Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 554
Filtrar
1.
Materials (Basel) ; 17(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39274673

RESUMEN

Ti-6Al-4V titanium alloy is known as one of the most difficult metallic materials to machine, and the machined surface residual stress distribution significantly affects properties such as static strength, fatigue strength, corrosion resistance, etc. This study utilized finite element software Abaqus 2020 to simulate the two-step cutting process of titanium alloy, incorporating stages of cooling, unloading, and de-constraining of the workpiece. The chip morphology and cutting force obtained from orthogonal cutting tests were used to validate the finite element model. Results from the orthogonal cutting simulations revealed that with increasing cutting speed and the tool rake angle, the residual stress undergoes a transition from compressive to tensile stress. To achieve greater residual compressive stress during machining, it is advisable to opt for a negative rake angle coupled with a lower cutting speed. Additionally, in two-step machining of titanium alloy, the initial cutting step exerts a profound influence on the subsequent cutting step, thereby shortening the evolution time of the Mises stress, equivalent plastic strain, and stiffness damage equivalent in the subsequent cutting step. These results contribute to optimizing titanium alloy machining processes by providing insights into controlling residual stress, ultimately enhancing product quality and performance of structural part of titanium alloy.

2.
Small ; : e2400934, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246199

RESUMEN

Mixed tin-lead perovskite solar cells (PSCs) have garnered much attention for their ideal bandgap and high environmental research value. However, poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS), widely used as a hole transport layer (HTL) for Sn-Pb PSCs, results in unsatisfactory power conversion efficiency (PCE) and long-term stability of PSCs due to its acidity and moisture absorption. A synergistic strategy by incorporating histidine (HIS) into the PEDOT: PSS HTL is applied to simultaneously regulate the nucleation and crystallization of perovskite (PVK). HIS neutralizes the acidity of PEDOT: PSS and enhances conductivity. Especially, the coordination of the C═N and -COO- functional groups in the HIS molecule with Sn2+ and Pb2+ induces vertical growth of PVK film, resulting in the release of residual surface stress. Additionally, this strategy also optimizes the energy level alignment between the perovskite layer and the HTL, which improves charge extraction and transport. With these cooperative effects, the PCE of Sn-Pb PSCs reaches 21.46% (1 sun, AM1.5), maintaining excellent stability under a nitrogen atmosphere. Hence, the buried interface approach exhibits the potential for achieving high-performance and stable Sn-Pb PSCs.

3.
Rev Cardiovasc Med ; 25(8): 289, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39228504

RESUMEN

Background: Arterial pressure volume index (API) offers a non-invasive measurement of brachial artery residual stress. This study investigated API distribution characteristics and correlations with cardiovascular disease risk (CVD) factors in a large Chinese population sample. Methods: This cross-sectional study surveyed a total of 7620 participants. We analyzed the relationships between API and factors influencing CVD, using regression-based stepwise backward selection and restrictive cubic spline models to express relationships as standardized beta values. Results: Multiple linear regression analysis identified many independent factors influencing API including age, sex, body mass index (BMI), pulse pressure (PP), heart rate (HR), hemoglobin, uric acid (UA), estimated glomerular filtration rate (eGFR), triglyceride (TC), and a history of hypertension. Notably, API values increased at 33 and escalated with advancing age. Increases in API were associated with rises in PP and UA increases, particularly when PP reached 60 mmHg and the UA reached 525 units. Conversely, API was found to decrease with elevated HR and eGFR. Furthermore, there was a significant inverted U-shaped relationship between API and BMI. Conclusions: This study was the first to describe API distribution characteristics in a large sample of the Chinese population, providing references for evaluating API changes in the assessment of residual stress variations in diverse diseases. Notably, API displayed a U-shaped relationship with age and was closely related to traditional CVD risk factors, underscoring its potential as a non-invasive tool for risk assessment in vascular health. Clinical Trial Registration: This research was registered with the China Clinical Trial Registration Center (Registration Number: ChiCTR2000035937).

4.
Ultrason Sonochem ; 109: 107019, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39126989

RESUMEN

The electrodeposition process confronts significant challenges arising from mass transfer limitation and residual stress. To address these issues, an innovative method, combining megasonic agitation with coaxial jet electrodeposition, is introduced. This approach aims to enhance mass transfer and mitigate residual stress. First, an electrodeposition nozzle device was designed, and the liquid-phase mass transfer during electrodeposition was analyzed through finite element simulation. Simulation results indicate that the mass transfer coefficient increases with rising megasonic power density. Notably, when the megasonic power density reached 20 W/cm2, the mass transfer coefficient increased from 0.45 × 10-7 m/s to 18.63 × 10-7 m/s, compared to electrodeposition without megasonic agitation. Secondly, electrodeposition experiments were conducted both with and without megasonic assistance. X-ray diffraction (XRD) was employed to measure the residual stress values of the electrodeposited layers. The results reveal that samples processed with megasonic assistance exhibit lower residual stress values compared to those without. Specifically, at a megasonic power density of 10 W/cm2, the residual stress was 94.3 MPa, representing a 37.7 % reduction compared to the residual stress of 151.5 MPa observed in samples without megasonic agitation. Overall, the findings demonstrate that coaxial megasonic agitation can effectively enhance the liquid-phase mass transfer capability during electrodeposition and reduce the residual stress of the electroplated layer. This innovative method presents a promising avenue for improving electrodeposition processes and achieving superior material properties.

5.
Heliyon ; 10(15): e35459, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39166078

RESUMEN

With the evolution of advanced integrated circuit (IC) packaging technology, the use of experiments to identify package performance and life expectation will take a significant amount of time and cost to finish the job. To reduce the cost of research and testing, predictive analyses of reliability and performance using simulation tools have become a feasible approach for the IC assembly industry. Therefore, this study utilized Moldex3D molding simulation software to analyze very thin profile fine pitch ball grid array (VFBGA) packages and established a numerical analysis procedure from the molding and curing process, the post-mold cure (PMC) process, to a thermal cycling test (TCT) to predict the amount of package warpage during processing and reliability after TCT. The results showed that the warpage trends of both experiments and simulations during the same temperature ramping process were similar. In the thermal cycling analysis, potential failure locations were found to be at the copper pillars and redistribution layer (RDL), where the maximum Von Mises stress occurred at the lowest temperature (-65 °C). The fatigue life model, Coffin-Manson model, was used to calculate the potential fatigue life at the two locations, resulting in 1689 cycles (copper pillars) and 9706 cycles (RDL L1).

6.
Sci Rep ; 14(1): 18885, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143374

RESUMEN

To improve the mechanical properties of the rolling body surface of wind power bearings, extend its service life. In this study, a large-scale molecular/atomic parallel processor LAMMPS was introduced, and then the process of magnetron sputtering technology in the preparation of DLC/Ni-DLC thin films on the 42CrMo substrate material was simulated. The effects of deposition parameters such as sputtering temperature, sputtering voltage, deposition air pressure, and Ni doping on the residual stress, film base bonding, and organizational structure of the thin films were investigated. The simulation results show that for different deposition parameters, the atomic tensile and compressive stresses existed simultaneously in DLC/Ni-DLC films, and the residual stresses were between - 0.504-5.003 Gpa and - 2.11-0.065 Gpa, respectively; the doping of Ni effectively improved the distribution of hybrid structure and the mechanical properties of the DLC films, and the ratio of the sp3 hybrid structure in the film organization was about 2.56 times higher than that of the non-doped films, and the membrane base bonding force was increased by 32.78% and the residual stress is reduced and transitioned from tensile stress to compressive stress. In addition, it was observed that the thickness of the mixed layer of DLC/Ni-DLC films with the substrate was not increased after the thickness of the mixed layer was extended to about 2 nm. Nickel doping and reasonable control of deposition parameters help to reduce the residual stress and improve the bonding strength of the film by changing the organizational structure of the film, which provides an important theoretical and scientific basis for the preparation of low-stress, high-performance and long-life DLC films and the wide application of rolling bodies for wind power bearings under complex working conditions.

7.
Materials (Basel) ; 17(16)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39203193

RESUMEN

Metal composite parts are widely used in different industries owing to their significant improvement in material properties, such as mechanical strength, electrical conductivity, and corrosion resistivity, compared to traditional single metals. Such composite parts can be manufactured and processed in different ways to achieve the desired geometry and quality. Among various metal forming techniques, drawing is the most commonly used process to produce long composite wires or rods from raw single materials. During the drawing process of composite wires or rods, not only does the core radius ratio change, but the core or sleeve layer may also undergo necking or fracture due to excessive tensile stresses in the softer layer. In this paper, bimetallic rods with AISI-1006 low-carbon steel cores and C10100 oxygen-free electronic copper sleeves are modeled using the finite element software DEFORM. The simulation models are verified by drawing experiments. The effects of initial bonding conditions, the initial core ratio, reduction ratio, semi-die angle, drawing speed, and friction on the plastic deformation behavior of the bimetallic rods are investigated. The results indicate that the initial bonding conditions have a great impact on the deformation behavior of the billets in terms of strain distribution, material flow, residual stress, and the final core ratio. The permissible forming parameters for obtaining a sound product are investigated as well. With the aid of these analyses, the drawing process and the quality of the products can be controlled steadily.

8.
Materials (Basel) ; 17(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39203304

RESUMEN

Carburized steel shafts are commonly used in industry due to their good wear resistance and fatigue life. If the surface of carburized shafts exhibits an undesired tensile stress, shot peening treatment may be required to alter the stress condition on the surface. In the present study, the effects of shot peening pressure (3-5 kg/cm2), time (32-64 s), and material (stainless steel, carbon steel, and glass) on the residual stress, retained austenite, microhardness, and surface roughness of the carburized shafts were investigated. The experimental results showed that the surface residual tensile stress was changed into compressive stress after the shot peening treatment. The shot peening effects increased with the increasing peening pressure and time. In addition, a significant decrease in the amount of retained austenite in the subsurface region was observed. Peening with different materials can affect the peening effect. Using glass pellets exhibited the best shot peening effect but suffered massive pellet fracture during processing. In overall consideration, the optimal peening parameters for carburized steel shafts for practical industrial applications involved using the stainless-steel pellets with a peening pressure of 5 kg/cm2 and a peening time of 64 s. The maximum residual stress was -779 MPa at a depth of 0.02 mm, while the highest surface microhardness was 827 HV0.1.

9.
Materials (Basel) ; 17(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39203319

RESUMEN

Electrodeposited chromium plating continues to be widely used in a number of specialized areas, such as weapons, transport, aerospace, etc. However, the formation of texture, hydrogen content and residual stress can degrade the serviceability and lead to material failure. The effect of post heat treatment processes on the relationship of texture, hydrogen content, residual stress and corrosion resistance of hexavalent [Cr(VI)] chromium coatings deposited on Cr-Ni-Mo-V steel substrates was investigated. Macrotexture was measured by XRD. Microtexture, dislocation density and grain size were studied by EBSD. With the increase of the heat treatment temperature, it was found that the fiber texture strength of the (222) plane tended to increase and subsequently decrease. Below 600 °C, the increase in the (222) plane texture carried a decrease in the hydrogen content, residual stress, microhardness and an increase in the corrosion resistance. In addition, crack density and texture strength were less affected by the heat treatment time. Notably, relatively fewer crack densities of 219/cm2, a lower corrosion current density of 1.798 × 10-6 A/dm2 and a higher microhardness of 865 HV were found under the preferred heat treatment temperature and time of 380 °C and 4 h, respectively. The hydrogen content and residual stress were 7.63 ppm and 61 MPa, with 86% and 75% reduction rates compared to the as-plated state, respectively. In conclusion, in our future judgement of the influence of heat treatment on coating properties, we can screen or determine to a certain extent whether the heat treatment process is reasonable or not by measuring only the macrotexture.

10.
Sci Rep ; 14(1): 19826, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191816

RESUMEN

In this study a model by novel analytical approach is developed and experimentally verified for shot peening residual stress distribution. The residual stress field induced by single shot impact is calculated by using Glinka-Molski energy-based method and kinematic hardening model. The formulation of the compressive residual stress (CRS) distribution is often based on plane strain or plane stress. It can be determined from the derived relation presented in this paper, the final residual stress in the full coverage conditions is the average of the two strain and stress plane expressions proposed by previous researchers. The distribution of residual stress is one of the key differences between the profiles produced by the results of the current model. There is a significant distinction between surface residual stress and maximum CRS, because the CRS profile near the surface is more curved compared to profiles obtained in earlier analytical models. The experimental data obtained by XRD analysis indicate the correctness and precision of the current model. Another goal of this study is to increase the fatigue life of GTD-450 stainless steel by shot peening at two different peening intensities. The fatigue life of samples were obtained by rotary bending test. Analytical results that confirmed by experimental findings shown bigger maximum compressive residual stresses occurred in higher shot peening intensities. This incident can improved fatigue life by deeper plastically deformed layer.

11.
Sci Rep ; 14(1): 15911, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987571

RESUMEN

In order to develop a method for the production of crack-free cladding layers, we combined surface texturing technology with laser cladding, establishing a multi-field coupled numerical simulation model. A separate investigation was conducted into the temperature, stress, and fluid fields in laser cladding processes with and without texturing, seeking optimal cladding parameters, and conducted experiments. The results of the numerical simulations indicate that pre-set texturing effectively reduces the temperature gradient during the cladding process, thereby making the thermal cycle curve smoother. The residual stresses in the X, Y, and Z directions are reduced by 34.84%, 3.94%, and 50.22%, respectively. The introduction of texturing reduces the internal flow velocity of the melt pool, preventing the occurrence of a double vortex effect. Experimental results show that the residual stresses in the X, Y, and Z directions of the predefined textured cladding layer are reduced by approximately 41%, 8%, and 47%, respectively, compared to the non-textured cladding layer. This effectively improves the surface roughness and internal grain size of the cladding layer, with no significant defects at the metallurgical bonding positions, providing a reference for future improvements in cladding layer quality.

12.
Materials (Basel) ; 17(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39063727

RESUMEN

Large forgings are crucial in aerospace applications; however, the residual stresses generated during their forming and heat treatment seriously affect their serviceability. Therefore, the non-destructive detection of residual stresses in large forgings is of far-reaching significance for ensuring the quality of forgings and realising precision machining. Although a variety of detection methods are available, there is still a lack of a programme that can comprehensively, accurately and non-destructively measure the residual stresses in large forgings. This study is dedicated to exploring the application of the bouncing impact indentation method in the non-destructive testing of residual stresses in large forgings. Through in-depth finite element simulations and orthogonal scheme analyses, we found that the elastic modulus, yield strength and work hardening indexes have significant effects on the impact indentation process. Further, we establish the dimensionless function of residual stress and indentation parameters, and successfully obtain the inversion algorithm of residual stress. The relative error of the calculated values of the indentation curves hm and hr in the simulation with reference values is not more than 3%, and the relative error of the corrected Pm inversion values for most virtual materials is not more than 5%. The folding elastic modulus and apparent elastic modulus obtained by inversion are controlled within 10%, which demonstrates a high value for engineering applications. In addition, we innovatively express the research results in the form of 3D stress diagrams, realising the digital expression of 3D residual stresses in large forgings based on feature point measurements and contour surface configurations, which provides intuitive and comprehensive data support for engineering practice.

13.
Materials (Basel) ; 17(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39063750

RESUMEN

Additive friction stir deposition (AFSD) is an emerging solid-state additive manufacturing process with a high deposition rate. Being a non-fusion additive manufacturing (AM) process, it significantly eliminates problems related to melting such as cracking or high residual stresses. Therefore, it is possible to process reactive materials or high-strength alloys with high susceptibility to cracking. Although the residual stresses are lower in this process than with the other AM processes, depending on the deposition path, geometry, and boundary conditions, residual stresses may lead to undesired deformations and deteriorate the dimensional accuracy. Thermal cycling during layer deposition, which also depends on the geometry of the manufactured component, is expected to affect mechanical properties. To this day, the influence of the deposit geometry on the residual stresses and mechanical properties is not well understood, which presents a barrier for industry uptake of this process for large-scale part manufacturing. In this study, a stepped structure with 4, 7, and 10 passes manufactured via AFSD is used to investigate changes in microstructure, residual stress, and mechanical property as a function of the number of passes. The microstructure and defects are assessed using scanning electron microscopy and electron backscatter diffraction. Hardness maps for each step are created. The residual stress distributions at the centreline of each step are acquired via non-destructive neutron diffraction. The valuable insights presented here are essential for the successful utilisation of AFSD in industrial applications.

14.
Materials (Basel) ; 17(14)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39063776

RESUMEN

Laser shock peening (LSP) is a powerful technique for improving the fatigue performance of metallic components by customizing compressive residual stresses in the desired near-surface regions. In this study, the residual stress distribution characteristics of 6061-T6 aluminum alloy induced by LSP were identified by the X-ray diffraction method, and their dependent factors (i.e., LSP coverage, LSP energy, and scanning path) were evaluated quantitatively by numerical simulations, exploring the formation mechanism of LSP residual stresses and the key role factor of the distribution characteristics. The results show that LSP is capable of creating anisotropic compressive residual stresses on the specimen surface without visible deformation. Compressive residual stresses are positively correlated with LSP coverage. The greater the coverage, the higher the residual stress, but the longer the scanning time required. Raising LSP energy contributes to compressive residual stresses, but excessive energy may lead to a reduction in the surface compressive residual stress. More importantly, the anisotropy of residual stresses was thoroughly explored, identifying the scanning path as the key to causing the anisotropy. The present work provides scientific guidance for efficiently tailoring LSP-induced compressive residual stresses to improve component fatigue life.

15.
Materials (Basel) ; 17(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998212

RESUMEN

A reliable local-fatigue assessment approach for rotary friction-welded components does not yet exist. The scope of this paper is to present test results for the fatigue behaviour of rotary friction-welded solid shafts made of structural steel S355J2G3 (1.0570) and an approach to fatigue assessment considering residual stress. In contrast to fusion-welded joints, components made by rotary friction welding usually contain compressive residual stress near the weld, which can significantly affect the fatigue strength. For this purpose, specimens were welded and characterised, including metallographic micrographs, hardness measurements, and residual stress measurements. The fatigue tests were performed with a constant amplitude loading in tension/compression or torsion with R = -1. All specimens were investigated without machining of the weld flash, either in the as-welded state or after a post-weld stress-relief heat treatment. In addition, the friction welding process and the residual stress formation were analysed using numerical simulation. The characterisation results are integrated into a fatigue assessment approach. Overall, the specimens perform comparatively well in the fatigue tests and the experimentally observed fatigue behaviour is well described using the proposed local approaches.

16.
Materials (Basel) ; 17(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38998306

RESUMEN

The existing tensile-compression elastoplastic models are not suitable for varies of materials. An accurate constitutive model of the elastoplastic mechanical properties more suitable for 35CrNi3MoVR was produced by optimizing the existing fitting equations based on uniaxial tensile-compression tests, which are able to describe the elastoplastic stress-strain relation and Bauschinger effect varying with the maximum tensile plastic strain. A UMAT subroutine of the constitutive model in ABAQUS was proposed and conducted for FEM calculation. Hydraulic autofrettage tests were carried out under different pressures on thick-walled 35CrNi3MoVR tubes, and the results were compared with those of FEM calculations to further validate the accuracy of the fitting model. The results show that the constructed power function kinematic hardening model can effectively describe the elastoplastic mechanical properties of 35CrNi3MoVR and can be applied to the autofrettage calculation of this material. The comparison among the calculation results of different models proved that the model proposed in this research has better performance compared to other existing models. Taking the Mises stress at the inner surface of the thick-walled tubes as the evaluation criterion, the error of the power function kinematic hardening model reaches less than 3%, decreasing the error by at least 50%.

17.
Materials (Basel) ; 17(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38998345

RESUMEN

Taking austenitic stainless-steel bellows as the research object, a finite element model for the heat treatment of austenitic stainless-steel bellows was constructed based on ABAQUS CAE 2022. The physical properties of the bellows after the heat treatment were analyzed using experimental and simulated curve processing analysis methods. The changes in residual stress and deformation in relation to the bellows under different cooling times were explored, as well as the distribution of residual stress and deformation at a certain cooling time. The results show that as the cooling time of the heat treatment increases, the residual stress of the bellow decreases significantly, the reduction rate accelerates, and the degree of deformation gradually decreases. When the cooling time of the heat treatment is 900 s, the residual stress of the wave peak in the middle position of the bellow is relatively small, and the residual stress value of the wave valley along the axis direction does not change significantly. The deformation degree of the wave peak and valley axis direction is relatively uniform.

18.
Materials (Basel) ; 17(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38998359

RESUMEN

Directed energy deposition (DED) is gaining widespread acceptance in various industrial applications since its unique manufacturing features allow the DED to print metallic parts with very complex geometries. However, DED inevitably generates a lot of internal pores which can limit the widespread applications of the DED technique. The current studies on DED porosity are mostly focused on analyzing pores' bulk-scale influences on mechanical properties and performances. Since DED pores have a micro-scale existence, with dimensions ranging from a few microns to several hundred microns, it is fundamental to explore the pores' influences on the micro-scale, including local mechanical properties, residual stress, and grains near pores. However, this important research direction has been neglected. The objective of this work is to fill the above gap in DED porosity research and acquire a fundamental understanding of the role of porosity on a microscopic scale. The authors used nanoindentation approaches to investigate internal pores' effects on mechanical properties and residual stress in local regions surrounding the pores. In addition, the grains near pores were observed through EBSD, and simulated with the Kinetic Monte Carlo model. The research findings can be provided for DED researchers and industrial practitioners as technical guidance. Most importantly, the research results can work as a good reference for tracing the source of bulk-scale mechanical performances and properties of DED parts with internal pores.

19.
Materials (Basel) ; 17(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38998383

RESUMEN

This paper aims to investigate the strengthening mechanism of laser shock peening on the interfacial bonding properties between TiN coatings and TC4 titanium alloy substrates. The different surface textures were induced by LSP on a TC4 titanium alloy substrate. Subsequently, titanium nitride (TiN) coatings were deposited on the surface texture. A scratch test and reciprocating sliding wear assessment were conducted to evaluate the impact of LSP on the interfacial bonding properties and wear performance of the coatings. The experimental results demonstrated that the adhesion of TiN coatings deposited on the surface texture formed by laser shock peening was significantly enhanced. The efficacy of laser shock treatment in reducing wear rates was found to be significantly enhanced in cases of both increased spot overlapping rate and increased laser power density. The surface texture created using laser parameters of 6.43 GW/cm2 and a 50% overlapping rate was found to have the most significant effect on improving the adhesion and anti-wear properties of the coating. The laser shock texture was identified as the main contributor to this improvement, providing a large interfacial contact area and a mechanical bond between the coating and the substrate. This bond inhibited the initiation and propagation of micro-cracks caused by the concentration of internal stress and interfacial stress of the coating.

20.
Materials (Basel) ; 17(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38930244

RESUMEN

To effectively reduce residual stresses in GH4169 workpieces, thus enhancing fatigue strength and operational lifespan, this study investigates the influence of spray cooling parameters on surface residual stresses during GH4169 turning in spray cooling conditions, utilizing both simulation and experimental approaches. A simulation model of residual stresses was established using finite element analysis when GH4169 was cut in spray cooling. The effects of spray pressure and flow rate on residual tensile stresses were analyzed. The analysis reveals that with increasing spray pressure, residual tensile stresses show a decreasing trend, gradually stabilizing. Conversely, with an increasing spray flow rate, residual tensile stresses initially decrease and then increase. The turning experiments of GH4169 were conducted under different spray parameters. After the experiment, the workpiece was sectioned and analyzed for residual stresses using X-ray diffraction instrumentation. The value residual stress measured closely matched those of simulation, with a relative error within 6%, validating the accuracy of the simulation model and confirming the appropriateness of parameter settings. These results contribute to the further promotion of spray cooling technology and facilitate the rational selection of spray parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA