Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Med Dosim ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39277451

RESUMEN

To develop a Knowledge Based Planning (KBP) model for creating quantifiably high quality VMAT treatment plans in a single click for head and neck cases treated Simultaneous Integrated Boost (SIB) with bilateral parotid involvement (BPI) where both parotids are near, abutting or partially overlapping target volume. Eclipse RapidPlan and the publicly available PlanScorecard tool were used to assess existing Head and Neck RapidPlan models on two representative cases. The best performer was used as a foundation model to assist in creating new initial training set doses from previously treated cases. Those initial 27 cases were first replanned using only the selected foundation model, then further improved based on manual replanning, informed by dosimetric scorecard assessment. A new, initial model was trained from those 27 foundation model created cases that had been manually improved. Then, that initial model was used to replan those cases again, resulting in higher scores. Additional cases were also replanned using the initial model along with some manual changes to the optimization objectives to increase the score. This resulted in a total of 66 cases from which the final, released, HN-SIB-BPI was trained. A 27 case subset of the full training set was replanned and rescored at each phase of the process with a 260 total point 3-target scorecard. The average score increased: 210.5 foundation model; 226.96 manually improved plans; 230.1 initial model; 231.7 HN-SIB-BPI. On the same 27 case subset, mean ipsilateral and contralateral parotid dose decreased by 1.05Gy and 1.58Gy respectively from the foundation model to HN-SIB-BP. Eight external cases were created from HN-SIB-BPI with dosimetric scorecard validation on Halcyon (3-PTV:221.38/260; 2-PTV:196.1/228.5) and TrueBeam (3-PTV:222.01/260; 2-PTV:202.24/228.5). A specific clinical intent (ie: max parotid sparing) can be articulated in a comprehensive and precise manner by creating a dosimetric scorecard with individual metrics points assigned to each OAR and target metric reflecting their relative importance. This process improved the KBP model (HN-SIB-BPI) in several quantifiable ways including further sparing of parotid dose. All results and tools in this work are shared publicly.

2.
J Appl Clin Med Phys ; : e14464, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031902

RESUMEN

PURPOSE: To assess the practicality of employing a commercial knowledge-based planning tool (RapidPlan) to generate adapted intact prostate and prostate bed volumetric modulated arc therapy (VMAT) plans on iterative cone-beam computed tomography (iCBCT) datasets. METHODS AND MATERIALS: Intact prostate and prostate bed RapidPlan models were trained utilizing planning data from 50 and 44 clinical cases, respectively. To ensure that refined models were capable of producing adequate clinical plans with a single optimization, models were tested with 50 clinical planning CT datasets by comparing dose-volume histogram (DVH) and plan quality metric (PQM) values between clinical and RapidPlan-generated plans. The RapidPlan tool was then used to retrospectively generate adapted VMAT plans on daily iCBCT images for 20 intact prostate and 15 prostate bed cases. As before, DVH and PQM metrics were utilized to dosimetrically compare scheduled (iCBCT Verify) and adapted (iCBCT RapidPlan) plans. Timing data was collected to further evaluate the feasibility of integrating this approach within an online adaptive radiotherapy workflow. RESULTS: Model testing results confirmed the models were capable of producing VMAT plans within a single optimization that were overall improved upon or dosimetrically comparable to original clinical plans. Direct application of RapidPlan on iCBCT datasets produced satisfactory intact prostate and prostate bed plans with generally improved target volume coverage/conformality and rectal sparing relative to iCBCT Verify plans as indicated by DVH values, though bladder metrics were marginally increased on average. Average PQM values for iCBCT RapidPlans were significantly improved compared to iCBCT Verify plans. The average time required [in mm:ss] to generate adapted plans was 06:09 ± 02:06 (intact) and 07:12 ± 01:04 (bed). CONCLUSION: This study demonstrated the feasibility of leveraging RapidPlan to expeditiously generate adapted VMAT intact prostate and prostate bed plans on iCBCT datasets. In general, adapted plans were dosimetrically improved relative to scheduled plans, emphasizing the practicality of the proposed approach.

3.
Med Dosim ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39079802

RESUMEN

Automated planning has surged in popularity within external beam radiation therapy in recent times. Leveraging insights from previous clinical knowledge could enhance auto-planning quality. In this work, we evaluated the performance of Ethos automated planning with knowledge-based guidance, specifically using Rapidplan (RP). Seventy-four patients with head-and-neck (HN) cancer and 37 patients with prostate cancer were used to construct separate RP models. Additionally, 16 patients from each group (HN and prostate) were selected to assess the performance of Ethos auto-planning results. Initially, a template-based Ethos plan (Non-RP plan) was generated, followed by integrating the corresponding RP model's DVH estimates into the optimization process to generate another plan (RP plan). We compared the target coverage, OAR doses, and total monitor units between the non-RP and RP plans. Both RP and non-RP plans achieved comparable target coverage in HN and Prostate cases, with a negligible difference of less than 0.5% (p > 0.2). RP plans consistently demonstrated lower doses of OARs in both HN and prostate cases. Specifically, the mean doses of OARs were significantly reduced by 9% (p < 0.05). RP plans required slightly higher monitor units in both HN and prostate sites (p < 0.05), however, the plan generation time was almost similar (p > 0.07). The inclusion of the RP model reduced the OAR doses, particularly reducing the mean dose to critical organs compared to non-RP plans while maintaining similar target coverage. Our findings provide valuable insights for clinics adopting Ethos planning, potentially enhancing the auto-planning to operate optimally.

4.
Med Dosim ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38890058

RESUMEN

This study aimed to investigate whether the RapidPlan (RP) model configured by volumetric modulated arc therapy (VMAT) plans of nasopharyngeal carcinoma (NPC) could be used to assist in the optimization of HT plans and improve their quality. An RP model was trained using 100 clinically accepted VMAT plans of NPC patients. The predicted dose constraints of the VMAT trained RP model were used to reoptimize 25 consecutive clinically accepted HT plans (HT_clinical) and perform new VMAT plans based on the same computed topography (CT). The dosimetric quality of the reoptimized HT plans (HT_reoptimized), HT_clinical, and VMAT group were compared. The minimum dose encompassing 2% target (D2%), the minimum dose encompassing 98% target (D98%), homogeneity index (HI) and conformity index (CI) were similar for most targets between the HT_clinical and HT_reoptimized plans, although certain targets in the HT_reoptimized plans had higher D2% and HI and lower D98%. The HT_reoptimized plans outperformed the HT_clinical plans in the Dmax and D1cc of the spinal cord, V40Gy of the left temporal lobe, Dmean and V30Gy of the oral cavity, Dmean of the larynx and thyroid, and the differences were statistically significant. HT plans had higher CI and HI than VMAT plans. HT plans outperformed VMAT plans in the Dmax of the spinal cord and lenses, V30Gy of the oral cavity and parotids, and V40Gy of the temporal lobes, but underperformed in the Dmax and D1cc of the brainstem, D1cc of the spinal cord and Dmean of the oral cavity. The VMAT-based RP model can be used to assist in the planning of HT plans and improve the dosimetry quality of HT plans.

5.
Phys Med Biol ; 69(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38670137

RESUMEN

Purpose.The dose hotspot areas in hypofractionated whole-breast irradiation (WBI) greatly increase the risk of acute skin toxicity because of the anatomical peculiarities of the breast. In this study, we presented several novel planning strategies that integrate multiple sub-planning target volumes (sub-PTVs), field secondary placement, and RapidPlan models for right-sided hypofractionated WBI.Methods.A total of 35 cases of WBI with a dose of 42.5 Gy for PTVs using tangential intensity-modulated radiotherapy (IMRT) were selected. Both PTVs were planned for simultaneous treatment using the original manual multiple sub-PTV plan (OMMP) and the original manual single-PTV plan (OMSP). The manual field secondary placement multiple sub-PTV plan (m-FSMP) with multiple objects on the original PTV and the manual field secondary placement single-objective plan (m-FSSP) were initially planned, which were distribution-based of V105 (volume receiving 105% of the prescription dose). In addition, two RapidPlan-based plans were developed, including the RapidPlan-based multiple sub-PTVs plan (r-FSMP) and the RapidPlan-based single-PTV plan (r-FSSP). Dosimetric parameters of the plans were compared, and V105 was evaluated using multivariate analysis to determine how it was related to the volume of PTV and the interval of lateral beam angles (ILBA).Results.The lowest mean V105 (5.64 ± 6.5%) of PTV was observed in m-FSMP compared to other manual plans. Upon validation, r-FSSP demonstrated superior dosimetric quality for OAR compared to the two other manual planning methods, except for V5(the volume of ipsilateral lung receiving 5 Gy) of the ipsilateral lung. While r-FSMP showed no significant difference (p = 0.06) compared to r-FSSP, it achieved the lowest V105 value (4.3 ± 4.5%), albeit with a slight increase in the dose to some OARs. Multivariate GEE linear regression showed that V105 is significantly correlated with target volume and ILBA.Conclusions.m-FSMP and r-FSMP can substantially enhance the homogeneity index (HI) and reduce V105, thereby minimizing the risk of acute skin toxicities, even though there may be a slight dose compromise for certain OARs.


Asunto(s)
Neoplasias de la Mama , Hipofraccionamiento de la Dosis de Radiación , Radiometría , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias de la Mama/radioterapia , Radioterapia de Intensidad Modulada/efectos adversos , Radioterapia de Intensidad Modulada/métodos , Femenino , Mama/efectos de la radiación
6.
Br J Radiol ; 97(1158): 1153-1161, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38637944

RESUMEN

OBJECTIVES: The aim of this study was to determine the number of trade-off explored (TO) library plans required for building a RapidPlan (RP) library that would generate the optimal clinical treatment plan. METHODS: We developed 2 RP models, 1 each for the 2 clinical sites, head and neck (HN) and cervix. The models were created using 100 plans and were validated using 70 plans (VP) for each site respectively. Each of the 2 libraries comprising 100 TO plans was divided into 5 different subsets of library plans comprising 20, 40, 60, 80, and 100 plans, leading to 5 different RP models for each site. For every validation patient, a TO plan (TO_VP) was created. For every patient, 5 RP plans were automatically generated using RP models. The dosimetric parameters of the 6 plans (TO_VP + 5 RP plans) were compared using Pearson correlation and Greenhouse-Geisser analysis. RESULTS: Planning target volume (PTV) dose volume parameters PTVD95% in 6 competing plans varied between 97.6 ± 0.7% and 98.1 ± 0.6% in HN cases and 98.8 ± 0.3% and 99.0 ± 0.4% in cervix cases. Overall, for both sites, the mean variations in organ at risk (OAR) doses or volumes were within 50 cGy, 0.5%, and 0.2 cc between library plans, and if TO_VP was included the variations deteriorated to 180 cGy, 0.4%, and 15 cc. All OARs in both sites, except D0.1 ccspine, showed a statistically insignificant variation between all plans. CONCLUSIONS: Dosimetric variation among various output plans generated from 5 RP libraries is minimal and clinically insignificant. The optimal output plan can be derived from the least-weighted library consisting of 20 plans. ADVANCES IN KNOWLEDGE: This article shows that, when the constituent plans are subjected to trade-off exploration, the number of constituent plans for a knowledge-based planning module is not relevant in terms of its dosimetric output.


Asunto(s)
Neoplasias de Cabeza y Cuello , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Neoplasias del Cuello Uterino , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Femenino , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias del Cuello Uterino/radioterapia , Bases del Conocimiento , Radioterapia de Intensidad Modulada/métodos
7.
Radiol Oncol ; 58(2): 289-299, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38452341

RESUMEN

BACKGROUND: Craniospinal irradiation (CSI) poses a challenge to treatment planning due to the large target, field junction, and multiple organs at risk (OARs) involved. The aim of this study was to evaluate the performance of knowledge-based planning (KBP) in CSI by comparing original manual plans (MP), KBP RapidPlan initial plans (RPI), and KBP RapidPlan final plans (RPF), which received further re-optimization to meet the dose constraints. PATIENTS AND METHODS: Dose distributions in the target were evaluated in terms of coverage, mean dose, conformity index (CI), and homogeneity index (HI). The dosimetric results of OARs, planning time, and monitor unit (MU) were evaluated. RESULTS: All MP and RPF plans met the plan goals, and 89.36% of RPI plans met the plan goals. The Wilcoxon tests showed comparable target coverage, CI, and HI for the MP and RPF groups; however, worst plan quality was demonstrated in the RPI plans than in MP and RPF. For the OARs, RPF and RPI groups had better dosimetric results than the MP group (P < 0.05 for optic nerves, eyes, parotid glands, and heart). The planning time was significantly reduced by the KBP from an average of 677.80 min in MP to 227.66 min (P < 0.05) and 307.76 min (P < 0.05) in RPI, and RPF, respectively. MU was not significantly different between these three groups. CONCLUSIONS: The KBP can significantly reduce planning time in CSI. Manual re-optimization after the initial KBP is recommended to enhance the plan quality.


Asunto(s)
Irradiación Craneoespinal , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Irradiación Craneoespinal/métodos , Radioterapia de Intensidad Modulada/métodos , Radioterapia de Intensidad Modulada/normas , Órganos en Riesgo/efectos de la radiación , Niño , Masculino , Preescolar , Adolescente , Femenino , Radiometría/métodos , Bases del Conocimiento
8.
Med Dosim ; 49(3): 271-275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556402

RESUMEN

The increase in high-precision radiation therapy, particularly volumetric-modulated arc therapy (VMAT), has increased patient numbers and expanded treatment sites. However, a significant challenge in VMAT treatment planning is the inconsistent plan quality among different planners and facilities. This study explored the use of dose-volume histogram (DVH) prediction tools to address these disparities, specifically focusing on RapidPlan (Varian Medical Systems) and PlanIQ (Sun Nuclear). RapidPlan predicts achievable DVHs and automatically generates optimization objectives. While it has demonstrated organ-at-risk (OAR) dose reduction benefits, the quality of the plan used to build its model significantly affects its predictions. On the other hand, PlanIQ offers ease of use and does not require prior model-building. Five planners participated in this study, each creating two treatment plans: one referencing RapidPlan and the other using PlanIQ. The planners had the freedom to adjust parameters while referencing the DVH predictions. The plans were evaluated using "Plan Quality Metric" (PQM) scores to assess the planning target volume excluding the rectum and OARs. The results revealed that RapidPlan-referenced plans often outperformed PlanIQ-based plans, with less interplanner variability. PlanIQ played a pivotal role in the construction of the RapidPlan model. This study is the first to compare plans generated by multiple planners using both tools. This study provides insights into optimizing treatment planning by considering the characteristics of both RapidPlan and PlanIQ.


Asunto(s)
Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Humanos , Órganos en Riesgo
9.
J Appl Clin Med Phys ; 25(1): e14223, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38009569

RESUMEN

PURPOSE: To investigate the performance of a model-based optimization process for volumetric modulated arc therapy (VMAT) applied to prostate cancer patients with the multi-planner. METHODS AND MATERIALS: The 120 prostate plans for VMAT treatment were entered into the database system of the RapidPlan (RP) knowledge-based treatment planning. The treatment planning data for each plan was used to create and train the RP model. Twelve prostate cancer cases were selected and were used for planning by a manual of 12 planners based on the clinical protocol for dose constraints. Then, the treatment plans for each patient were compared with the RP model plans and analyzed with Wilcoxon tests. RESULTS: On average, the RP models can estimate comparable doses among all planner plans and clinical plans for the PTV, which Dmax , D95% , D98% , HI, and CI were used to evaluate. For the normal organ doses of the bladder, rectum, penile bulb, and femoral head, all RP model plans showed comparable or better dose sparing than all planner plans and clinical plans. Moreover, the average planning time of the RP model was faster than manual plans by about two times. The RP model can significantly reduce the variation dose of the normal organs compared with the manual plans among the planners. CONCLUSION: The automated plans of the RP model might benefit from further fine-tuning of the dose constraints of the normal organs, although both procedure plans are acceptable and fulfill the clinical protocol goals so that the RP model can enhance the efficacy and quality of plans.


Asunto(s)
Neoplasias de la Próstata , Radioterapia de Intensidad Modulada , Masculino , Humanos , Radioterapia de Intensidad Modulada/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Recto , Neoplasias de la Próstata/radioterapia , Órganos en Riesgo
10.
Radiol Phys Technol ; 17(1): 337-345, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37938420

RESUMEN

This study devised a method to efficiently launch the RapidPlan model for volumetric-modulated arc therapy for prostate cancer in small- and medium-sized facilities using high-quality treatment plans with the PlanIQ software as a reference. Treatment plans were generated for 30 patients with prostate cancer to construct the RapidPlan model using PlanIQ as a reference. In the context of PlanIQ-referenced treatment planning, treatment plans were developed, such that the feasibility dose-volume histogram of each organ-at-risk fell within F ≤ 0.1. For validation of the RapidPlan model, treatment plans were formulated for 20 patients using both RapidPlan and PlanIQ, and the differences were evaluated. The results of RapidPlan model validity assessment revealed that the RapidPlan-produced treatment plans exhibited higher quality in 11 of 20 patients. No significant differences were found between the treatment plans. In conclusion, high-quality treatment plans formulated using PlanIQ as reference facilitated efficient implementation of RapidPlan modeling.


Asunto(s)
Neoplasias de la Próstata , Radioterapia de Intensidad Modulada , Masculino , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Programas Informáticos , Radioterapia de Intensidad Modulada/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Órganos en Riesgo
11.
Acta Oncol ; 62(10): 1194-1200, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37589124

RESUMEN

BACKGROUND: Knowledge-based planning (KBP) is a method for automated radiotherapy treatment planning where appropriate optimization objectives for new patients are predicted based on a library of training plans. KBP can save time and improve organ at-risk sparing and inter-patient consistency compared to manual planning, but its performance depends on the quality of the training plans. We used another system for automated planning, which generates multi-criteria optimized (MCO) plans based on a wish list, to create training plans for the KBP model, to allow seamless integration of knowledge from a new system into clinical routine. Model performance was compared for KBP models trained with manually created and automatic MCO treatment plans. MATERIAL AND METHODS: Two RapidPlan models with the same 30 locally advanced non-small cell lung cancer patients included were created, one containing manually created clinical plans (RP_CLIN) and one containing fully automatic multi-criteria optimized plans (RP_MCO). For 15 validation patients, model performance was compared in terms of dose-volume parameters and normal tissue complication probabilities, and an oncologist performed a blind comparison of the clinical (CLIN), RP_CLIN, and RP_MCO plans. RESULTS: The heart and esophagus doses were lower for RP_MCO compared to RP_CLIN, resulting in an average reduction in the risk of 2-year mortality by 0.9 percentage points and the risk of acute esophageal toxicity by 1.6 percentage points with RP_MCO. The oncologist preferred the RP_MCO plan for 8 patients and the CLIN plan for 7 patients, while the RP_CLIN plan was not preferred for any patients. CONCLUSION: RP_MCO improved OAR sparing compared to RP_CLIN and was selected for implementation in the clinic. Training a KBP model with clinical plans may lead to suboptimal output plans, and making an extra effort to optimize the library plans in the KBP model creation phase can improve the plan quality for many future patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Radioterapia de Intensidad Modulada , Humanos , Neoplasias Pulmonares/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Radioterapia de Intensidad Modulada/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Órganos en Riesgo
12.
Med Dosim ; 48(4): 273-278, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37495460

RESUMEN

The goal of this study is to investigate the Pareto optimal tradeoffs between target coverage and hippocampal sparing using knowledge-based multicriteria optimization (MCO). Ten prior clinical cases were selected that were treated with hippocampal avoidance whole brain radiotherapy (HA-WBRT) using VMAT. A new, balanced plan was generated for each case using an in-house RapidPlan model in the Eclipse V16.1 treatment planning system. The MCO decision support tool was used to create 4 Pareto optimal plans. The Pareto optimal plans were created using PTV Dmin and hippocampus Dmax as tradeoff criteria. The tradeoff plans were generated for each patient by adjusting PTV Dmin from the value achieved by the corresponding balanced plan in fixed intervals as follows: -4 Gy, -2 Gy, +2 Gy, and +4 Gy. All plans were normalized so that 95% of the PTV was covered by the prescription dose. A 1-way ANOVA, with Geisser-Greenhouse correction, was used for statistical analysis. When evaluating the achieved PTV Dmin and D98%, the results showed the dose to the hippocampus decreased as coverage lowered and in comparison, D98% was higher when the PTV coverage was increased. When comparing multiple tradeoffs, the p-value for PTV D98% was 0.0026, and the p-values for PTV D2%, PTV Dmin, Hippocampus Dmax, Dmin, and Dmean were all less than 0.0001, indicating that the tradeoff plans achieved statistically significant differences. The results also showed that Pareto optimal plans failed to reduce hippocampal dose beyond a certain point, indicating more limited achievability of the MCO-navigated plans than the interface suggested. This study presents valuable data for planning results for HA-WBRT using MCO. MCO has shown to be mostly effective in adjusting the tradeoff between PTV coverage and hippocampal dose.


Asunto(s)
Tratamientos Conservadores del Órgano , Radioterapia de Intensidad Modulada , Humanos , Tratamientos Conservadores del Órgano/métodos , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Hipocampo , Radioterapia de Intensidad Modulada/métodos
13.
Front Oncol ; 13: 1144784, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37188200

RESUMEN

Objectives: Single-isocentre volumetric-modulated arc therapy (VMAT) stereotactic body radiation therapy (SBRT) improves treatment efficiency and patient compliance for patients with multiple liver metastases (MLM). However, the potential increase in dose spillage to normal liver tissue using a single-isocentre technique has not yet been studied. We comprehensively evaluated the quality of single- and multi-isocentre VMAT-SBRT for MLM and propose a RapidPlan-based automatic planning (AP) approach for MLM SBRT. Methods: A total of 30 patients with MLM (two or three lesions) were selected for this retrospective study. We manually replanned all patients treated with MLM SBRT by using the single-isocentre (MUS) and multi-isocentre (MUM) techniques. Then, we randomly selected 20 MUS and MUM plans for training to generate the single-isocentre RapidPlan model (RPS) and the multi-isocentre RapidPlan model (RPM). Finally, we used data from the remaining 10 patients to validate RPS and RPM. Results: Compared with MUS, MUM reduced the mean dose delivered to the right kidney by 0.3 Gy. The mean liver dose (MLD) was 2.3 Gy higher for MUS compared with MUM. However, the monitor units, delivery time, and V20Gy of normal liver (liver-gross tumour volume) for MUM were significantly higher than for MUS. Based on validation, RPS and RPM slightly improved the MLD, V20Gy, normal tissue complications, and dose sparing to the right and left kidneys and spinal cord compared with manual plans (MUS vs RPS and MUM vs RPM), but RPS and RPM significantly increased monitor units and delivery time. Conclusions: The single-isocentre VMAT-SBRT approach could be used for MLM to reduce treatment time and patient comfort at the cost of a small increase in the MLD. Compared with the manual plans, RapidPlan-based plans, especially RPS, have slightly improved quality.

14.
Phys Eng Sci Med ; 46(3): 1091-1100, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37247102

RESUMEN

PURPOSE: To evaluate whether knowledge-based volumetric modulated arc therapy plans for prostate cancer with a multi-institution model (broad model) are clinically useful and effective as a standardization method. METHODS: A knowledge-based planning (KBP) model was trained with 561 prostate VMAT plans from five institutions with different contouring and planning policies. Five clinical plans at each institution were reoptimized with the broad and single institution model, and the dosimetric parameters and relationship between Dmean and the overlapping volume (rectum or bladder and target) were compared. RESULTS: The differences between the broad and single institution models in the dosimetric parameters for V50, V80, V90, and Dmean were: rectum; 9.5% ± 10.3%, 3.3% ± 1.5%, 1.7% ± 1.6%, and 3.6% ± 3.6%, (p < 0.001), bladder; 8.7% ± 12.8%, 1.5% ± 2.6%, 0.7% ± 2.4%, and 2.7% ± 4.6% (p < 0.02), respectively. The differences between the broad model and clinical plans were: rectum; 2.4% ± 4.6%, 1.7% ± 1.7%, 0.7% ± 2.4%, and 1.5% ± 2.0%, (p = 0.004, 0.015, 0.112, and 0.009) bladder; 2.9% ± 5.8%, 1.6% ± 1.9%, 0.9% ± 1.7%, and 1.1% ± 4.8%, (p < 0.018), respectively. Positive values indicate that the broad model has a lower value. Strong correlations were observed (p < 0.001) in the relationship between Dmean and the rectal and bladder volume overlapping with the target in the broad model (R = 0.815 and 0.891, respectively). The broad model had the smallest R2 of the three plans. CONCLUSIONS: KBP with the broad model is clinically effective and applicable as a standardization method at multiple institutions.


Asunto(s)
Neoplasias de la Próstata , Radioterapia de Intensidad Modulada , Masculino , Humanos , Próstata , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Estándares de Referencia
15.
Biomedicines ; 11(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36979740

RESUMEN

The aim of this study was to evaluate knowledge-based treatment planning (KBP) models in terms of their dosimetry and deliverability and to investigate their clinical benefits. Three H&N KBP models were built utilizing RapidPlan™, based on the dose prescription, which is given according to the planning target volume (PTV). The training set for each model consisted of 43 clinically acceptable volumetric modulated arc therapy (VMAT) plans. Model quality was assessed and compared to the delivered treatment plans using the homogeneity index (HI), conformity index (CI), structure dose difference (PTV, organ at risk-OAR), monitor units, MU factor, and complexity index. Model deliverability was assessed through a patient-specific quality assurance (PSQA) gamma index-based analysis. The dosimetric assessment showed better OAR sparing for the RapidPlan™ plans and for the low- and high-risk PTV, and the HI, and CI were comparable between the clinical and RapidPlan™ plans, while for the intermediate-risk PTV, CI was better for clinical plans. The 2D gamma passing rates for RapidPlan™ plans were similar or better than the clinical ones using the 3%/3 mm gamma-index criterion. Monitor units, the MU factors, and complexity indices were found to be comparable between RapidPlan™ and the clinical plans. Knowledge-based treatment plans can be safely adapted into clinical routines, providing improved plan quality in a time efficient way while minimizing user variability.

16.
J Appl Clin Med Phys ; 24(6): e13940, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36827178

RESUMEN

Knowledge-based planning (KBP) and multicriteria optimization (MCO) are two powerful tools to assist treatment planners in achieving optimal target coverage and organ-at-risk (OAR) sparing. The purpose of this work is to investigate if integrating MCO with conventional KBP can further improve treatment plan quality for prostate cancer stereotactic body radiation therapy (SBRT). A two-phase study was designed to investigate the impact of MCO and KBP in prostate SBRT treatment planning. The first phase involved the creation of a KBP model based on thirty clinical SBRT plans, generated by manual optimization (KBP_M). A ten-patient validation cohort was used to compare manual, MCO, and KBP_M optimization techniques. The next phase involved replanning the original model cohort with additional tradeoff optimization via MCO to create a second model, KBP_MCO. Plans were then generated using linear integration (KBP_M+MCO), non-linear integration (KBP_MCO), and a combination of integration methods (KBP_MCO+MCO). All plans were analyzed for planning target volume (PTV) coverage, OAR constraints, and plan quality metrics. Comparisons were generated to evaluate plan and model quality. Phase 1 highlighted the necessity of KBP and MCO in treatment planning, as both optimization methods improved plan quality metrics (Conformity and Heterogeneity Indices) and reduced mean rectal dose by 2 Gy, as compared to manual planning. Integrating MCO with KBP did not further improve plan quality, as little significance was seen over KBP or MCO alone. Principal component score (PCS) fitting showed KBP_MCO improved bladder and rectum estimated and modeled dose correlation by 5% and 22%, respectively; however, model improvements did not significantly impact plan quality. KBP and MCO have shown to reduce OAR dose while maintaining desired PTV coverage in this study. Further integration of KBP and MCO did not show marked improvements in treatment plan quality while requiring increased time in model generation and optimization time.


Asunto(s)
Neoplasias de la Próstata , Radiocirugia , Radioterapia de Intensidad Modulada , Masculino , Humanos , Próstata , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Algoritmos , Radioterapia de Intensidad Modulada/métodos , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/cirugía , Órganos en Riesgo
17.
Med Dosim ; 48(1): 44-50, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36400649

RESUMEN

The implementation of knowledge-based planning (KBP) continues to grow in radiotherapy clinics. KBP guides radiation treatment design by generating clinically acceptable plans in a timely and resource-efficient manner. The role of multiple KBP models tailored for variations within a disease site remains undefined in part because of the substantial effort and number of training cases required to create a high-quality KBP model. In this study, our aim was to explore whether site-specific KBP models lead to clinically meaningful differences in plan quality for head-and-neck (HN) patients when compared to a general model. One KBP model was created from prior volumetric-modulated arc therapy (VMAT) cases that treated unilateral HN lymph nodes while another model was created from VMAT cases that treated bilateral HN nodes. Thirty cases from each model (60 cases total) were randomly selected to create a third, general model. These models were applied to 60 HN test cases - 30 unilateral and 30 bilateral - to generate 180 VMAT plans in Eclipse. Clinically relevant dose metrics were compared between models. Paired-sample t-tests were used for statistical analysis, with the threshold for statistical significance set a priori at 0.007, taking into consideration multiple hypothesis testing to avoid type I error. For unilateral test cases, the unilateral model-generated plans had significantly lower spinal cord maximum doses (12.1 Gy vs 19.3 Gy, p < 0.001) and oral cavity mean doses (20.8 Gy vs 23.0 Gy, p < 0.001), compared with the bilateral model-generated plans. The unilateral and general models generated comparable plans for unilateral HN test cases. For bilateral test cases, the bilateral model created plans had significantly lower brainstem maximum doses (10.8 Gy vs 12.2 Gy, p < 0.001) and parotid mean doses (24.0 Gy vs 25.5 Gy, p < 0.001) when compared to the unilateral model. Right parotid mean doses were lower for bilateral model plans compared to general model plans (23.8 Gy vs 24.4 Gy). The general model created plans with significantly lower brainstem maximum doses (10.3 Gy vs 10.8 Gy) and oral cavity mean doses (35.3 Gy vs 36.7 Gy) when compared with bilateral model-generated plans. The general model outperformed the bilateral model in several dose metrics but they were not deemed clinically significant. For both case sets, the unilateral and general model created plans had higher monitor units when compared to the bilateral model, likely due to more stringent constraint settings. All other dose metrics were comparable. This study demonstrates that a balanced general HN model created using carefully curated treatment plans can produce high quality plans comparable to dedicated unilateral and bilateral models.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Dosificación Radioterapéutica , Cuello , Glándula Parótida , Órganos en Riesgo
18.
J Appl Clin Med Phys ; 24(2): e13836, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36333969

RESUMEN

OBJECTIVE: Dosimetric potential of knowledge-based RapidPlan planning model trained with HyperArc plans (Model-HA) for brain metastases has not been reported. We developed a Model-HA and compared its performance with that of clinical volumetric modulated arc therapy (VMAT) plans. METHODS: From 67 clinical stereotactic radiosurgery (SRS) HyperArc plans for brain metastases, 47 plans were used to build and train a Model-HA. The other 20 clinical HyperArc plans were recalculated in RapidPlan system with Model-HA. The model performance was validated with the 20 plans by comparing dosimetric parameters for normal brain tissue between clinical plans and model-generated plans. The 20 clinical conventional VMAT-based SRS or stereotactic radiotherapy plans (CL-VMAT) were reoptimized with Model-HA (RP) and HyperArc system (HA), respectively. The dosimetric parameters were compared among three plans (CL-VMAT vs. RP vs. HA) in terms of planning target volume (PTV), normal brain excluding PTVs (Brain - PTV), brainstem, chiasm, and both optic nerves. RESULTS: In model validation, the optimization performance of Model-HA was comparable to that of HyperArc system. In comparison to CL-VMAT, there were no significant differences among three plans with respect to PTV coverage (p > 0.17) and maximum dose for brainstem, chiasm, and optic nerves (p > 0.40). RP provided significantly lower V20 Gy , V12 Gy , and V4 Gy for Brain - PTV than CL-VMAT (p < 0.01). CONCLUSION: The Model-HA has the potential to significantly reduce the normal brain dose of the original VMAT plans for brain metastases.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/secundario , Encéfalo , Radiocirugia/métodos , Radioterapia de Intensidad Modulada/métodos
19.
Radiat Oncol ; 17(1): 200, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36474297

RESUMEN

BACKGROUND: To analyze RapidPlan knowledge-based models for DVH estimation of organs at risk from breast cancer VMAT plans presenting arc sectors en-face to the breast with zero dose rate, feature imposed during the optimization phase (avoidance sectors AS). METHODS: CT datasets of twenty left breast patients in deep-inspiration breath-hold were selected. Two VMAT plans, PartArc and AvoidArc, were manually generated with double arcs from ~ 300 to ~ 160°, with the second having an AS en-face to the breast to avoid contralateral breast and lung direct irradiation. Two RapidPlan models were generated from the two plan sets. The two models were evaluated in a closed loop to assess the model performance on plans where the AS were selected or not in the optimization. RESULTS: The PartArc plans model estimated DVHs comparable with the original plans. The AvoidArc plans model estimated a DVH pattern with two steps for the contralateral structures when the plan does not contain the AS selected in the optimization phase. This feature produced mean doses of the contralateral breast, averaged over all patients, of 0.4 ± 0.1 Gy, 0.6 ± 0.2 Gy, and 1.1 ± 0.2 Gy for the AvoidArc plan, AvoidArc model estimation, RapidPlan generated plan, respectively. The same figures for the contralateral lung were 0.3 ± 0.1 Gy, 1.6 ± 0.6 Gy, and 1.2 ± 0.5 Gy. The reason was found in the possible incorrect information extracted from the model training plans due to the lack of knowledge about the AS. Conversely, in the case of plans with AS set in the optimization generated with the same AvoidArc model, the estimated and resulting DVHs were comparable. Whenever the AvoidArc model was used to generate DVH estimation for a plan with AS, while the optimization was made on the plan without the AS, the optimizer evidentiated the limitation of a minimum dose rate of 0.2 MU/°, resulting in an increased dose to the contralateral structures respect to the estimation. CONCLUSIONS: The RapidPlan models for breast planning with VMAT can properly estimate organ at risk DVH. Attention has to be paid to the plan selection and usage for model training in the presence of avoidance sectors.

20.
J Med Phys ; 47(2): 119-125, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212210

RESUMEN

Aim: The aim of this study was to build knowledge-based planning model (KBPM) for head-and-neck (HN) cancers using volumetric-modulated arc therapy (VMAT), optimized with multi-criteria optimization (MCO), and to evaluate KBPM plan quality with clinical plan (CP) using in-house developed Python script. Materials and Methods: Two hundred previously treated simultaneously integrated boost (SIB) HN VMAT plans (RapidArc®) were selected for creating KBPM. These plans were further optimized using MCO to strike right trade-off between target and organs at risk (OARs). The script was written using Python V3.7.1 to automatically extract and analyze treatment plan dosimetric parameters through Eclipse Scripting Application Programming Interface (ESAPI). Analyzed plans that met deliverable quality were modeled using regression-based KBPM framework. The trained model is validated with 35 cohorts of HN SIB patients. Results: MCO plans were able to improve the OAR sparing without compromising target coverage compared to user-optimized CPs except for increased heterogeneity. With MCO, spinal cord dose D0.03cc is reduced by 3.2 Gy ± 1.8 Gy, parotid mean dose by 2 Gy ± 1.7 Gy compared to CPs, respectively. MCO-based KBPM plans were comparable to CP with improved sparing for left and right parotids by 11.5% and 7.8%, respectively. Conclusion: MCO-based KBPM plans were superior to user plans in terms of OAR sparing and user need to spend more time to meet the model-based plan outcomes. Created KBPM planning is simple and efficient to generate estimate for OAR sparing to guide entry and intermittent planners to improve their clinical planning skills with lesser planning time. Python ESAPI is a powerful tool to extract plan parameters and quickly evaluate either individual or a cohort of plans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA