diseases. Yet, its role in Hashimoto's thyroiditis (HT) is not clear. In the present study, we found that, in tissues from HT patients, most of the follicular epithelial cells were positive for both IL-37 and single Ig IL-1-related receptor (SIGIRR) by immunohistochemical staining, while the infiltrating lymphocytes and other inflammatory cells hardly expressed any. Meanwhile, mRNA expression levels of IL-37 in peripheral blood mononuclear cells (PBMC) of HT patients were significantly higher than those in normal controls measured by quantitative real-time PCR. Finally, we studied the possible role of IL-37 in IFN-γ-stimulated rat FRTL-5 cells. The results showed that IL-1ß, TNF-α, and MCP-1 mRNA levels were significantly decreased, while the expression of IL-4 mRNA was dramatically up-regulated in IFN-γ-stimulated rat thyroid cell line FRTL-5 pre-treated with IL-37. The current study, for the first time, demonstrated that the IL-37 network is involved in Hashimoto's thyroiditis, and IL-37 signaling pathway may ameliorate the excessive autoimmune responses in this chronic lymphocytic thyroiditis.


Asunto(s)
Enfermedad de Hashimoto/metabolismo , Interleucina-1/metabolismo , Transducción de Señal , Adulto , Animales , Células Cultivadas , Retroalimentación Fisiológica , Femenino , Humanos , Interleucina-1/análisis , Interleucina-1/genética , Persona de Mediana Edad , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Transducción de Señal/genética , Adulto Joven
18.
Comp Immunol Microbiol Infect Dis ; 66: 101339, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31437679

RESUMEN

IL-1R8 is a member of Interleukin-1 receptor family acting as a negative regulator of inflammation reliant on ILRs and TLRs activation. IL-1R8 role has never been evaluated in acute bacterial mastitis. We first investigated IL-1R8 sequence conservation among different species and its pattern of expression in a wide panel of organs from healthy goats. Then, modulation of IL-1R8 during natural and experimental mammary infection was evaluated and compared in blood, milk and mammary tissues from healthy and Staphylococcus aureus infected goats. IL-1R8 has a highly conserved sequence among vertebrates. Goat IL-1R8 was ubiquitously expressed in epithelial and lymphoid tissues with highest levels in pancreas. IL-1R8 was down-regulated in epithelial mammary cells following S. aureus infection. Interestingly it was up-regulated in leukocytes infiltrating the infected mammary tissues suggesting that it could represent a target of S. aureus immune evasion.


Asunto(s)
Enfermedades de las Cabras/inmunología , Inmunidad Innata , Glándulas Mamarias Animales/microbiología , Mastitis/veterinaria , Receptores de Interleucina-8/genética , Infecciones Estafilocócicas/inmunología , Animales , Regulación hacia Abajo , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Femenino , Enfermedades de las Cabras/microbiología , Cabras/microbiología , Inflamación , Glándulas Mamarias Animales/inmunología , Mastitis/inmunología , Mastitis/microbiología , Receptores de Interleucina-8/sangre , Staphylococcus aureus/inmunología , Regulación hacia Arriba
19.
Cytokine ; 108: 24-36, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29558695

RESUMEN

The stimuli inducing expression of single immunoglobulin IL-1-related receptor (SIGIRR) and the relevant regulatory mechanisms are not well defined. Transforming growth factor ß1 (TGFß1) delays internalization of neurokinin-1 receptor (NK1R) and subsequently enhances cellular signaling. This study investigated the effect of TGFß1 on SIGIRR protein production by human M1 macrophages in response to stimulation with substance P (SP). SP caused upregulation of SIGIRR expression in a concentration-dependent manner, whereas aprepitant (an NK1R inhibitor) blunted this response. Silencing p38γMAPK or TAK-1 partially attenuated the response to SP stimulation, while TGFß1/2/3 siRNA dramatically diminished it. SP induced much greater SIGIRR protein production than either lipopolysaccharide (a TLR4 agonist) or resiquimod (a TLR7/8 agonist). Unexpectedly, silencing of transcription factor specificity protein 1 (Sp1) led to significant upregulation of SIGIRR expression after SP stimulation, while KLF2 siRNA only partially enhanced it and Fli-1 siRNA reduced it. SP also upregulated TGFß1 expression, along with a corresponding increase of SIGIRR protein, whereas silencing TGFß1/2/3 blunted these responses. Sp1 siRNA or mithramycin (a gene-selective Sp1 inhibitor) significantly enhanced the expression of TGFß1 and SIGIRR by macrophages after SP stimulation. Importantly, this effect of Sp1 siRNA on TGFß1 and SIGIRR was blunted by siRNA for Smad2, Smad3, or Smad4, but not by TAK-1 siRNA. Next, we investigated the influence of transcription factor cross-talk on SIGIRR expression in response to SP. Co-transfection of macrophages with Sp1 siRNA and C/EBPß or TIF1ß siRNA attenuated the upregulation of SIGIRR by SP, while a combination of Sp1 siRNA and Fli-1 siRNA dramatically diminished it. In conclusion, TGFß1 may be an intermediary between SP/NK1R activation and SIGIRR expression in Sp1 siRNA-transfected macrophages. In addition, Sp1 modulates TGFß1/Smad signaling and negatively regulates SIGIRR protein production by macrophages after SP stimulation.


Asunto(s)
Macrófagos/metabolismo , Receptores de Interleucina-1/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Factor de Transcripción Sp1/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Regulación de la Expresión Génica , Silenciador del Gen , Humanos , Lipopolisacáridos , Macrófagos/efectos de los fármacos , ARN Interferente Pequeño , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Neuroquinina-1/metabolismo , Sustancia P/farmacología , Regulación hacia Arriba
20.
Inflammation ; 40(6): 2109-2117, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28812176

RESUMEN

The anti-inflammatory effect of sodium houttuyfonate (SH), an herbal-originated drug that used in China clinically, was investigated on chronic obstructive pulmonary disease (COPD) inflammatory model rats induced by combination usage of cigarette smoke (CS) and lipopolysaccharide (LPS). The morphology of the lung tissue, the expression levels of cytokines in the bronchoalveolar lavage fluid (BALF), the protein levels of TLR4, NF-κB p65, and SIGIRR, and the mRNA levels of TLR4, MyD88, NF-κB p65, and SIGIRR in lung tissues were investigated, respectively. After treated by SH (24.3 mg/kg), the abnormal morphology changes of lung tissues in COPD rats, such as neutrophil infiltration and airway obstruction, were considerably alleviated, as well as both proinflammatory cytokines, TNF-α and IL-1ß, significantly decreased in BALF. The mRNA level of TLR4, MyD88, and NF-κB p65 and protein expression of TLR4 and NF-κB p65 in lung tissues decreased significantly after SH treatment, while both SIGIRR mRNA and protein levels increased significantly. These results suggest that SH markedly attenuated the pulmonary inflammation induced by CS and LPS and protected the lung tissue in COPD model rat. The anti-inflammatory effects were related to suppress the TLR4/NF-κB pathway dependent on MyD88. TIR8/SIGIRR might contribute to the protective effects of SH on pulmonary inflammation.


Asunto(s)
Alcanos/farmacología , Neumonía/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Sulfitos/farmacología , Animales , Lipopolisacáridos , FN-kappa B/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Humo/efectos adversos , Receptor Toll-Like 4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA