Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Magn Reson ; 365: 107730, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38981307

RESUMEN

Solid-state nuclear magnetic resonance (NMR) is a potent tool for studying the structures and dynamics of insoluble proteins. It starts with signal assignment through multi-dimensional correlation experiments, where the aliphatic 13Cα-13Cß correlation is indispensable for identifying specific residues. However, developing efficient methods for achieving this correlation is a challenge in solid-state NMR. We present a simple band-selective zero-quantum (ZQ) recoupling method, named POST-C4161 (PC4), which enhances 13Cα-13Cß correlations under moderate magic-angle spinning (MAS) conditions. PC4 requires minimal 13C radio-frequency (RF) field and proton decoupling, exhibits high stability against RF variations, and achieves superior efficiency. Comparative tests on various samples, including the formyl-Met-Leu-Phe (fMLF) tripeptide, microcrystalline ß1 immunoglobulin binding domain of protein G (GB1), and membrane protein of mechanosensitive channel of large conductance from Methanosarcina acetivorans (MaMscL), demonstrate that PC4 selectively enhances 13Cα-13Cß correlations by up to 50 % while suppressing unwanted correlations, as compared to the popular dipolar-assisted rotational resonance (DARR). It has addressed the long-standing need for selective 13C-13C correlation methods. We anticipate that this simple but efficient PC4 method will have immediate applications in structural biology by solid-state NMR.


Asunto(s)
Isótopos de Carbono , Resonancia Magnética Nuclear Biomolecular , Proteínas , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Methanosarcina/química , Algoritmos
2.
J Magn Reson ; 364: 107710, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38901172

RESUMEN

Motionally averaged dipolar couplings are an important tool for understanding the complex dynamics of catalysts, polymers, and biomolecules. While there is a plethora of solid-state NMR pulse sequences available for their measurement, in can be difficult to gauge the methods' strengths and weaknesses. In particular, there has not been a comprehensive comparison of their performance in natural abundance samples, where 1H homonuclear dipolar couplings are important and the use of large MAS rotors may be required for sensitivity reasons. In this work, we directly compared some of the more common methods for measuring C-H dipolar couplings in natural abundance samples using L-alanine (L-Ala) and the N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLF) tripeptide as model systems. We evaluated their performance in terms of accuracy, resolution, sensitivity, and ease of implementation. We found that, despite the presence of 1H homonuclear dipolar interactions, all methods, with the exception of REDOR, were able to yield the reasonable dipolar coupling strengths for both mobile and static moieties. Of these methods, PDLF provides the most convenient workflow and precision at the expense of low sensitivity. In low-sensitivity cases, MAS-PISEMA and DIPSHIFT appear to be the better options.


Asunto(s)
Alanina , Algoritmos , Alanina/química , Espectroscopía de Resonancia Magnética/métodos , N-Formilmetionina Leucil-Fenilalanina/química , Movimiento (Física) , Resonancia Magnética Nuclear Biomolecular/métodos
3.
J Biomol NMR ; 78(1): 19-30, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38102490

RESUMEN

A recently developed homonuclear dipolar recoupling scheme, Adiabatic Linearly FREquency Swept reCOupling (AL FRESCO), was applied to record two-dimensional (2D) 15N-15N correlations on uniformly 15N-labeled GB1 powders. A major feature exploited in these 15N-15N correlations was AL FRESCO's remarkably low RF power demands, which enabled seconds-long mixing schemes when establishing direct correlations. These 15N-15N mixing schemes proved efficient regardless of the magic-angle spinning (MAS) rate and, being nearly free from dipolar truncation effects, they enabled the detection of long-range, weak dipolar couplings, even in the presence of strong short-range dipolar couplings. This led to a connectivity information that was significantly better than that obtained with spontaneously proton-driven, 15N spin-diffusion experiments. An indirect approach producing long-range 15N-15N correlations was also tested, relying on short (ms-long) 1HN-1HN mixings schemes while applying AL FRESCO chirped pulses along the 15N channel. These indirect mixing schemes produced numerous long-distance Ni-Ni±n (n = 2 - 5) correlations, that might be useful for characterizing three-dimensional arrangements in proteins. Once again, these AL FRESCO mediated experiments proved more informative than variants based on spin-diffusion-based 1HN-1HN counterparts.


Asunto(s)
Péptidos , Proteínas , Resonancia Magnética Nuclear Biomolecular/métodos , Péptidos/química , Espectroscopía de Resonancia Magnética/métodos , Proteínas/química , Imagen por Resonancia Magnética , Protones
4.
Chemphyschem ; 24(16): e202300206, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37306393

RESUMEN

Methods which induce site-specificity and sensitivity enhancement in solid-state magic-angle spinning NMR spectroscopy become more important for structural biology due to the increasing size of molecules under investigation. Recently, several strategies have been developed to increase site specificity and thus reduce signal overlap. Under dynamic nuclear polarization (DNP) for NMR signal enhancement, it is possible to use cross-relaxation transfer induced by select dynamic groups within the molecules which is exploited by SCREAM-DNP (Specific Cross Relaxation Enhancement by Active Motions under DNP). Here, we present an approach where we additionally reintroduce the homonuclear dipolar coupling with rotational resonance (R2 ) during SCREAM-DNP to further boost the selectivity of the experiment. Detailed analysis of the polarization buildup dynamics of 13 C-methyl polarization source and 13 C-carbonyl target in 2-13 C-ethyl 1-13 C-acetate provides information about the sought-after and spurious transfer pathways. We show that dipolar-recoupled transfer rates greatly exceed the DNP buildup dynamics in our model system, indicating that significantly larger distances can be selectively and efficiently hyperpolarized.

5.
Chemphyschem ; 24(16): e202300141, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37309720

RESUMEN

Additional phase modulation (APM) is proposed to generally enhance the theoretical efficiency of homonuclear double-quantum (DQ) recoupling in solid-state NMR. APM applies an additional phase list to DQ recoupling in steps of an entire block. The sine-based phase list can enhance the theoretical efficiency by 15-30 %, from 0.52 to 0.68 (non-γ-encoded recoupling) or from 0.73 to 0.84 (γ-encoded recoupling), with doubled recoupling time. The genetic-algorithm (GA) optimized APM can adiabatically enhance the efficiency to ∼1.0 at longer times. The concept of APM has been tested on SPR-51 , BaBa, and SPR-31 , which represent γ-encoded recoupling, non-γ-encoded recoupling, and another kind beyond the former two, respectively. Simulations reveal that enhancements from APM are due to the activation of more crystallites in the powder. Experiments on 2,3-13 C labeled alanine are used to validate the APM recoupling. This new concept shall shed light on developing more efficient homonuclear recoupling methods.

6.
J Magn Reson ; 352: 107459, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37148711

RESUMEN

1H-detected 14N heteronuclear multiple-quantum coherence (HMQC) magic-angle-spinning (MAS) NMR experiments performed at fast magic-angle spinning (≥50 kHz) are finding increasing application, e.g., to pharmaceuticals. Of importance to the efficacy of these techniques is the recoupling technique applied to reintroduce the 1H-14N dipolar coupling. In this paper, we compare, by experiment and 2-spin density matrix simulations, two classes of recoupling scheme: first, those based on n = 2 rotary resonance, namely R3 and spin-polarisation inversion SPI-R3, and the symmetry based SR412 method and, second, the TRAPDOR method. Both classes require optimisation depending on the magnitude of the quadrupolar interaction, and thus there is a compromise choice for samples with more than one nitrogen site, as is the case for the studied dipeptide ß-AspAla that contains two nitrogen sites with a small and large quadrupolar coupling constant. Considering this, we observe better sensitivity for the TRAPDOR method, though noting the marked sensitivity of TRAPDOR to the 14N transmitter offset, with both SPI-R3 and SR412 giving similar recoupling performance.


Asunto(s)
Dipéptidos , Nitrógeno , Resonancia Magnética Nuclear Biomolecular/métodos , Preparaciones Farmacéuticas
7.
Sci Total Environ ; 877: 162880, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36933737

RESUMEN

Sustainability assessment of integrated crop-livestock system was crucial for regulating and improving the complex agricultural system. Emergy synthesis (ES) is a suitable tool to assess the sustainability of integrated crop-livestock systems. However, the inconsistent system boundaries and limited assessment indicators caused to subjective and misleading results when comparing the recoupling and decoupling croplivestock models. Therefore, this study defined the rational system boundary of emergy accounting for the comparison of recoupling and decoupling crop-livestock complex systems. Meanwhile, the study designed an emergy-based indices system based on "3R" principles of circular economy. An integrated crop-livestock system including sweet maize cultivation and cow dairy farm in South China was selected as the case to compare sustainability of recoupling and decoupling models under the unified system boundary and modified indices. Results showed that the new ES framework could provide more rational assessment results when comparing the recoupling and decoupling crop-livestock systems. In addition, this study illustrated, through scenario simulation, that the recoupling maize-cow model could be further optimized by regulating the material flow between subsystems and adjusting the system structure. This study would promote the application of ES method in the field of agricultural circular economy.

8.
Solid State Nucl Magn Reson ; 124: 101858, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36796278

RESUMEN

Recoupling, decoupling, and multidimensional correlation experiments in magic-angle-spinning (MAS) solid-state NMR can be designed by exploiting the symmetry of internal spin interactions. One such scheme, namely, C521, and its supercycled version SPC521, notated as a five-fold symmetry sequence, is widely used for double-quantum dipole-dipole recoupling. Such schemes are generally rotor synchronised by design. We demonstrate an asynchronous implementation of the SPC521 sequence leading to higher double-quantum homonuclear polarisation transfer efficiency compared to the normal synchronous implementation. Rotor-synchronisation is broken in two different ways: lengthening the duration of one of the pulses, denoted as pulse-width variation (PWV), and mismatching the MAS frequency denoted as MAS variation (MASV). The application of this asynchronous sequence is shown on three different samples, namely, U-13C-alanine and 1,4-13C-labelled ammonium phthalate which include 13Cα-13Cß, 13Cα-13Co, and 13Co-13Co spin systems, and adenosine 5'- triphosphate disodium salt trihydrate (ATP⋅3H2O). We show that the asynchronous version performs better for spin pairs with small dipole-dipole couplings and large chemical-shift anisotropies, for example, 13Co-13Co. Simulations and experiments are shown to corroborate the results.

9.
J Magn Reson ; 348: 107382, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36716616

RESUMEN

Chemical shift tensors (CSTs) are sensitive probes of structure and dynamics. R-symmetry pulse sequences (RNCSA) can efficiently recouple CSTs of varying magnitudes in magic angle spinning (MAS) NMR experiments, for a broad range of conditions and MAS frequencies. Herein, we introduce dual-channel R-symmetry pulse sequences for simultaneously recording CSTs of two different nuclei in a single experiment (DORNE-CSA). We demonstrate the performance of DORNE-CSA sequences for simultaneous measurement of 13C and 15N CSTs, on a U-13C,15N-labeled microcrystalline l-histidine. We show that the DORNE-CSA method is robust, provides accurate CST parameters, and takes only half of the measurement time compared to a pair of RNCSA experiments otherwise required for recording the CSTs of individual nuclei. DORNE-CSA approach is broadly applicable to a wide range of biological and inorganic systems.


Asunto(s)
Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos , Marcaje Isotópico
11.
Solid State Nucl Magn Reson ; 122: 101834, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36327552

RESUMEN

Interaction frames play an important role in describing and understanding experimental schemes in magnetic resonance. They are often used to eliminate dominating parts of the spin Hamiltonian, e.g., the Zeeman Hamiltonian in the usual (Zeeman) rotating frame, or the radio-frequency-field (rf) Hamiltonian to describe the efficiency of decoupling or recoupling sequences. Going into an interaction frame can also make parts of a time-dependent Hamiltonian time independent like the rf-field Hamiltonian in the usual (Zeeman) rotating frame. Eliminating the dominant term often allows a better understanding of the details of the spin dynamics. Going into an interaction frame can also reduces the energy-level splitting in the Hamiltonian leading to a faster convergence of perturbation expansions, average Hamiltonian, or Floquet theory. Often, there is no obvious choice of the interaction frame to use but some can be more convenient than others. Using the example of frequency-selective dipolar recoupling, we discuss the differences, advantages, and disadvantages of different choices of interaction frames. They always include the complete radio-frequency Hamiltonian but can also contain the chemical shifts of the spins and may or may not contain the effective fields over one cycle of the pulse sequence.


Asunto(s)
Imagen por Resonancia Magnética , Ondas de Radio , Simulación por Computador , Espectroscopía de Resonancia Magnética , Sistemas de Lectura
12.
Biochim Biophys Acta Bioenerg ; 1863(7): 148594, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35850263

RESUMEN

6-Ketocholestanol (kCh) is known as a mitochondrial recoupler, i.e. it abolishes uncoupling of mitochondria by such potent agents as carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and 3,5-di(tert-butyl)-4-hydroxybenzylidenemalononitril (SF6847) [Starkov et al., 1997]. Here, we report data on the kCh-induced inhibition of both NADH-oxidase and NADH-ubiquinone oxidoreductase activities of the respiratory complex I in bovine heart submitochondrial particles (SMP). Based on the absence of such inhibition with hexaammineruthenium (III) (HAR) as the complex I electron acceptor, the kCh effect could be associated with the ubiquinone-binding centre of this respiratory enzyme. In isolated rat liver mitochondria (RLM), kCh inhibited oxygen consumption with the glutamate/malate, substrates of NAD-linked dehydrogenases, while no inhibition of RLM respiration was observed with succinate, in agreement with the absence of the kCh effect on the succinate oxidase activity in SMP. Three kCh analogs (cholesterol, 6α-hydroxycholesterol, and 5α,6α-epoxycholesterol) exhibited no effect on the NADH oxidase activities in both SMP and RLM. Importantly, the kCh analogs were ineffective in the recoupling of RLM treated with CCCP or SF6847. Therefore, interaction of kCh with the complex I may be involved in the kCh-mediated mitochondrial recoupling.


Asunto(s)
Complejo I de Transporte de Electrón , Mitocondrias , Animales , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Bovinos , Cetocolesteroles/farmacología , Ratas
13.
Environ Sci Pollut Res Int ; 29(60): 90911-90922, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35879635

RESUMEN

Decoupling livestock and cropland production at regional scale have poor resource-use efficiency and detrimental effects on environment in China. It is therefore necessary to identify the decoupled livestock and cropland production system and make recommendations to recouple livestock and cropland. This study used the indexes of land carrying capacity (LCC), animal manure absorption capacity (AMAC), and risk warning value (R) to evaluate the coupling between cropland and livestock at the local scale in the Huang-Huai-Hai region. The decoupling of cropland and livestock in the case of Beijing (SY_BJ) was found assessed with lower theoretical value of LCC and higher theoretical value of AMAC compared with local actual situation, categorized as grade IV with a high R value (above 1). Contrary results were found that the livestock and cropland production systems were coupled at the local scale in the cases located in Hebei and Shandong Provinces, categorized as grade I or II. Two measures were used to optimize the decoupled case by adjusting the ratio of manure to fertilization or reducing breeding quantity. The decoupled case of SY_BJ could be optimized by adjusting the ratio of manure to fertilization (95.34% based on nitrogen and 81.97% based on phosphorus, respectively). The breeding quantity in this case should be reduced by at least 46% to recouple the livestock and cropland at the local level to manage nutrient surpluses from livestock and poultry breeding.


Asunto(s)
Ganado , Animales , Beijing , China
14.
Solid State Nucl Magn Reson ; 120: 101807, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35709566

RESUMEN

Due to their high gyromagnetic ratio, there is considerable interest in measuring distances and correlations involving protons, but such measurements are compounded by the simultaneous recoupling of chemical shift anisotropy (CSA). This secondary recoupling adds additional modulations to the signal intensities that ultimately lead to t1-noise and signal decay. Recently, Venkatesh et al. demonstrated that the addition of CSA refocusing periods during 1H-X dipolar recoupling led to sequences with far higher stability and performance. Herein, we describe a related effort and develop a symmetry-based recoupling sequence that continually refocuses the 1H CSA. This sequence shows superior performance to the regular and t1-noise eliminated D-HMQC sequences in the case of spin-1/2 nuclei and comparable performance to the later for half-integer quadrupoles.


Asunto(s)
Protones , Anisotropía
15.
J Magn Reson ; 340: 107227, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35568013

RESUMEN

Fluorination is a versatile and valuable modification for numerous systems, and 19F NMR spectroscopy is the premier method for their structural characterization. 19F chemical shift anisotropy is a sensitive probe of structure and dynamics, even though 19F chemical shift tensors have been reported for only a handful of systems to date. Here, we explore γ-encoded R-symmetry based recoupling sequences for the determination of 19F chemical shift tensors in fully protonated organic solids at high, 60-100 kHz MAS frequencies. We show that the performance of 19F-RNCSA experiments improves with increasing MAS frequencies, and that 1H decoupling is required to determine accurate chemical shift tensor parameters. In addition, these sequences are tolerant to B1-field inhomogeneity making them suitable for a wide range of systems and experimental conditions.


Asunto(s)
Espectroscopía de Resonancia Magnética , Anisotropía , Espectroscopía de Resonancia Magnética/métodos
16.
J Magn Reson ; 340: 107236, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35609347

RESUMEN

Band Selective Spectral Spin-Diffusion (BASS-SD) is a method to obtain selective 1H-1H contacts between chemically similar protons within a distance range of 5-6 Å in fully protonated proteins. BASS-SD combines low-amplitude proton spinlock radio frequency (rf) pulses with fast MAS frequency to enable selective polarization exchange in fully protonated molecules. The selectivity of transfer is dictated by the bandwidth of the spinlock pulse and has been used to observe selective HN-HN, Hα-Ηα and Hmethyl-Hmethyl correlations. These proton-proton spatial contacts are similar to those observed in perdeuterated samples and serve as useful structural restraints towards de novo protein structure determination. This study employs bimodal Floquet theory to derive the first- and second-order effective Hamiltonians necessary to understand the spin dynamics during BASS-SD. Analytical calculations combined with numerical simulations delineate two different mechanisms for polarization transfer amongst the proton spins. The BASS-SD recoupling condition has been reoptimized to observe selective correlations between chemically different protons (e.g., HN-Hα) while retaining the spatial contacts between chemically similar protons (e.g., HN-HN). The new BASS-SD condition is integrated with simultaneous and sequential acquisition approaches to generate four different types of structural restraints (HN-HN, Hα-Ηα, HN-Hα, Hα-HN) in one experiment. The approach has been demonstrated on microcrystalline U-[13C,15N] labeled GB1 protein at âˆ¼ 95-100 kHz MAS.


Asunto(s)
Proteínas , Protones , Proteínas/química
17.
Soc Sci Med ; 298: 114872, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35247781

RESUMEN

External inspections constitute a key element of healthcare regulation. Improved quality of care is one of the important goals of inspections but the mechanisms of how inspections might contribute to quality improvement are poorly understood. Drawing on interviews with healthcare professionals and managers and health record data from inspected organizations, we used a realist evaluation approach to explore how twelve inspections of healthcare providers in x= Norway influenced quality improvement. We found that for inspections to contribute to quality improvement, there must be contextual structures present supporting accountability and engaging staff in improvement work. When such structures are present, inspections can contribute to improvement by creating awareness of gaps between desired and current practices, which leads to readiness for change and stimulates intra-organizational reasoning around quality improvement. We discuss our findings using the theory of de- and recoupling, noting how regulators can identify decoupling between intended goals, management systems, practices, and patient outcomes. We further argue that regulators can contribute to a recoupling between these levels by having the capacity to track the providers' clinical performance over time. This will hold the organization accountable for implementing improvement measures and evaluate the effects of the measures on quality of care.


Asunto(s)
Atención a la Salud , Mejoramiento de la Calidad , Instituciones de Salud , Personal de Salud , Humanos , Organizaciones
18.
J Magn Reson ; 337: 107176, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35272112

RESUMEN

Homonuclear isotropic mixing modules allow J-coupled spins to exchange magnetization even when separated by chemical shift offsets that exceed their couplings. This is exploited in TOtal Correlation SpectroscopY (TOCSY) experiments and its variants, which facilitate these homonuclear polarization exchanges by applying broadband RF pulses. These then establish an effective Hamiltonian in which chemical shift offsets are erased, while J-coupling terms -including flip-flop components- remain active. The polarization that these non-secular terms will transfer among systems of chemically inequivalent sites over the course of a mixing period, are widely used modules in 1D and in multidimensional liquid-state NMR. Homonuclear correlation experiments are also common in solids NMR, particularly among X = 13C or 15N nuclei. Solids NMR experiments are often challenged by high-power RF demands which have led to a family of homonuclear solid-state correlation experiments that avoid pulsing on the nuclei of interest, and focus instead on the 1Hs that are bonded to them. These solid experiments usually reintroduce/strengthen 1H-X dipolar couplings; these, in conjunction with assistance from rotational resonance effects, bring back the truncated X-X dipolar interactions and facilitate the generation of cross peaks. The present study explores whether a similar goal can be achieved for solution-state counterparts, based on the reintroduction of truncated flip-flop terms in the J-coupling Hamiltonian via the pulsing on other, heteronuclear species. A proposal to achieve this is derived, and the resulting HOmonucleaR Recoupling by hEteroNuclear DecOUplingS (HORRENDOUS) approach to provide correlations between like nuclei without pulsing on them, is demonstrated.


Asunto(s)
Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos
19.
Front Mol Biosci ; 8: 791026, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34957221

RESUMEN

Order parameters are a useful tool for quantifying amplitudes of molecular motions. Here we measure dipolar order parameters by recoupling heteronuclear dipole-dipole couplings under fast spinning. We apply symmetry based recoupling methods to samples spinning under magic angle at 60 kHz by employing a variable flip angle compound inversion pulse. We validate the methods by measuring site-specific 15N-1H order parameters of a microcrystalline protein over a small temperature range and the same protein in a large, precipitated complex with antibody. The measurements of the order parameters in the complex are consistent with the observed protein undergoing overall motion within the assembly.

20.
J Magn Reson ; 330: 107043, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34364107

RESUMEN

By using only half of the total evolution time for dephasing pulses, C{N} rotational-echo double resonance (REDOR) for clusters of 13C spins (RDX) results in the same universal REDOR behavior as observed for isolated 13C-15N pairs. RDX combines Hahn echoes with solid echoes to suppress interference from scalar J couplings. This is crucial for long evolution times. The modified version (which we call RDX24) makes RDX quantitative for 13C clusters. We apply this scheme to human embryonic kidney cells labeled in culture by L-[13C5 -15N2]-glutamine. We quantitatively characterize three separate nitrogen isotopic enrichments for: (i) the alpha nitrogens of glutamine residues in proteins (including the residues of the five amino acids synthesized from glutamine); (ii) the alpha nitrogens of the five amino-acid residues synthesized from glucose, together with those of the nine essential amino acids added to the growth medium; and (iii) the side-chain nitrogens of glutamine (and of asparagine derived from glutamine).


Asunto(s)
Espectroscopía de Resonancia Magnética , Isótopos de Carbono , Humanos , Isótopos de Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA