Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Brain Inform ; 11(1): 20, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162950

RESUMEN

Synchronization of spikes carried by the visual streams is strategic for the proper binding of cortical assemblies, hence for the perception of visual objects as coherent units. Perception of a complex visual scene involves multiple trains of gamma oscillations, coexisting at each stage in visual and associative cortex. Here, we analyze how this synchrony is managed, so that the perception of each visual object can emerge despite this complex interweaving of cortical activations. After a brief review of structural and temporal facts, we analyze the interactions which make the oscillations coherent for the visual elements related to the same object. We continue with the propagation of these gamma oscillations within the sensory chain. The dominant role of the pulvinar and associated reticular thalamic nucleus as cortical coordinator is the common thread running through this step-by-step description. Synchronization mechanisms are analyzed in the context of visual perception, although the present considerations are not limited to this sense. A simple experiment is described, with the aim of assessing the validity of the elements developed here. A first set of results is provided, together with a proposed method to go further in this investigation.

2.
Front Neuroanat ; 18: 1430636, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170852

RESUMEN

The rat lateral posterior thalamic nucleus (LP) is composed of the rostromedial (LPrm), lateral (LPl), and caudomedial parts, with LPrm and LPl being areas involved in information processing within the visual cortex. Nevertheless, the specific differences in the subcortical projections to the LPrm and LPl remain elusive. In this study, we aimed to reveal the subcortical regions that project axon fibers to the LPl and LPrm using a retrograde neural tracer, Fluorogold (FG). After FG injection into the LPrm or LPl, the area was visualized immunohistochemically. Retrogradely labeled neurons from the LPrm were distributed in the retina and the region from the diencephalon to the medulla oblongata. Diencephalic labeling was found in the reticular thalamic nucleus (Rt), zona incerta (ZI), ventral lateral geniculate nucleus (LGv), intergeniculate leaflet (IGL), and hypothalamus. In the midbrain, prominent labeling was found in the periaqueductal gray (PAG) and deep layers of the superior colliculus. Additionally, retrograde labeling was observed in the cerebellar and trigeminal nuclei. When injected into the LPl, several cell bodies were labeled in the visual-related regions, including the retina, LGv, IGL, and olivary pretectal nucleus (OPT), as well as in the Rt and anterior pretectal nucleus (APT). Less labeling was found in the cerebellum and medulla oblongata. When the number of retrogradely labeled neurons from the LPrm or LPl was compared as a percentage of total subcortical labeling, a larger percentage of subcortical inputs to the LPl included projections from the APT, OPT, and Rt, whereas a large proportion of subcortical inputs to the LPrm originated from the ZI, reticular formation, and PAG. These results suggest that LPrm not only has visual but also multiple sensory-and motor-related functions, whereas the LPl takes part in a more visual-specific role. This study enhances our understanding of subcortical neural circuits in the thalamus and may contribute to our exploration of the mechanisms and disorders related to sensory perception and sensory-motor integration.

3.
Indian J Orthop ; 58(7): 955-963, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38948368

RESUMEN

Background: The relationship between hip morphological changes and joint concentricity in infants with late-detected developmental dysplasia of the hip (DDH) treated with gradual reduction remains unclear. Therefore, we investigated hip morphological changes and concentricity in infants with late-detected unilateral DDH using magnetic resonance imaging (MRI) during gradual reduction. Methods: We enrolled 20 infants aged ≥ 12 months with unilateral DDH. Treatment comprised continuous traction, a hip-spica cast, and an abduction brace. MRI was performed before treatment, immediately after hip-spica cast placement, after cast removal, and at the end of the brace. We evaluated the acetabulum and femoral head morphology and joint concentricity. Results: The mean age was 25 months, and female sex and the left side were predominant. Before treatment, the acetabulum was small and shallow and the femoral head was spherically flat on the affected side. Immediately after the continuous traction, the affected acetabulum and femoral head were still smaller than the healthy/contralateral one. However, they improved to a deeper acetabulum and round femoral head. Intra-articular soft tissue (IAST) and femoral-acetabular distance (FAD) continuously decreased, indicating gradual improvement in joint concentricity. Deeper formation of the acetabulum and round shaping of the femoral head had occurred even in non-concentric reduction. Conclusion: The shape and concentricity of the hip joint improved after treatment; however, the acetabulum and femoral head remained small. The deeper acetabulum and round femoral head were observed the non-concentric reduction before the concentric reduction was achieved. The continuous decrease in IAST and FAD indicates effective post-traction therapy.

4.
Epilepsia ; 65(6): e79-e86, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38625609

RESUMEN

In patients with drug-resistant epilepsy (DRE) who are not candidates for resective surgery, various thalamic nuclei, including the anterior, centromedian, and pulvinar nuclei, have been extensively investigated as targets for neuromodulation. However, the therapeutic effects of different targets for thalamic neuromodulation on various types of epilepsy are not well understood. Here, we present a 32-year-old patient with multifocal bilateral temporoparieto-occipital epilepsy and bilateral malformations of cortical development (MCDs) who underwent bilateral stereoelectroencephalographic (SEEG) recordings of the aforementioned three thalamic nuclei bilaterally. The change in the rate of interictal epileptiform discharges (IEDs) from baseline were compared in temporal, central, parietal, and occipital regions after direct electrical stimulation (DES) of each thalamic nucleus. A significant decrease in the rate of IEDs (33% from baseline) in the posterior quadrant regions was noted in the ipsilateral as well as contralateral hemisphere following DES of the pulvinar. A scoping review was also performed to better understand the current standpoint of pulvinar thalamic stimulation in the treatment of DRE. The therapeutic effect of neuromodulation can differ among thalamic nuclei targets and epileptogenic zones (EZs). In patients with multifocal EZs with extensive MCDs, personalized thalamic targeting could be achieved through DES with thalamic SEEG electrodes.


Asunto(s)
Epilepsia Refractaria , Electroencefalografía , Pulvinar , Humanos , Adulto , Epilepsia Refractaria/terapia , Epilepsia Refractaria/fisiopatología , Electroencefalografía/métodos , Estimulación Encefálica Profunda/métodos , Técnicas Estereotáxicas , Prueba de Estudio Conceptual , Tálamo/fisiopatología , Masculino , Terapia por Estimulación Eléctrica/métodos
5.
Eur J Neurosci ; 59(12): 3203-3223, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38637993

RESUMEN

Social communication draws on several cognitive functions such as perception, emotion recognition and attention. The association of audio-visual information is essential to the processing of species-specific communication signals. In this study, we use functional magnetic resonance imaging in order to identify the subcortical areas involved in the cross-modal association of visual and auditory information based on their common social meaning. We identified three subcortical regions involved in audio-visual processing of species-specific communicative signals: the dorsolateral amygdala, the claustrum and the pulvinar. These regions responded to visual, auditory congruent and audio-visual stimulations. However, none of them was significantly activated when the auditory stimuli were semantically incongruent with the visual context, thus showing an influence of visual context on auditory processing. For example, positive vocalization (coos) activated the three subcortical regions when presented in the context of positive facial expression (lipsmacks) but not when presented in the context of negative facial expression (aggressive faces). In addition, the medial pulvinar and the amygdala presented multisensory integration such that audiovisual stimuli resulted in activations that were significantly higher than those observed for the highest unimodal response. Last, the pulvinar responded in a task-dependent manner, along a specific spatial sensory gradient. We propose that the dorsolateral amygdala, the claustrum and the pulvinar belong to a multisensory network that modulates the perception of visual socioemotional information and vocalizations as a function of the relevance of the stimuli in the social context. SIGNIFICANCE STATEMENT: Understanding and correctly associating socioemotional information across sensory modalities, such that happy faces predict laughter and escape scenes predict screams, is essential when living in complex social groups. With the use of functional magnetic imaging in the awake macaque, we identify three subcortical structures-dorsolateral amygdala, claustrum and pulvinar-that only respond to auditory information that matches the ongoing visual socioemotional context, such as hearing positively valenced coo calls and seeing positively valenced mutual grooming monkeys. We additionally describe task-dependent activations in the pulvinar, organizing along a specific spatial sensory gradient, supporting its role as a network regulator.


Asunto(s)
Amígdala del Cerebelo , Percepción Auditiva , Claustro , Imagen por Resonancia Magnética , Pulvinar , Percepción Visual , Pulvinar/fisiología , Amígdala del Cerebelo/fisiología , Amígdala del Cerebelo/diagnóstico por imagen , Masculino , Animales , Percepción Auditiva/fisiología , Claustro/fisiología , Percepción Visual/fisiología , Femenino , Expresión Facial , Macaca , Estimulación Luminosa/métodos , Mapeo Encefálico , Estimulación Acústica , Vocalización Animal/fisiología , Percepción Social
6.
Brain Sci ; 14(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38672021

RESUMEN

The primary visual cortex (V1) is one of the most studied regions of the brain and is characterized by its specialized and laminated layer 4 in human and non-human primates. However, studies aiming to harmonize the definition of the cortical layers and borders of V1 across rodents and primates are very limited. This article attempts to identify and harmonize the molecular markers and connectional patterns that can consistently link corresponding cortical layers of V1 and borders across mammalian species and ages. V1 in primates has at least two additional and unique layers (L3b2 and L3c) and two sublayers of layer 4 (L4a and L4b) compared to rodent V1. In all species examined, layers 4 and 3b of V1 receive strong inputs from the (dorsal) lateral geniculate nucleus, and V1 is mostly surrounded by the secondary visual cortex except for one location where V1 directly abuts area prostriata. The borders of primate V1 can also be clearly identified at mid-gestational ages using gene markers. In rodents, a novel posteromedial extension of V1 is identified, which expresses V1 marker genes and receives strong inputs from the lateral geniculate nucleus. This V1 extension was labeled as the posterior retrosplenial cortex and medial secondary visual cortex in the literature and brain atlases. Layer 6 of the rodent and primate V1 originates corticothalamic projections to the lateral geniculate, lateral dorsal, and reticular thalamic nuclei and the lateroposterior-pulvinar complex with topographic organization. Finally, the direct geniculo-extrastriate (particularly the strong geniculo-prostriata) projections are probably major contributors to blindsight after V1 lesions. Taken together, compared to rodents, primates, and humans, V1 has at least two unique middle layers, while other layers are comparable across species and display conserved molecular markers and similar connections with the visual thalamus with only subtle differences.

7.
Epilepsia ; 65(6): 1620-1630, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38507291

RESUMEN

OBJECTIVE: Status epilepticus (SE) is frequently associated with peri-ictal magnetic resonance imaging (MRI) abnormalities (PMA). However, the anatomical distribution of these alterations has not been systematically studied. The aim of this study was to assess the localization patterns of PMA in patients with SE. METHODS: In this prospective case-control study, we compared the distribution and combinations of diffusion-restricted PMA to diffusion-restricted lesions caused by other neurological conditions. All patients of the SE group and the control group underwent MRI including a diffusion-weighted imaging sequence. Patients with SE were imaged within 48 h after its onset. RESULTS: We enrolled 201 patients (51 with SE and 150 controls). The most frequent locations of PMA in SE were cortex (25/51, 49%), followed by hippocampus (20/51, 39%) and pulvinar of thalamus (10/51, 20%). In the control group, the cortex was involved in 80 of 150 (53%), white matter in 53 of 150 (35%), and basal ganglia in 33 of 150 (22%). In the control group, the pulvinar of thalamus was never affected and hippocampal structures were rarely involved (7/150, 5%). Involvement of the pulvinar of thalamus and the hippocampus had high specificity for SE at 100% (95% confidence interval [CI] = 98-100) and 95% (95% CI = 91-98), respectively. The sensitivity, however, was low for both locations (pulvinar of thalamus: 20%, 95% CI = 10-33; hippocampus: 39%, 95% CI = 26-54). SIGNIFICANCE: Diffusion-restricted MRI lesions observed in the pulvinar of thalamus and hippocampus are strongly associated with SE. These changes may help physicians in diagnosing SE-related changes on MRI in an acute setting, especially in cases of equivocal clinical and electroencephalographic manifestations of SE.


Asunto(s)
Imagen por Resonancia Magnética , Estado Epiléptico , Humanos , Estado Epiléptico/diagnóstico por imagen , Estudios de Casos y Controles , Masculino , Femenino , Persona de Mediana Edad , Adulto , Imagen por Resonancia Magnética/métodos , Anciano , Estudios Prospectivos , Adulto Joven , Adolescente , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen de Difusión por Resonancia Magnética , Niño
8.
Eur J Neurol ; 31(6): e16266, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38469975

RESUMEN

BACKGROUND AND PURPOSE: Thalamic alterations have been reported as a major feature in presymptomatic and symptomatic patients carrying the C9orf72 mutation across the frontotemporal dementia-amyotrophic lateral sclerosis (ALS) spectrum. Specifically, the pulvinar, a high-order thalamic nucleus and timekeeper for large-scale cortical networks, has been hypothesized to be involved in C9orf72-related neurodegenerative diseases. We investigated whether pulvinar volume can be useful for differential diagnosis in ALS C9orf72 mutation carriers and noncarriers and how underlying functional connectivity changes affect this region. METHODS: We studied 19 ALS C9orf72 mutation carriers (ALSC9+) accurately matched with wild-type ALS (ALSC9-) and ALS mimic (ALSmimic) patients using structural and resting-state functional magnetic resonance imaging data. Pulvinar volume was computed using automatic segmentation. Seed-to-voxel functional connectivity analyses were performed using seeds from a pulvinar functional parcellation. RESULTS: Pulvinar structural integrity had high discriminative values for ALSC9+ patients compared to ALSmimic (area under the curve [AUC] = 0.86) and ALSC9- (AUC = 0.77) patients, yielding a volume cutpoint of approximately 0.23%. Compared to ALSmimic, ALSC9- showed increased anterior, inferior, and lateral pulvinar connections with bilateral occipital-temporal-parietal regions, whereas ALSC9+ showed no differences. ALSC9+ patients when compared to ALSC9- patients showed reduced pulvinar-occipital connectivity for anterior and inferior pulvinar seeds. CONCLUSIONS: Pulvinar volume could be a differential biomarker closely related to the C9orf72 mutation. A pulvinar-cortical circuit dysfunction might play a critical role in disease progression and development, in both the genetic phenotype and ALS wild-type patients.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Imagen por Resonancia Magnética , Mutación , Pulvinar , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/fisiopatología , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/genética , Demencia Frontotemporal/genética , Demencia Frontotemporal/fisiopatología , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/patología , Heterocigoto , Pulvinar/diagnóstico por imagen , Pulvinar/fisiopatología , Pulvinar/patología
9.
Alzheimers Dement (N Y) ; 10(1): e12450, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356480

RESUMEN

INTRODUCTION: Emotionally driven cognitive complaints represent a major diagnostic challenge for clinicians and indicate the importance of objective confirmation of the accuracy of depressive patients' descriptions of their cognitive symptoms. METHODS: We compared cognitive status and structural and functional brain connectivity changes in the pulvinar and hippocampus between patients with total depression and healthy controls. The depressive group was also classified as "amnestic" or "nonamnestic," based on the members' subjective reports concerning their forgetfulness. We then sought to determine whether these patients would differ in terms of objective neuroimaging and cognitive findings. RESULTS: The right pulvinar exhibited altered connectivity in individuals with depression with objective cognitive impairment, a finding which was not apparent in depressive patients with subjective cognitive impairment. DISCUSSION: The pulvinar may play a role in depression-related cognitive impairments. Connectivity network changes may differ between objective and subjective cognitive impairment in depression and may play a role in the increased risk of dementia in patients with depression.

10.
Cureus ; 16(1): e52534, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38371112

RESUMEN

Understanding the role of the pulvinar nucleus may be critical for guiding circuit-targeted neurosurgical intervention in some patients. In this report, a 33-year-old female presented with focal onset occipital epilepsy with secondary generalization and with a previously radiated arteriovenous malformation within the right primary visual cortex. Phase II monitoring demonstrated the pulvinar nucleus was not involved in subclinical seizures restricted to the primary visual cortex, but it did become involved in clinical events with more extensive seizure spread into higher visual cortical regions. She underwent responsive neurostimulation (RNS) with implantation of leads within the primary visual cortex. This case demonstrates the late propagation of epileptic activity from the visual cortex to the pulvinar nucleus and illustrates the pulvinar nucleus' connections with higher-order visual areas.

11.
Radiol Case Rep ; 19(3): 939-943, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38188942

RESUMEN

Sporadic Creutzfeldt-Jakob disease (sCJD) is an uncommon prion disease, also a fatal degenerative brain disorder. We aimed to illustrate 2 clinical cases, a 60-year-old female and a 57-year-old male, who came to the hospital due to rapidly progressive cognitive decline. A 1.5T brain MRI in both patients detected cortical and basal ganglia signal abnormalities with diffuse, asymmetrical features. The patient underwent electroencephalography and cerebrospinal fluid tests, which showed abnormal waves and a positive 14-3-3 protein test in the CSF samples of both patients. According to the 2018 US Centers for Disease Control and Prevention (CDC) diagnostic criteria, we finally diagnosed these patients with sCJD.

12.
Brain ; 147(6): 2245-2257, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38243610

RESUMEN

Advanced methods of imaging and mapping the healthy and lesioned brain have allowed for the identification of the cortical nodes and white matter tracts supporting the dual neurofunctional organization of language networks in a dorsal phonological and a ventral semantic stream. Much less understood are the anatomical correlates of the interaction between the two streams; one hypothesis being that of a subcortically mediated interaction, through crossed cortico-striato-thalamo-cortical and cortico-thalamo-cortical loops. In this regard, the pulvinar is the thalamic subdivision that has most regularly appeared as implicated in the processing of lexical retrieval. However, descriptions of its connections with temporal (language) areas remain scarce. Here we assess this pulvino-temporal connectivity using a combination of state-of-the-art techniques: white matter stimulation in awake surgery and postoperative diffusion MRI (n = 4), virtual dissection from the Human Connectome Project 3 and 7 T datasets (n = 172) and operative microscope-assisted post-mortem fibre dissection (n = 12). We demonstrate the presence of four fundamental fibre contingents: (i) the anterior component (Arnold's bundle proper) initially described by Arnold in the 19th century and destined to the anterior temporal lobe; (ii) the optic radiations-like component, which leaves the pulvinar accompanying the optical radiations and reaches the posterior basal temporal cortices; (iii) the lateral component, which crosses the temporal stem orthogonally and reaches the middle temporal gyrus; and (iv) the auditory radiations-like component, which leaves the pulvinar accompanying the auditory radiations to the superomedial aspect of the temporal operculum, just posteriorly to Heschl's gyrus. Each of those components might correspond to a different level of information processing involved in the lexical retrieval process of picture naming.


Asunto(s)
Pulvinar , Lóbulo Temporal , Humanos , Femenino , Masculino , Adulto , Lóbulo Temporal/fisiología , Lóbulo Temporal/diagnóstico por imagen , Pulvinar/fisiología , Pulvinar/diagnóstico por imagen , Vías Nerviosas/fisiología , Conectoma , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiología , Lenguaje , Persona de Mediana Edad , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Adulto Joven
13.
J Neurosurg ; 140(1): 210-217, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37486888

RESUMEN

OBJECTIVE: Deep brain stimulation (DBS) is a rapidly growing surgical option for patients with drug-resistant epilepsy who are not candidates for resective/ablative surgery. Recent randomized controlled trials have demonstrated efficacy of DBS of the anterior nucleus of the thalamus (ANT), particularly in frontal or temporal epilepsy, whereas DBS of the centromedian (CM) nucleus appears to be most suitable in well-defined generalized epilepsy syndromes. At the authors' institution, DBS candidates who did not fit the populations represented in these trials were managed with DBS of multiple distinct targets, which included ANT, CM, and less-studied nuclei-i.e., mediodorsal nucleus, pulvinar, and subthalamic nucleus. The goal of this study was to present the authors' experience with these types of cases, and to motivate future investigations that can determine the long-term efficacy of multitarget DBS. METHODS: This single-center retrospective study of adult patients with drug-resistant epilepsy who underwent multitarget DBS was performed to demonstrate the feasibility and safety of this approach, and to present seizure outcomes. Patients in this cohort had epilepsy with features that were difficult to treat with DBS of the ANT or CM nucleus alone, including multifocal/multilobar, diffuse-onset, and/or posterior-onset seizures; or both generalized and focal seizures. RESULTS: Eight patients underwent DBS of 2-3 distinct thalamic/subthalamic nuclei. DBS was performed with 2 electrodes in each hemisphere. All leads in each patient were implanted with either frontal or parietal trajectories. There were no surgical complications. Among those with > 6 months of follow-up (n = 5; range 7-21 months), all patients were responders in terms of overall seizure frequency and/or convulsive seizure frequency (i.e., ≥ 50% reduction). Two patients had adverse stimulation effects, which resolved with further programming. CONCLUSIONS: Multitarget DBS is a procedurally feasible and safe treatment strategy to maximize outcomes in patients with complex epilepsy. The authors highlight their approach to inform future studies that are sufficiently powered to assess its efficacy.


Asunto(s)
Estimulación Encefálica Profunda , Epilepsia Refractaria , Epilepsia , Adulto , Humanos , Estudios Retrospectivos , Epilepsia/terapia , Epilepsia/etiología , Epilepsia Refractaria/terapia , Convulsiones/etiología , Electrodos Implantados/efectos adversos
14.
J Comp Neurol ; 532(2): e25565, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38047381

RESUMEN

Here, we describe the postnatal development of retinal projections in galagos. Galagos are of special interest as they represent the understudied strepsirrhine branch (galagos, pottos, lorises, and lemurs) of the primate radiations. The projections of both eyes were revealed in each galago by injecting red or green cholera toxin subunit B (CTB) tracers into different eyes of galagos ranging from postnatal day 5 to adult. In the dorsal lateral geniculate nucleus, the magnocellular, parvocellular, and koniocellular layers were clearly labeled and identified by having inputs from the ipsilateral or contralateral eye at all ages. In the superficial layers of the superior colliculus, the terminations from the ipsilateral eye were just ventral to those from the contralateral eye at all ages. Other terminations at postnatal day 5 and later were in the pregeniculate nucleus, the accessory optic system, and the pretectum. As in other primates, a small retinal projection terminated in the posterior part of the pulvinar, which is known to project to the temporal visual cortex. This small projection from both eyes was most apparent on day 5 and absent in mature galagos. A similar reduction over postnatal maturation has been reported in marmosets, leading to the speculation that early retinal inputs to the pulvinar are responsible for the activation and early maturation of the middle temporal visual area, MT.


Asunto(s)
Galago , Pulvinar , Animales , Vías Visuales/fisiología , Colículos Superiores/fisiología , Cuerpos Geniculados
15.
Front Integr Neurosci ; 17: 1239426, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908780

RESUMEN

In the primate brain, the lateral prefrontal cortex (LPF) is a large, heterogeneous region critically involved in the cognitive control of behavior, consisting of several connectionally and functionally distinct areas. Studies in macaques provided evidence for distinctive patterns of cortical connectivity between architectonic areas located at different dorsoventral levels and for rostrocaudal gradients of parietal and frontal connections in the three main architectonic LPF areas: 46d, 46v, and 12r. In the present study, based on tracer injections placed at different dorsoventral and rostrocaudal cortical levels, we have examined the thalamic projections to the LPF to examine to what extent fine-grained connectional gradients of cortical connectivity are reflected in the topography of thalamo-LPF projections. The results showed mapping onto the nucleus medialis dorsalis (MD), by far the major source of thalamic input to the LPF, of rostral-to-caudal LPF zones, in which MD zones projecting to more caudal LPF sectors are located more rostral than those projecting to intermediate LPF sectors. Furthermore, the MD zones projecting to the rostral LPF sectors tended to be much more extensive in the rostrocaudal direction. One rostrolateral MD sector appeared to be a common source of projections to caudal prefrontal areas involved in the oculomotor frontal domain, a more caudal and ventral MD sector to a large extent of the ventral LPF, and middle and dorsal MD sectors to most of the dorsal LPF. Additional topographically organized projections to LPF areas originated from the nucleus pulvinaris medialis and projections from the nucleus anterior medialis selectively targeted more rostral sectors of LPF. Thus, the present data suggest that the topography of the MD-LPF projections does not adhere to simple topological rules, but is mainly organized according to functional criteria.

16.
Clin Neurol Neurosurg ; 235: 108041, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979562

RESUMEN

Emerging neuromodulatory treatments, such as deep brain stimulation (DBS) and responsive neurostimulation (RNS), have shown promise in reducing drug-resistant seizures. While centromedian thalamic nucleus and anterior thalamic nucleus stimulation have been effective in certain types of seizures, limited research has explored pulvinar nucleus stimulation for epilepsy. To address this gap, we conducted a systematic review and individual patient data analysis. Of 78 resultant articles, 5 studies with transient stimulation and chronic stimulation of the pulvinar nucleus were included. Of the 20 patients reviewed, 65% of patients had temporal lobe seizures, while 20% had temporooccipital/occipital lobe seizures. Transient stimulation studies via stereoelectroencephalography (SEEG) showed pulvinar evoked potential response rates of 80% in the mesial temporal region, 76% in the temporal neocortex, and 67% in the TP junction. Another study reported clinically less severe seizures in 62.5% of patients with pulvinar stimulation. In chronic stimulation studies, 80% of patients responded to RNS or DBS, and 2 of 4 patients experienced > 90% seizure reduction. The pulvinar nucleus of the thalamus emerges as a potential target for chronic stimulation in drug-resistant epilepsy. However, knowledge regarding pulvinar connectivity and chronic stimulation remains limited. Further research should investigate specific subregions of the pulvinar for epilepsy treatment. Understanding the role of pulvinar stimulation and its cortical connectivity will advance therapeutic interventions for epilepsy patients.


Asunto(s)
Núcleos Talámicos Anteriores , Estimulación Encefálica Profunda , Epilepsia Refractaria , Epilepsia , Pulvinar , Humanos , Hipocampo , Epilepsia/terapia , Tálamo , Convulsiones/terapia , Epilepsia Refractaria/terapia , Análisis de Datos
17.
Rinsho Shinkeigaku ; 63(10): 643-649, 2023 Oct 25.
Artículo en Japonés | MEDLINE | ID: mdl-37779025

RESUMEN

A 76-year-old male patient was admitted to our hospital for the treatment of acute cerebral infarction in the right temporal stem, right lateral thalamus, and right pulvinar regions. Although his overall cognitive function was almost normal, he exhibited reduced visual sensitivity in the homonymous lower left quadrant of the visual field, left unilateral spatial neglect (USN), and simultanagnosia. Left USN improved 4 months after the onset of infarction; however, simultanagnosia persisted. To the best of our knowledge, this is the first case of simultanagnosia caused by cerebral infarction in the right temporal stem, right lateral thalamus, and right pulvinar regions.


Asunto(s)
Agnosia , Trastornos de la Percepción , Pulvinar , Masculino , Humanos , Anciano , Pulvinar/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Infarto Cerebral/complicaciones , Infarto Cerebral/diagnóstico por imagen , Agnosia/diagnóstico , Agnosia/etiología , Trastornos de la Percepción/etiología
18.
J Clin Neurosci ; 117: 61-67, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37774635

RESUMEN

BACKGROUND: Patients with pulvinar area lesions may develop hydrocephalus at any stage. The role of endoscopic third ventriculostomy (ETV) in this setting remains unclear. METHOD: We retrospectively enrolled 15 patients with a mean age of 43 years who underwent endoscopic resection of pulvinar area lesions using the supracerebellar infratentorial approach (SCITA). We compared the different modalities of hydrocephalus management and their outcomes. RESULTS: Nine of 15 patients (60.0%) had preoperative obstructive hydrocephalus. Five patients underwent ETV before tumor resection, and none developed postoperative hydrocephalus. Four patients underwent one-stage surgery for tumor removal, and one patient with a polymorphous low-grade neuroepithelial tumor of the young required postoperative ETV. Another patient with diffuse astrocytoma and hydrocephalus underwent concurrent lamina terminalis fenestration and endoscopic resection via the SCITA, which resulted in the resolution of hydrocephalus. The preoperative ETV group had no major postoperative complications, while the non-ETV group had three (0/5 vs. 3/4, P = 0.048). The ETV group also had a shorter intensive care unit stay; however, the difference was not significant (1.2 vs. 2.8; P = 0.188). ETV was effective in alleviating symptoms of postoperative hydrocephalus in patients with midbrain-invading tumors. CONCLUSION: Endoscopic surgery via the SCITA can address both tumor and hydrocephalus issues in some cases but has a higher surgical risk and postoperative hydrocephalus rate. Preoperative ETV can prevent these complications and improve postoperative outcomes.


Asunto(s)
Neoplasias del Tronco Encefálico , Hidrocefalia , Neoplasias Infratentoriales , Neuroendoscopía , Pulvinar , Tercer Ventrículo , Humanos , Adulto , Ventriculostomía/métodos , Estudios Retrospectivos , Pulvinar/patología , Pulvinar/cirugía , Tercer Ventrículo/diagnóstico por imagen , Tercer Ventrículo/cirugía , Tercer Ventrículo/patología , Hidrocefalia/etiología , Hidrocefalia/cirugía , Hidrocefalia/diagnóstico , Neoplasias Infratentoriales/cirugía , Neoplasias del Tronco Encefálico/patología , Resultado del Tratamiento , Neuroendoscopía/métodos
19.
Epilepsy Res ; 196: 107219, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37660585

RESUMEN

The thalamus is a key structure that plays a crucial role in initiating and propagating seizures. Recent advancements in neuroimaging and neurophysiology have identified the thalamus as a promising target for neuromodulation in drug-resistant epilepsies. This review article presents the latest innovations in thalamic targets and neuromodulation paradigms being explored in pilot or pivotal clinical trials. Multifocal temporal plus or posterior quadrant epilepsies are evaluated with pulvinar thalamus neuromodulation, while centromedian thalamus is explored in generalized epilepsies and Lennox Gastaut syndrome. Multinodal thalamocortical neuromodulation with novel stimulation paradigms such as long bursting or low-frequency stimulation is being investigated to quench the epileptic network excitability. Beyond seizure control, thalamic neuromodulation to restore consciousness is being studied. This review highlights the promising potential of thalamic neuromodulation in epilepsy treatment, offering hope to patients who have not responded to conventional medical therapies. However, it also emphasizes the need for larger randomized controlled trials and personalized stimulation paradigms to improve patient outcomes further.


Asunto(s)
Epilepsia Refractaria , Epilepsia Generalizada , Síndrome de Lennox-Gastaut , Humanos , Tálamo , Convulsiones
20.
J Comp Neurol ; 531(17): 1752-1771, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37702312

RESUMEN

In this study, thalamic connections of the caudal part of the posterior parietal cortex (PPCc) are described and compared to connections of the rostral part of PPC (PPCr) in strepsirrhine galagos. PPC of galagos is divided into two parts, PPCr and PPCc, based on the responsiveness to electrical stimulation. Stimulation of PPC with long trains of electrical pulses evokes different types of ethologically relevant movements from different subregions ("domains") of PPCr, while it fails to evoke any movements from PPCc. Anatomical tracers were placed in both dorsal and ventral divisions of PPCc to reveal thalamic origins and targets of PPCc connections. We found major thalamic connections of PPCc with the lateral posterior and lateral pulvinar nuclei, distinct from those of PPCr that were mainly with the ventral lateral, anterior pulvinar, and posterior nuclei. The anterior, medial, and inferior pulvinar, ventral anterior, ventral lateral, and intralaminar nuclei had fewer connections with PPCc. Dominant connections of PPCc with lateral posterior and lateral pulvinar nuclei provide evidence that unlike the sensorimotor-orientated PPCr, PPCc is more involved in visual-related functions.


Asunto(s)
Galago , Lóbulo Parietal , Animales , Galago/fisiología , Vías Nerviosas/fisiología , Lóbulo Parietal/fisiología , Tálamo/fisiología , Movimiento/fisiología , Núcleos Talámicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA