Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Periodontol ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39031577

RESUMEN

BACKGROUND: This study was designed to test the hypothesis that the leptin receptor (LepR) regulates changes in periodontal tissues and that the overexpression of the receptor for resolvin E1 (ERV1) prevents age- and diabetes-associated alveolar bone loss. METHODS: LepR-deficient transgenic (TG) mice were cross-bred with those overexpressing ERV1 (TG) to generate double-TG mice. In total, 95 mice were divided into four experimental groups: wild type (WT), TG, LepR deficient (db/db), and double transgenic (db/db TG). The groups were followed from 4 weeks up to 16 weeks of age. The natural progression of periodontal disease without any additional method of periodontitis induction was assessed by macroscopic and histomorphometric analyses. Osteoclastic activity was measured by tartrate-resistant acid phosphatase (TRAP) staining. RESULTS: At 4 weeks, ERV1 overexpression prevented weight gain. From Week 8 onward, there was a significant increase in the weight of db/db mice with or without ERV1 overexpression compared to the WT mice, accompanied by an increase in glucose levels. By 8 weeks of age, the percentage of bone loss in the LepR deficiency groups was significantly greater compared to WT mice. ERV1 overexpression in the db/db TG mice prevented early alveolar bone loss; however, it did not impact the development of diabetic bone loss in aging mice after the onset of weight gain and diabetes. CONCLUSIONS: The findings suggest that the overexpression of ERV1 prevents LepR-associated alveolar bone loss during the early phases of periodontal disease by delaying weight gain, diabetes onset, and associated inflammation; however, LepR deficiency increases susceptibility to naturally occurring inflammatory alveolar bone loss as the animal ages, associated with excess weight gain, onset of diabetes, and excess inflammation.

2.
Cells ; 13(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38891064

RESUMEN

Periodontal disease is characterized by inflammation and bone loss. Central to its pathogenesis is the dysregulated inflammatory response, complicating regenerative therapies. Mesenchymal stem cells (MSCs) hold significant promise in tissue repair and regeneration. This study investigated the effects of specialized pro-resolving mediators (SPMs), Resolvin E1 (RvE1) and Maresin 1 (MaR1), on the osteogenic differentiation of human bone marrow-derived MSCs under inflammatory conditions. The stem cells were treated with SPMs in the presence of lipopolysaccharide (LPS) to simulate an inflammatory environment. Osteogenic differentiation was assessed through alkaline phosphatase activity and alizarin red staining. Proteomic analysis was conducted to characterize the protein expression profile changes, focusing on proteins related to osteogenesis and osteoclastogenesis. Treatment with RvE1 and MaR1, both individually and in combination, significantly enhanced calcified deposit formation. Proteomic analysis revealed the differential expression of proteins associated with osteogenesis and osteoclastogenesis, highlighting the modulatory impact of SPMs on bone metabolism. RvE1 and MaR1 promote osteogenic differentiation of hBMMSCs in an inflammatory environment, with their combined application yielding synergistic effects. This study provides insights into the therapeutic potential of SPMs in enhancing bone regeneration, suggesting a promising avenue for developing regenerative therapies for periodontal disease and other conditions characterized by inflammation-induced bone loss.


Asunto(s)
Diferenciación Celular , Ácidos Docosahexaenoicos , Ácido Eicosapentaenoico , Inflamación , Células Madre Mesenquimatosas , Osteogénesis , Osteogénesis/efectos de los fármacos , Humanos , Ácido Eicosapentaenoico/farmacología , Ácido Eicosapentaenoico/análogos & derivados , Ácidos Docosahexaenoicos/farmacología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Inflamación/patología , Proteómica , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/citología , Lipopolisacáridos/farmacología
3.
Fundam Res ; 4(3): 575-588, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38933207

RESUMEN

Induction of beige fat for thermogenesis is a potential therapy to improve homeostasis against obesity. ß3-adrenoceptor (ß3-AR), a type of G protein-coupled receptor (GPCR), is believed to mediate the thermogenesis of brown fat in mice. However, ß3-AR has low expression in human adipose tissue, precluding its activation as a standalone clinical modality. This study aimed at identifying a potential GPCR target to induce beige fat. We found that chemerin chemokine-like receptor 1 (CMKLR1), one of the novel GPCRs, mediated the development of beige fat via its two ligands, chemerin and resolvin E1 (RvE1). The RvE1 levels were decreased in the obese mice, and RvE1 treatment led to a substantial improvement in obese features and augmented beige fat markers. Inversely, despite sharing the same receptor as RvE1, the chemerin levels were increased in obesogenic conditions, and chemerin treatment led to an augmented obese phenotype and a decline of beige fat markers. Moreover, RvE1 and chemerin induced or restrained the development of beige fat, respectively, via the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway. We further showed that RvE1 and chemerin regulated mTORC1 signaling differentially by forming hydrogen bonds with different binding sites of CMKLR1. In conclusion, our study showed that RvE1 and chemerin affected metabolic homeostasis differentially, suggesting that selectively modulating CMKLR1 may be a potential therapeutic target for restoring metabolic homeostasis.

4.
Avicenna J Med Biotechnol ; 16(1): 16-28, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605741

RESUMEN

Background: Repeated Ovum Pick Up (OPU) could have a detrimental effect on ovarian function, reducing In Vitro Embryo Production (IVEP). The present study examined the therapeutic effect of adipose-derived Mesenchymal Stem Cells (MSCs) or its Conditioned Medium (ConM) on ovarian trauma following repeated OPU. Resolvin E1 (RvE1) and Interleukin-12 (IL-12) were investigated as biomarkers. Methods: Jersey heifers (n=8) experienced 11 OPU sessions including 5 pre-treatment and 6 treatment sessions. Heifers received intra-ovarian administration of MSCs or ConM (right ovary) and Dulbecco's Modified Phosphate Buffer Saline (DMPBS; left ovary) after OPU in sessions 5 and 8 and 2 weeks after session 11. The concentrations of RvE1 and IL-12 in follicular fluid was evaluated on sessions 1, 5, 6, 9, and 4 weeks after session 11. Following each OPU session, the IVEP parameters were recorded. Results: Intra-ovarian administration of MSCs, ConM, and DMPBS did not affect IVEP parameters (p>0.05). The concentration of IL-12 in follicular fluid increased at the last session of pre-treatment (Session 5; p<0.05) and remained elevated throughout the treatment period. There was no correlation between IL-12 and IVEP parameters (p>0.05). However, RvE1 remained relatively high during the pre-treatment and decreased toward the end of treatment period (p<0.05). This in turn was associated with decline in some IVEP parameters (p<0.05). Conclusion: Intra-ovarian administration of MSCs or ConM during repeated OPU did not enhance IVEP outcomes in Bos taurus heifers. The positive association between RvE1 and some of IVEP parameters could nominate RvE1 as a promising biomarker to predict IVEP parameters following repeated OPU.

5.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37686333

RESUMEN

Specialized pro-resolving mediators (SPMs) and especially Resolvin E1 (RvE1) can actively terminate inflammation and promote healing during lung diseases such as acute respiratory distress syndrome (ARDS). Although ARDS primarily affects the lung, many ARDS patients also develop neurocognitive impairments. To investigate the connection between the lung and brain during ARDS and the therapeutic potential of SPMs and its derivatives, fat-1 mice were crossbred with RvE1 receptor knockout mice. ARDS was induced in these mice by intratracheal application of lipopolysaccharide (LPS, 10 µg). Mice were sacrificed at 0 h, 4 h, 24 h, 72 h, and 120 h post inflammation, and effects on the lung, liver, and brain were assessed by RT-PCR, multiplex, immunohistochemistry, Western blot, and LC-MS/MS. Protein and mRNA analyses of the lung, liver, and hypothalamus revealed LPS-induced lung inflammation increased inflammatory signaling in the hypothalamus despite low signaling in the periphery. Neutrophil recruitment in different brain structures was determined by immunohistochemical staining. Overall, we showed that immune cell trafficking to the brain contributed to immune-to-brain communication during ARDS rather than cytokines. Deficiency in RvE1 receptors and enhanced omega-3 polyunsaturated fatty acid levels (fat-1 mice) affect lung-brain interaction during ARDS by altering profiles of several inflammatory and lipid mediators and glial activity markers.


Asunto(s)
Ácidos Grasos Omega-3 , Síndrome de Dificultad Respiratoria , Animales , Ratones , Encéfalo , Cromatografía Liquida , Inflamación , Lipopolisacáridos/toxicidad , Pulmón , Ratones Noqueados , Receptores de Leucotrieno B4 , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/genética , Espectrometría de Masas en Tándem
6.
Prostaglandins Other Lipid Mediat ; 169: 106781, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37704124

RESUMEN

Persistent and chronic unresolved inflammation exerts a critical role in developing atherosclerosis; however, mechanisms that prevent the resolution of inflammation in atherosclerosis are poorly delineated. This study aims to evaluate the serum levels of inflammatory high-sensitivity C-reactive protein (hsCRP), pro-inflammatory leukotriene B4 (LTB4), besides anti-inflammatory compounds, including eicosapentaenoic acid (EPA) and its derivative resolvin E1 (RvE1) in patients with atherosclerosis. Thirty-four atherosclerosis patients and thirty-two age- and sex-matched healthy individuals were included in this study. The serum levels of hsCRP, LTB4, EPA, and RvE1 were measured using the enzyme-linked immunosorbent assay (ELISA) technique. Our results showed that the hsCRP serum levels in the three-vessel disease (3VD) subgroup of patients are significantly lower than those in the mild and single-vessel disease (SVD) subgroups (P < 0.05). Besides, the serum levels of LTB4 were meaningfully greater in patients with atherosclerosis compared to healthy controls (P < 0.05). Also, the serum EPA and RvE1 levels were significantly higher in patients than in controls (P < 0.01 and P < 0.05, respectively). However, the ratio of RvE1 to LTB4 (RvE1:LTB4) in patients was significantly reduced to that in controls (P < 0.0001). These findings illustrate that imbalanced pro-resolving RvE1 and pro-inflammatory LTB4 might contribute to failing vascular inflammation resolution and subsequent progression toward chronic inflammation in atherosclerosis.


Asunto(s)
Aterosclerosis , Ácido Eicosapentaenoico , Humanos , Leucotrieno B4 , Proteína C-Reactiva , Inflamación/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-37604082

RESUMEN

The purpose of this study is to investigate heart-fatty acid binding protein (H-FABP) leakage from cardiomyocytes as a quantitative measure of cell membrane damage and to test healing by Resolvin E1 (RVE1) as a potential therapeutic for patients with inflammatory diseases (cardiovascular disease and comorbidities) with high morbidity and mortality. Our quantitative ELISA assays demonstrated H-FABP as a sensitive and reliable biomarker for measuring cardiomyocyte damage induced by lipopolysaccharide (LPS) and healing by RvE1, a specialized pro-resolving mediator (SPM) derived from the Omega-3 fatty acid, eicosapentaenoic acid (EPA), a dietary nutrient that balances inflammation to restore homeostasis. RvE1 reduced leakage of H-FABP by up to 86%, which supports our hypothesis that inflammation as a mechanism of injury can be targeted for therapy. H-FABP as a blood biomarker was tested in 40 patients admitted to Boston Medical Center for respiratory distress, (20 patients with and 20 patients without COVID infection). High levels of H-FABP correlated with clinically diagnosed CVD, diabetes, and end-stage renal disease (ESRD) in both patient groups. The level of H-FABP indicates not only CVD damage but is a valuable measure for patients with increased inflammation disease comorbidities.

8.
Molecules ; 28(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37513197

RESUMEN

Resolvin E1 is a metabolite of eicosapentaenoic acid (EPA) which is one of the omega-3 polyunsaturated fatty acids (omega-3 PUFAs). The antiplatelet properties of omega-3 PUFAs are well known, but the effect of resolvin E1 on platelets via the collagen receptors is extremely poorly reported. We investigated the effect of resolvin E1 on collagen-induced platelet aggregation, activation, and reactivity, and also platelet membrane fluidity. The ultimate and statistically significant results showed that resolvin E1 may inhibit platelet reactivity due to the reduction of collagen-induced platelet aggregation in platelet-rich plasma and isolated platelets, but not in whole blood. Also, resolvin E1 significantly reduced P-selectin exposure on collagen-stimulated platelets. Moreover, we demonstrated that resolvin E1 can maintain platelet membrane structure (without increasing membrane fluidity). The association between platelet reactivity and membrane fluidity, including resolvin E1 and collagen receptors requires further research. However, the goal of this study was to shed light on the molecular mechanisms behind the anti-aggregative effects of resolvin E1 on platelets, which are still not fully clarified. We also indicate an innovative research direction focused on further analysis and then use of omega-3 PUFAs metabolites as antiplatelet compounds for future applications in the treatment and prevention of cardiovascular diseases.


Asunto(s)
Plaquetas , Ácidos Grasos Omega-3 , Humanos , Plaquetas/metabolismo , Ácido Eicosapentaenoico , Ácidos Grasos Omega-3/farmacología , Agregación Plaquetaria , Colágeno/metabolismo
9.
Neural Regen Res ; 18(11): 2535-2544, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37282487

RESUMEN

Physical exercise effectively alleviates chronic pain associated with complex regional pain syndrome type-I. However, the mechanism of exercise-induced analgesia has not been clarified. Recent studies have shown that the specialized pro-resolving lipid mediator resolvin E1 promotes relief of pathologic pain by binding to chemerin receptor 23 in the nervous system. However, whether the resolvin E1-chemerin receptor 23 axis is involved in exercise-induced analgesia in complex regional pain syndrome type-I has not been demonstrated. In the present study, a mouse model of chronic post-ischemia pain was established to mimic complex regional pain syndrome type-I and subjected to an intervention involving swimming at different intensities. Chronic pain was reduced only in mice that engaged in high-intensity swimming. The resolvin E1-chemerin receptor 23 axis was clearly downregulated in the spinal cord of mice with chronic pain, while high-intensity swimming restored expression of resolvin E1 and chemerin receptor 23. Finally, shRNA-mediated silencing of chemerin receptor 23 in the spinal cord reversed the analgesic effect of high-intensity swimming exercise on chronic post-ischemic pain and the anti-inflammatory polarization of microglia in the dorsal horn of the spinal cord. These findings suggest that high-intensity swimming can decrease chronic pain via the endogenous resolvin E1-chemerin receptor 23 axis in the spinal cord.

10.
J Clin Lipidol ; 16(5): 737-746, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36202740

RESUMEN

BACKGROUND: In Japan, eicosapentaenoic acid ethyl ester (EPA-E) is administered twice-daily or three-times-daily for dyslipidemia. We have developed MND-2119, a novel self-emulsifying formulation of highly purified EPA-E which can be administered once-daily. OBJECTIVE: The objective of this study was to investigate the safety and efficacy of long-term administration of MND-2119 in hypertriglyceridemia patients. METHODS: In this multicenter, 52-week, open-label study, patients with high triglyceride (TG) (TG levels between ≥ 150 and < 500 mg/dL) undergoing lifestyle modification were randomized to MND-2119 2 g/day (n=61) or MND-2119 4 g/day (n=61). RESULTS: The incidence of adverse events in MND-2119 2 g/day and MND-2119 4 g/day was 70.5% and 62.3%, respectively, and the incidence of adverse drug reactions was 9.8% and 8.2%, respectively. There were no notable problems in the safety assessments of both treatment groups. By Week 4, TG levels had decreased from baseline in both groups, and the TG reducing effect continued up to Week 52 (mean percentage change from baseline in TG at Week 52 [two-sided 95% confidence interval]: MND-2119 2 g/day: -16.71% [-26.61, -6.81], MND-2119 4 g/day: -21.01% [-27.86, -14.16]). In both groups, plasma EPA concentration at Week 4 was maintained up until Week 52 and the plasma EPA concentration at Week 52 was 200.5 ± 54.7 µg/mL in MND-2119 2 g/day and 308.6 ± 98.6 µg/mL in MND-2119 4 g/day. CONCLUSION: Long-term administration of MND-2119 was not associated with any safety-related problems. TG levels decreased by Week 4, and the TG reducing effect continued up to Week 52.


Asunto(s)
Ácido Eicosapentaenoico , Hipertrigliceridemia , Humanos , Método Doble Ciego , Ácido Eicosapentaenoico/efectos adversos , Triglicéridos
11.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166525, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35987478

RESUMEN

Cardiac fibroblasts (CFs) undergo senescence in reaction to different stressors, leading to a poor prognosis of cardiac disease. Doxorubicin (Doxo) is an antineoplastic drug with strong cardiotoxic effects, which induces IL-1ß secretion and thus, triggers a potent pro-inflammatory response. Doxo induces CFs senescence; however, the mechanisms are not fully understood. Different pharmacological strategies have been used to eliminate senescent cells by inducing their apoptosis or modifying their secretome. However, Resolvin E1 (RvE1), a lipid derivative resolutive mediator with potent anti-inflammatory effects has not been used before to prevent CFs senescence. CFs were isolated from adult male C57BL/6J mice and subsequently stimulated with Doxo, in the presence or absence of RvE1. Senescence-associated ß-galactosidase activity (SA-ß-gal), γ-H2A.X, p53, p21, and senescence-associated secretory phenotype (SASP) were evaluated. The involvement of the NLRP3 inflammasome/interleukin-1 receptor (IL-1R) signaling pathway on CFs senescence was studied using an NLRP3 inhibitor (MCC950) and an endogenous IL-1R antagonist (IR1A). Doxo is able to trigger CFs senescence, as evidenced by an increase of γ-H2A.X, p53, p21, and SA-ß-gal, and changes in the SASP profile. These Doxo effects were prevented by RvE1. Doxo triggers IL-1ß secretion, which was dependent on NLRP3 activation. Doxo-induced CFs senescence was partially blocked by MCC950 and IR1A. In addition, IL-1ß also triggered CFs senescence, as evidenced by the increase of γ-H2A.X, p53, p21, SA-ß-gal activity, and SASP. All these effects were also prevented by RvE1 treatment. CONCLUSION: These data show the anti-senescent role of RvE1 in Doxo-induced CFs senescence, which could be mediated by reducing IL-1ß secretion.


Asunto(s)
Inflamasomas , Interleucina-1beta/metabolismo , Animales , Antiinflamatorios/farmacología , Senescencia Celular , Doxorrubicina/farmacología , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacología , Fibroblastos/metabolismo , Furanos , Indenos , Inflamasomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores de Interleucina-1/metabolismo , Sulfonamidas , Proteína p53 Supresora de Tumor/metabolismo , beta-Galactosidasa/metabolismo , beta-Galactosidasa/farmacología
12.
J Oleo Sci ; 71(8): 1253-1260, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35922933

RESUMEN

According to current research, cancer cell growth is suppressed by ω-3 fatty acids, which are essential fatty acids. On the other hand, ω-3 fatty acids are metabolized to bioactivities in vivo. A systematic evaluation of the ability of ω-3 fatty acids and their metabolites to suppress cancer cell growth has not been sufficiently conducted. Our work evaluated the effect of ω-3 fatty acids (docosahexaenoic acid, eicosapentaenoic acid), trans fatty acid, and the metabolites (Resolvin E1, Maresin 1) on cancer cell growth suppressibility. Our results suggest that there may be optimal fatty acids depending on the kind of cancer cells, the presence or absence of hydroxyl group, and the double bond structure involved.


Asunto(s)
Ácidos Grasos Omega-3 , Neoplasias , Ácidos Grasos trans , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Ácidos Grasos , Ácidos Grasos Omega-3/farmacología , Neoplasias/tratamiento farmacológico
13.
Front Oral Health ; 3: 875047, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571980

RESUMEN

Background: Microorganisms along with host response play a key role in the development of periodontal and peri-implant infections. Advanced periodontal and peri-implant diseases are most likely associated with bacterial plaques that trigger host immune response and eventually lead to the destruction of the attachment apparatus and bone loss around a tooth or a dental implant. A recent systematic review and meta-analysis revealed that Aggregatibacter actinomycetemcomitans had the highest association with peri-implantitis. Resolvin E1 (RvE1) is part of the specialized pro-resolving lipid mediator family biosynthesized from omega-3, polyunsaturated fatty acids (PUFAs), and eicosapentaenoic acid (EPA). Although RvE1 is an established anti-inflammatory agent, it was found that its application as a treatment or as a preventive drug had an indirect effect on the subgingival microbiota of both rats and rabbits with experimental periodontitis. Aim: The aim of this study is to evaluate the direct antimicrobial effect of RvE1 on Aggregatibacter actinomycetemcomitans bacteria. Materials and Methods: The study comprised three groups that underwent minimum inhibitory concentration (MIC) against Aggregatibacter actinomycetemcomitans. The first group was tested with the RvE1 working concentration of 5 ug/ml, the second group was tested with ethanol (EtOH), 10% as the working concentration, and the final group was diluted in phosphate-buffered saline (PBS) as the positive control. Optical density (OD600) was used for the comparison of bacterial growth among the tested groups. The experiment was conducted in three biological replicates. Data were analyzed using SPSS, and results were analyzed by using one-way analysis of variance (ANOVA) followed by post-hoc Bonferroni using a minimum level of significance (P-value) of 0.05. Results: Minimum inhibitory concentration was 1.25 µg/ml and 5% for RvE1 and EtOH, respectively. RvE1's mean optical density (OD600) was 0.156 ± 0.021 and was significantly lower compared with all the other groups (P-value < 0.01). The EtOH group (mean OD600 0.178 ± 0.013) and the PBS group (mean OD600 0.1855 ± 0.022) did not reveal a significant difference (P-value = 0.185). Conclusion: RvE1 demonstrated significant antimicrobial activity against A. actinomycetemcomitans with an MIC of 1.25 µg/ml. The RvE1 group showed significantly lower bacterial growth compared to the EtOH and PBS groups.

14.
FASEB J ; 36(6): e22354, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35616343

RESUMEN

Resolvin E1 (RvE1), a specialized pro-resolving mediator (SPM), improves glucose homeostasis in inbred mouse models of obesity. However, an impediment toward translation is that obesity is a highly heterogenous disease in which individuals will respond very differently to interventions such as RvE1. Thus, there is a need to study SPMs in the context of modeling the heterogeneity of obesity that is observed in humans. We investigated how RvE1 controls the concentration of key circulating metabolic biomarkers using diversity outbred (DO) mice, which mimic human heterogeneity. We first demonstrate that weights of DO mice can be classified into distinct distributions of fat mass (i.e., modeling differing classes of obesity) in response to a high-fat diet and in the human population when examining body composition. Next, we show RvE1 administration based on body weight for four consecutive days after giving mice a high-fat diet led to approximately half of the mice responding positively for serum total gastric inhibitory polypeptide (GIP), glucagon, insulin, glucose, leptin, and resistin. Interestingly, RvE1 improved hyperleptinemia most effectively in the lowest class of fat mass despite adjusting the dose of RvE1 with increasing adiposity. Furthermore, leptin levels after RvE1 treatment were the lowest in those mice that were also RvE1 positive responders for insulin and resistin. Collectively, these results suggest a therapeutic fat mass-dependent window for RvE1, which should be considered in future clinical trials. Moreover, the data underscore the importance of studying SPMs with heterogenous mice as a step toward precision SPM administration in humans.


Asunto(s)
Ácido Eicosapentaenoico , Obesidad , Animales , Ratones de Colaboración Cruzada , Modelos Animales de Enfermedad , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacología , Glucosa , Humanos , Insulinas , Leptina , Ratones , Obesidad/tratamiento farmacológico , Resistina
15.
Biochem Pharmacol ; 201: 115078, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35551917

RESUMEN

Endothelial cell senescence contributes to chronic inflammation and endothelial dysfunction, while favoring cardiovascular disorders and frailty. Senescent cells acquire a pro-inflammatory secretory phenotype that further propagates inflammation and senescence to neighboring cells. Cell senescence can be provoked by plethora of stressors, including inflammatory molecules and chemotherapeutic drugs. Doxorubicin (Doxo) is a powerful anthracycline anticancer drug whose clinical application is constrained by a dose-limiting cardiovascular toxicity. We here investigated whether cell senescence can contribute to the vascular damage elicited by Doxo. In human umbilical vein endothelial cells (HUVEC) cultures, Doxo (10-100 nM) increased the number of SA-ß-gal positive cells and the levels of γH2AX, p21 and p53, used as markers of senescence. Moreover, we identified Doxo-induced senescence to be mediated by the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome, a key player of the immune innate system capable of releasing interleukin (IL)-1ß. In fact, IL-1ß itself mimicked the stimulatory action of Doxo on both NLRP3 activation and cellular senescence, while the pharmacological blockade of IL-1 receptors markedly attenuated the pro-senescence effects of Doxo. In search of additional pharmacological strategies to attenuate Doxo-induced endothelial senescence, we identified resolvin E1 (RvE1), an endogenous pro-resolving mediator, as capable of reducing cell senescence induced by both Doxo and IL-1ß by interfering with the increased expression of pP65, NLRP3, and pro-IL-1ß proteins and with the formation of active NLRP3 inflammasome complexes. Overall, RvE1 and the blockade of the NLRP3 inflammasome-IL-1ß axis may offer a novel therapeutic approach against Doxo-induced cardiovascular toxicity and subsequent sequelae.


Asunto(s)
Doxorrubicina , Ácido Eicosapentaenoico , Células Endoteliales de la Vena Umbilical Humana , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Senescencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Interacciones Farmacológicas , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/inmunología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inflamasomas/efectos de los fármacos , Inflamasomas/inmunología , Inflamasomas/metabolismo , Inflamación/inducido químicamente , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
16.
J Clin Med ; 11(9)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35566515

RESUMEN

Recently, an increase in the incidence of inflammatory bowel disease (IBD) has been observed among children and adolescents. Although the pathogenesis of IBD is not fully elucidated currently, actual research focuses on the occurrence of imbalance between pro- and anti-inflammatory molecules and future identification of the role of cytokines in IBD therapy. The purpose of this study was to compare the concentrations of eicosapentaenoic and docosahexaenoic acid derivatives during both phases of Crohn's disease (CD) and ulcerative colitis (UC). The study included 64 adolescent patients with CD (n = 34) and UC (n = 30) aged 13.76 ± 2.69 and 14.15 ± 3.31, respectively. Biochemical analysis was performed on a liquid chromatography apparatus. A statistically significant lower concentration of resolvin E1 (RvE1) was observed in the CD group relative to UC. In the active phase of CD, a statistically significantly higher concentration of protectin DX (PDX) was observed relative to remission CD. Comparing the active phase of both diseases, a statistically significantly higher concentration of resolvin E1 (RvE1) was observed in UC relative to CD. Comparing the remission phase of both diseases showed statistically significantly higher PDX levels in CD relative to UC. Our study adds to the knowledge on the involvement of anti-inflammatory lipid mediators in both IBD entities. In conclusion, it seems that the marker differentiating both disease entities in the active phase may be RvE1, while in the remission phase, PDX. In CD remission, the greatest involvement was observed towards PDX, whereas in UC, MaR1, RvE1 and 18RS-HEPE seem to be the most involved in remission.

17.
Cells ; 12(1)2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36611915

RESUMEN

An interconnection between tissue inflammation and regeneration has been established through the regulation of defense and repair mechanisms within diseased dental tissue triggered by the release of immune-resolvent mediators. To better our understanding of the role of specific pro-resolving mediators (SPMs) in inflamed human bone marrow-derived mesenchymal stem cells (hBMMSCs), we studied the effects of Resolvin E1 (RvE1) and Maresin 1 (MaR1) in lipopoly-saccharide (LPS) stimulated hBMMSCs. The hBMMSCs were divided into five different groups, each of which was treated with or without SPMs. Group-1: negative control (no LPS stimulation), Group-2: positive control (LPS-stimulated), Group-3: RvE1 100 nM + 1 µg/mL LPS, Group-4: MaR1 100 nM + 1 µg/mL LPS, and Group-5: RvE1 100 nM + MaR1100 nM + 1 µg/mL LPS. Cell proliferation, apoptosis, migration, colony formation, Western blotting, cytokine array, and LC/MS analysis were all performed on each group to determine the impact of SPMs on inflammatory stem cells. According to our data, RvE1 plus MaR1 effectively reduced inflammation in hBMMSCs. In particular, IL-4, 1L-10, and TGF-ß1 activation and downregulation of RANKL, TNF-α, and IFN-γ compared to groups receiving single SPM were shown to be significantly different (Group 3 and 4). In addition, the LC/MS analysis revealed the differentially regulated peptide's role in immunological pathways that define the cellular state against inflammation. Inflamed hBMMSCs treated with a combination of Resolvin E1 (RvE1) and Maresin 1 (MaR1) promoted the highest inflammatory resolution compared to the other groups; this finding suggests a potential new approach of treating bacterially induced dental infections.


Asunto(s)
Eicosanoides , Células Madre Mesenquimatosas , Humanos , Inflamación/metabolismo , Citocinas , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Células Madre Mesenquimatosas/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-34740030

RESUMEN

Vascular structure and integrity are at the forefront of blood pressure regulation. However, there are many factors that affect the responses of the vessels. One of these is the inflammatory processes associated with high cholesterol and its modification. 15-lipoxygenase (15-LOX) is the critical enzyme in cholesterol oxidation, but this enzyme is also responsible for the synthesis of specialized proresoving lipid mediators (SPMs) called Lipoxin (Lxs) and Resolvin (Rvs). In this study, we determined serum LXA4, RvD1 and RvE1 levels in newly diagnosed hypertension (HT) and normotension (NT) cases. We evaluated how the presence of hypercholesterolemia (HC) in the follow-up changes the levels of these SPMs. We found that the three SPMs we measured decreased significantly in the presence of HC. In addition, we found a negative and significant correlation with systolic blood pressure and total cholesterol levels for the three SPMs. In conclusion, HT and HC are independent risk factors for cardiovascular death. However, the presence of HC may be an important factor for the development of HT. Increasing cholesterol levels may cause 15-LOX to shift towards LDL oxidation, thus leading to inflammation. This situation may negatively affect the vascular functions in the regulation of blood pressure. Serum LXA4, RvD1 and RvE1 measurements may provide clues that represent a shift of 15-LOX enzyme activity towards cholesterol.


Asunto(s)
Ácidos Docosahexaenoicos/sangre , Ácido Eicosapentaenoico/análogos & derivados , Hipercolesterolemia/sangre , Hipercolesterolemia/complicaciones , Hipertensión/sangre , Hipertensión/complicaciones , Lipoxinas/sangre , Adulto , Araquidonato 15-Lipooxigenasa/metabolismo , Presión Sanguínea , Colesterol/sangre , Ácido Eicosapentaenoico/sangre , Ácidos Grasos Insaturados/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Hipercolesterolemia/diagnóstico , Hipertensión/diagnóstico , Lipoproteínas LDL/sangre , Masculino , Persona de Mediana Edad , Oxidación-Reducción , Factores de Riesgo
20.
Stem Cell Res Ther ; 12(1): 75, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33482900

RESUMEN

BACKGROUND: Unresolved inflammation and tissue destruction are considered to underlie the failure of dental pulp repair. As key mediators of the injury response, dental pulp stem cells (DPSCs) play a critical role in pulp tissue repair and regeneration. Resolvin E1 (RvE1), a major dietary omega-3 polyunsaturated fatty-acid metabolite, is effective in resolving inflammation and activating wound healing. However, whether RvE1 facilitates injured pulp-tissue repair and regeneration through timely resolution of inflammation and rapid mobilization of DPSCs is unknown. Therefore, we established a pulp injury model and investigated the effects of RvE1 on DPSC-mediated inflammation resolution and injured pulp repair. METHODS: A pulp injury model was established using 8-week-old Sprague-Dawley rats. Animals were sacrificed on days 1, 3, 7, 14, 21, and 28 after pulp capping with a collagen sponge immersed in PBS with RvE1 or PBS. Hematoxylin-eosin and Masson's trichrome staining, immunohistochemistry, and immunohistofluorescence were used to evaluate the prohealing properties of RvE1. hDPSCs were incubated with lipopolysaccharide (LPS) to induce an inflammatory response, and the expression of inflammatory factors after RvE1 application was measured. Effects of RvE1 on hDPSC proliferation, chemotaxis, and odontogenic differentiation were evaluated by CCK-8 assay, transwell assay, alkaline phosphatase (ALP) staining, alizarin red staining, and quantitative PCR, and possible signaling pathways were explored using western blotting. RESULTS: In vivo, RvE1 reduced the necrosis rate of damaged pulp and preserved more vital pulps, and promoted injured pulp repair and reparative dentin formation. Further, it enhanced dentin matrix protein 1 and dentin sialoprotein expression and accelerated pulp inflammation resolution by suppressing TNF-α and IL-1ß expression. RvE1 enhanced the recruitment of CD146+ and CD105+ DPSCs to the damaged molar pulp mesenchyme. Isolated primary cells exhibited the mesenchymal stem cell immunophenotype and differentiation. RvE1 promoted hDPSC proliferation and chemotaxis. RvE1 significantly attenuated pro-inflammatory cytokine (TNF-α, IL-1ß, and IL-6) release and enhanced ALP activity, nodule mineralization, and especially, expression of the odontogenesis-related genes DMP1, DSPP, and BSP in LPS-stimulated DPSCs. RvE1 regulated AKT, ERK, and rS6 phosphorylation in LPS-stimulated DPSCs. CONCLUSIONS: RvE1 promotes pulp inflammation resolution and dentin regeneration and positively influences the proliferation, chemotaxis, and differentiation of LPS-stimulated hDPSCs. This response is, at least partially, dependent on AKT, ERK, and rS6-associated signaling in the inflammatory microenvironment. RvE1 has promising application potential in regenerative endodontics.


Asunto(s)
Pulpa Dental , Células Madre , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Dentina , Ácido Eicosapentaenoico/análogos & derivados , Inflamación , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA