Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 742
Filtrar
1.
Pharmacol Ther ; : 108723, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284369

RESUMEN

The organic anion transporters, OAT1 and OAT3, regulate the movement of drugs, toxins, and endogenous metabolites. In 2006, we proposed that OATs and other SLC22 transporters are involved in "remote sensing" and organ crosstalk. This is now known as the Remote Sensing and Signaling Theory (RSST). In the proximal tubule of the kidney, OATs regulate signaling molecules such as fatty acids, bile acids, indoxyl sulfate, kynurenine, alpha-ketoglutarate, urate, flavonoids, and antioxidants. OAT1 and OAT3 function as key hubs in a large homeostatic network involving multi-, oligo- and monospecific transporters, enzymes, and nuclear receptors. The RSST emphasizes the functioning of OATs and other "drug" transporters in the network at multiple biological scales (inter-organismal, organism, organ, cell, organelle). This network plays an essential role in the homeostasis of urate, bile acids, prostaglandins, sex steroids, odorants, thyroxine, gut microbiome metabolites, and uremic toxins. The transported metabolites have targets in the kidney and other organs, including nuclear receptors (e.g., HNF4a, AHR), G protein-coupled receptors (GPCRs), and protein kinases. Feed-forward and feedback loops allow OAT1 and OAT3 to mediate organ crosstalk as well as modulate energy metabolism, redox state, and remote sensing. Furthermore, there is intimate inter-organismal communication between renal OATs and the gut microbiome. Extracellular vesicles containing microRNAs and proteins (exosomes) play a key role in the Remote Sensing and Signaling System as well does the interplay with the neuroendocrine, hormonal, and immune systems. Perturbation of function with OAT-interacting drugs (e.g., probenecid, diuretics, antivirals, antibiotics, NSAIDs) can lead to drug-metabolite interactions. The RSST has general applicability to other multi-specific SLC and ABC "drug" transporters (e.g., OCT1, OCT2, SLCO1B1, SLCO1B3, ABCG2, P-gp, ABCC2, ABCC3, ABCC4). Recent high-resolution structures of SLC22 and other transporters, together with chemoinformatic and artificial intelligence methods, will aid drug development and also lead to a deeper mechanistic understanding of polymorphisms.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39250817

RESUMEN

The class 3 phosphatidylinositol 3-kinase (Pik3c3) plays critical roles in regulating autophagy, endocytosis, and nutrient sensing, but its expression profile in the kidney remains undefined. Recently, we validated a Pik3c3 antibody through immunofluorescence staining of kidney tissues from cell type-specific Pik3c3 knockout mice. Immunohistochemistry unveiled significant disparities in Pik3c3 expression levels across various kidney cell types. Notably, renal interstitial cells exhibit minimal Pik3c3 expression. Further, co-immunofluorescence staining, utilizing nephron segment- or cell type-specific markers, revealed nearly undetectable levels of Pik3c3 expression in glomerular mesangial cells and endothelial cells. Intriguingly, although podocytes exhibit the highest Pik3c3 expression levels among all kidney cell types, the renal proximal tubule cells (RPTCs) express the highest level of Pik3c3 among all renal tubules. RPTCs are known to express the highest level of the epidermal growth factor receptor (EGFR) in adult kidneys; however, the role of Pik3c3 in EGFR signaling within RPTCs remains unexplored. Therefore, we conducted additional cell culture studies. The results demonstrated that Pik3c3 inhibition significantly delayed EGF-stimulated EGFR degradation and the termination of EGFR signaling in RPTCs. Mechanistically, Pik3c3 inhibition surprisingly did not affect the initial endocytosis process but instead impeded the lysosomal degradation of EGFR. In summary, this study defines, for the first time, the expression profile of Pik3c3 in the mouse kidney and also highlights a pivotal role of Pik3c3 in the proximal tubule cells. These findings shed light on the intricate mechanisms underlying Pik3c3-mediated regulation of EGFR signaling, providing valuable insights into the role of Pik3c3 in renal cell physiology.

3.
Antimicrob Agents Chemother ; : e0021924, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225483

RESUMEN

This study aimed to assess the nephrotoxicity associated with VRP-034 (novel formulation of polymyxin B [PMB]) compared to marketed PMB in a three-dimensional (3D) kidney-on-a-chip model. To model the human kidney proximal tubule for analysis, tubular structures were established using 23 triple-channel chips seeded with RPTEC/hTERT1 cells. These cells were exposed to VRP-034 or PMB at seven concentrations (1-200 µM) over 12, 24, and 48 h. A suite of novel kidney injury biomarkers, cell health, and inflammatory markers were quantitatively assessed in the effluent. Additionally, caspase and cytochrome C levels were measured, and cell viability was evaluated using calcein AM and ethidium homodimer-1 (EthD-1). Exposure to marketed PMB resulted in significantly elevated levels (P < 0.05) of four key biomarkers (KIM-1, cystatin C, clusterin, and OPN) compared to VRP-034, particularly at clinically relevant concentrations of ≥10 µM. At 25 µM, all biomarkers demonstrated a significant increase (P < 0.05) with marketed PMB exposure compared to VRP-034. Inflammatory markers (interleukin-6 and interleukin-8) increased significantly (P < 0.05) with marketed PMB at concentrations of ≥5 µM, relative to VRP-034. VRP-034 displayed superior cell health outcomes, exhibiting lower lactate dehydrogenase release, while ATP levels remained comparable. Morphological analysis revealed that marketed PMB induced more severe damage, disrupting tubular integrity. Both treatments activated cytochrome C, caspase-3, caspase-8, caspase-9, and caspase-12 in a concentration-dependent manner; however, caspase activation was significantly reduced (P < 0.05) with VRP-034. This study demonstrates that VRP-034 significantly reduces nephrotoxicity compared to marketed PMB within a 3D microphysiological system, suggesting its potential to enable the use of full therapeutic doses of PMB with an improved safety profile, addressing the need for less nephrotoxic polymyxin antibiotics.

4.
Biomolecules ; 14(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39199277

RESUMEN

We extended our model of the S1 tubular segment to address the mechanisms by which SGLT1 interacts with lateral Na/K pumps and tight junctional complexes to generate isosmotic fluid reabsorption via tubular segment S3. The strategy applied allowed for simulation of laboratory experiments. Reproducing known experimental results constrained the range of acceptable model outputs and contributed to minimizing the free parameter space. (1) In experimental conditions, published Na and K concentrations of proximal kidney cells were found to deviate substantially from their normal physiological levels. Analysis of the mechanisms involved suggested insufficient oxygen supply as the cause and, indirectly, that a main function of the Na/H exchanger (NHE3) is to extrude protons stemming from mitochondrial energy metabolism. (2) The water path from the lumen to the peritubular space passed through aquaporins on the cell membrane and claudin-2 at paracellular tight junctions, with an additional contribution to water transport by the coupling of 1 glucose:2 Na:400 H2O in SGLT1. (3) A Na-uptake component passed through paracellular junctions via solvent drag in Na- and water-permeable claudin-2, thus bypassing the Na/K pump, in agreement with the findings of early studies. (4) Electrical crosstalk between apical rheogenic SGLT1 and lateral rheogenic Na/K pumps resulted in tight coupling of luminal glucose uptake and transepithelial water flow. (5) Isosmotic transport was achieved by Na-mediated ion recirculation at the peritubular membrane.


Asunto(s)
Transportador 1 de Sodio-Glucosa , Transportador 1 de Sodio-Glucosa/metabolismo , Transportador 1 de Sodio-Glucosa/genética , Sodio/metabolismo , Humanos , Transporte Biológico , Modelos Biológicos , Agua/metabolismo , Riñón/metabolismo , Uniones Estrechas/metabolismo , Membrana Celular/metabolismo , Animales , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Glucosa/metabolismo , Potasio/metabolismo
5.
Kidney Int ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39089578

RESUMEN

The sodium/proton exchanger-3 (NHE3) plays a major role in acid-base and extracellular volume regulation and is also implicated in calcium homeostasis. As calcium and phosphate balances are closely linked, we hypothesized that there was a functional link between kidney NHE3 activity, calcium, and phosphate balance. Therefore, we examined calcium and phosphate homeostasis in kidney tubule-specific NHE3 knockout mice (NHE3loxloxPax8 mice). Compared to controls, these knockout mice were normocalcemic with no significant difference in urinary calcium excretion or parathyroid hormone levels. Thiazide-induced hypocalciuria was less pronounced in the knockout mice, in line with impaired proximal tubule calcium transport. Knockout mice had greater furosemide-induced calciuresis and distal tubule calcium transport pathways were enhanced. Despite lower levels of the sodium/phosphate cotransporters (NaPi)-2a and -2c, knockout mice had normal plasma phosphate, sodium-dependent 32Phosphate uptake in proximal tubule membrane vesicles and urinary phosphate excretion. Intestinal phosphate uptake was unchanged. Low dietary phosphate reduced parathyroid hormone levels and increased NaPi-2a and -2c abundances in both genotypes, but NaPi-2c levels remained lower in the knockout mice. Gene expression profiling suggested proximal tubule remodeling in the knockout mice. Acutely, indirect NHE3 inhibition using the SGLT2 inhibitor empagliflozin did not affect urinary calcium and phosphate excretion. No differences in femoral bone density or architecture were detectable in the knockout mice. Thus, a role for kidney NHE3 in calcium homeostasis can be unraveled by diuretics, but NHE3 deletion in the kidneys has no major effects on overall calcium and phosphate homeostasis due, at least in part, to compensating mechanisms.

6.
Am J Physiol Renal Physiol ; 327(3): F397-F411, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38961842

RESUMEN

Epigenetic mechanisms are considered to contribute to diabetic nephropathy by maintaining memory of poor glycemic control during the early stages of diabetes. However, DNA methylation changes in the human kidney are poorly characterized, because of the lack of cell type-specific analysis. We examined DNA methylation in proximal tubules (PTs) purified from patients with diabetic nephropathy and identified differentially methylated CpG sites, given the critical role of proximal tubules in the kidney injury. Hypermethylation was observed at CpG sites annotated to genes responsible for proximal tubule functions, including gluconeogenesis, nicotinamide adenine dinucleotide synthesis, transporters of glucose, water, phosphate, and drugs, in diabetic kidneys, whereas genes involved in oxidative stress and the cytoskeleton exhibited demethylation. Methylation levels of CpG sites annotated to ACTN1, BCAR1, MYH9, UBE4B, AFMID, TRAF2, TXNIP, FOXO3, and HNF4A were correlated with the estimated glomerular filtration rate, whereas methylation of the CpG site in RUNX1 was associated with interstitial fibrosis and tubular atrophy. Hypermethylation of G6PC and HNF4A was accompanied by decreased expression in diabetic kidneys. Proximal tubule-specific hypomethylation of metabolic genes related to HNF4A observed in control kidneys was compromised in diabetic kidneys, suggesting a role for aberrant DNA methylation in the dedifferentiation process. Multiple genes with aberrant DNA methylation in diabetes overlapped genes with altered expressions in maladaptive proximal tubule cells, including transcription factors PPARA and RREB1. In conclusion, DNA methylation derangement in the proximal tubules of patients with diabetes may drive phenotypic changes, characterized by inflammatory and fibrotic features, along with impaired function in metabolism and transport.NEW & NOTEWORTHY Cell type-specific DNA methylation patterns in the human kidney are not known. We examined DNA methylation in proximal tubules of patients with diabetic nephropathy and revealed that oxidative stress, cytoskeleton, and metabolism genes were aberrantly methylated. The results indicate that aberrant DNA methylation in proximal tubules underlies kidney dysfunction in diabetic nephropathy. Aberrant methylation could be a target for reversing memory of poor glycemic control.


Asunto(s)
Islas de CpG , Metilación de ADN , Nefropatías Diabéticas , Epigénesis Genética , Túbulos Renales Proximales , Fenotipo , Humanos , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/fisiopatología , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Túbulos Renales Proximales/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios de Casos y Controles , Tasa de Filtración Glomerular
7.
Gene ; 928: 148766, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-39019097

RESUMEN

Dent disease (DD) is a hereditary renal disorder characterized by low molecular weight (LMW) proteinuria and progressive renal failure. Inactivating mutations of the CLCN5 gene encoding the 2Cl-/H+exchanger ClC-5 have been identified in patients with DD type 1. ClC-5 is essentially expressed in proximal tubules (PT) where it is thought to play a role in maintaining an efficient endocytosis of LMW proteins. However, the exact pathological roles of ClC-5 in progressive dysfunctions observed in DD type 1 are still unclear. To address this issue, we designed a mouse model carrying the most representative type of ClC-5 missense mutations found in DD patients. These mice showed a characteristic DD type 1 phenotype accompanied by altered endo-lysosomal system and autophagy functions. With ageing, KI mice showed increased renal fibrosis, apoptosis and major changes in cell metabolic functions as already suggested in previous DD models. Furthermore, we made the interesting new discovery that the Lipocalin-2-24p3R pathway might be involved in the progression of the disease. These results suggest a crosstalk between the proximal and distal nephron in the pathogenesis mechanisms involved in DD with an initial PT impairment followed by the Lipocalin-2 internalisation and 24p3R overexpression in more distal segments of the nephron. This first animal model of DD carrying a pathogenic mutation of Clcn5 and our findings pave the way aimed at exploring therapeutic strategies to limit the consequences of ClC-5 disruption in patients with DD type 1 developing chronic kidney disease.


Asunto(s)
Canales de Cloruro , Modelos Animales de Enfermedad , Ratones Transgénicos , Animales , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Ratones , Enfermedad de Dent/genética , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Mutación Missense , Humanos , Lipocalina 2/genética , Lipocalina 2/metabolismo , Autofagia/genética , Apoptosis/genética , Enfermedades Genéticas Ligadas al Cromosoma X , Nefrolitiasis
8.
J Ren Nutr ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992518

RESUMEN

OBJECTIVE: An increase in proximal tubule fluid phosphate concentration is caused by increased serum fibroblast growth factor-23 (FGF23) levels, which resulted in renal tubular damage in a mouse model of chronic kidney disease (CKD). However, few human studies have supported this concept. This study aimed to explore the association among estimated proximal tubule fluid phosphate concentration (ePTFp), serum FGF23 levels, and renal tubular damage biomarkers in middle-aged and older populations with mild decline in renal function. METHODS: This cross-sectional study included 218 participants aged ≥45 with CKD stages G2-G4. Anthropometric measurements, blood tests, spot urine biomarkers, renal ultrasonography, cardiovascular assessment, smoking status, and medication usage were obtained in the morning in fasted states. The ePTFp was calculated using serum creatinine, urine phosphate, and creatinine concentrations. Urinary ß2-microglobulin (ß2-MG) and liver-type fatty acid-binding protein (L-FABP) levels were evaluated to assess renal tubular damage. RESULTS: PTFp, serum FGF23, urinary ß2-MG, and urinary L-FABP levels increased with CKD stage progression (stages G2, G3, and G4). However, serum and urine phosphate concentrations were comparable across the CKD stages. Univariate analysis revealed a stronger correlation of ePTFp with serum FGF23, urinary ß2-MG, and urinary L-FABP levels than with the corresponding serum and urine phosphate concentrations. Multivariate analyses demonstrated that increased ePTFp was independently associated with elevated serum FGF23 and urinary ß2-MG levels, even after adjusting for potential covariates, including the estimated glomerular filtration rate and urinary albumin-to-creatinine ratio. CONCLUSIONS: Our results are consistent with the concept in mouse model and suggest that increased ePTFp are associated with increased serum FGF23 levels and renal tubular damage during the early stages of CKD.

9.
Am J Hypertens ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39017631

RESUMEN

Inhibitors of the Na+-coupled glucose transporter SGLT2 (SGLT2i) primarily shift the reabsorption of large amounts of glucose from the kidney's early proximal tubule to downstream tubular segments expressing SGLT1, and the non-reabsorbed glucose is spilled into the urine together with some osmotic diuresis. How can this protect the kidneys and heart from failing as observed in individuals with and without type 2 diabetes? Mediation analyses identified clinical phenotypes of SGLT2i associated with improved kidney and heart outcome, including a reduction of plasma volume or increase in hematocrit, and lowering of serum urate levels and albuminuria. This review outlines how primary effects of SGLT2i on the early proximal tubule can explain these phenotypes. The physiology of tubule-glomerular communication provides the basis for acute lowering of GFR and glomerular capillary pressure, which contributes to lowering of albuminuria but also to long term preservation of GFR, at least in part by reducing kidney cortex oxygen demand. Functional co-regulation of SGLT2 with other sodium and metabolite transporters in the early proximal tubule explains why SGLT2i initially excrete more sodium than expected and are uricosuric, thereby reducing plasma volume and serum urate. Inhibition of SGLT2 reduces early proximal tubule gluco-toxicity and by shifting transport downstream may simulate "systemic hypoxia", and the resulting increase in erythropoiesis, together with the osmotic diuresis, enhances hematocrit and improves blood oxygen delivery. Cardio-renal protection by SGLT2i is also provided by a fasting-like and insulin-sparing metabolic phenotype and, potentially, by off-target effects on the heart and microbiotic formation of uremic toxins.

10.
Methods Mol Biol ; 2823: 95-108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39052216

RESUMEN

Three-dimensional (3D) cell culture creates a more physiologically relevant environment for enhanced drug screening capabilities using microcarriers. An automated 3D system that integrates robotic manipulators, liquid handling systems, sensors, and environment control systems has the capacity to handle multiple samples in parallel, perform repetitive tasks, and provide real-time monitoring and analysis. This chapter describes a potential 3D cell culture drug screening model by combining renal proximal tubule cells as a representative normal cell line with cancer cell lines. This combination is subjected to drug screening to evaluate the drug's efficacy in suppressing cancer cells while minimizing impact on normal cells with the added benefit of having the ability to separate the two cell types by magnetic isolation for high content screens including mass spectrometry-based proteomics. This study presents advancements in 3D cell culture techniques, emphasizing the importance of automation and the potential of microcarriers in drug screening and disease modeling.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Humanos , Técnicas de Cultivo Tridimensional de Células/métodos , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Técnicas de Cultivo de Célula/métodos , Antineoplásicos/farmacología , Automatización , Automatización de Laboratorios/métodos , Neoplasias/patología , Neoplasias/tratamiento farmacológico
11.
Kidney Med ; 6(7): 100841, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38966682

RESUMEN

Antibrush border antibody (ABBA) disease is a rare cause of kidney disease characterized by progressive renal tubular injury associated with immune complex deposition along the basement membranes of the proximal tubule and circulating autoantibodies to brush border antigens. Several antigens have been identified as targets of autoantibodies in this disease, including low-density lipoprotein receptor related protein 2 (LRP2), cubilin, and amnionless proteins. We present 9 patients from 2 academic medical centers and describe the clinicopathologic characteristics and outcome data. All patients presented with acute kidney injury and proteinuria. Pathology confirmed immune complex deposition along proximal tubular basement membranes in all patients, but the majority (6/8) also showed segmental glomerular subepithelial immune complexes. Two of 3 patients treated with rituximab demonstrated stabilization of kidney function; 1 of these patients had mantle cell lymphoma. One patient with lung cancer showed stabilization of disease after treatment of the malignancy. The remaining patients progressed to end-stage kidney disease with either conservative therapy (3 patients) or immunosuppression with glucocorticoids (2 patients). This series highlights the poor prognosis of ABBA disease, but a potential benefit of anti-B cell therapy or treatment of an underlying malignancy in some cases.

12.
Function (Oxf) ; 5(4)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38984983

RESUMEN

Megalin (Lrp2) is a multiligand receptor that drives endocytic flux in the kidney proximal tubule (PT) and is necessary for the recovery of albumin and other filtered proteins that escape the glomerular filtration barrier. Studies in our lab have shown that knockout (KO) of Lrp2 in opossum PT cells leads to a dramatic reduction in sodium-glucose co-transporter 2 (SGLT2) transcript and protein levels, as well as differential expression of genes involved in mitochondrial and metabolic function. SGLT2 transcript levels are reduced more modestly in Lrp2 KO mice. Here, we investigated the effects of Lrp2 KO on kidney function and health in mice fed regular chow (RC) or a Western-style diet (WD) high in fat and refined sugar. Despite a modest reduction in SGLT2 expression, Lrp2 KO mice on either diet showed increased glucose tolerance compared to control mice. Moreover, Lrp2 KO mice were protected against WD-induced fat gain. Surprisingly, renal function in male Lrp2 KO mice on WD was compromised, and the mice exhibited significant kidney injury compared with control mice on WD. Female Lrp2 KO mice were less susceptible to WD-induced kidney injury than male Lrp2 KO. Together, our findings reveal both positive and negative contributions of megalin expression to metabolic health, and highlight a megalin-mediated sex-dependent response to injury following WD.


Asunto(s)
Dieta Occidental , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad , Ratones Noqueados , Transportador 2 de Sodio-Glucosa , Animales , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Dieta Occidental/efectos adversos , Masculino , Ratones , Femenino , Transportador 2 de Sodio-Glucosa/genética , Transportador 2 de Sodio-Glucosa/metabolismo , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Ratones Endogámicos C57BL , Riñón/metabolismo , Riñón/patología
13.
Artículo en Inglés | MEDLINE | ID: mdl-39066502

RESUMEN

The proximal tubule (PT) is known as the workhorse of the kidney, both for the range and magnitude of the functions that it performs. It is not only responsible for reabsorbing most solutes and proteins filtered by glomeruli, but also for secreting non-filtered substances including drugs and uremic toxins. The PT therefore plays a pivotal role in kidney physiology and body homeostasis. Moreover, it is the major site of damage in acute kidney injury and nephrotoxicity. In this review, we will provide an introduction to the cell biology of the PT and explore how it is adapted to the execution of a myriad of different functions and how these can differ between males and females. We will then discuss how the PT regulates phosphate, glucose and acid-base balance, and the consequences of alterations in PT function for bone and cardiovascular health. Finally, we explore why the PT is vulnerable to ischemic and toxic insults, and how acute injury in the PT can lead to maladaptive repair, chronic damage, and kidney fibrosis. In summary, we will demonstrate that knowledge of the basic cell biology of the PT is critical for understanding kidney disease phenotypes and their associated systemic complications, and for developing new therapeutic strategies to prevent these.

14.
Sci Rep ; 14(1): 16444, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013979

RESUMEN

Colistin is a polymyxin antibiotic currently experiencing renewed clinical interest due to its efficacy in the treatment of multidrug resistant (MDR) bacterial infections. The frequent onset of acute dose-dependent kidney injury, with the potential of leading to long-term renal damage, has limited its use and hampered adequate dosing regimens, increasing the risk of suboptimal plasma concentrations during treatment. The mechanism of colistin-induced renal toxicity has been postulated to stem from mitochondrial damage, yet there is no direct evidence of colistin acting as a mitochondrial toxin. The aim of this study was to evaluate whether colistin can directly induce mitochondrial toxicity and, if so, uncover the underlying molecular mechanism. We found that colistin leads to a rapid permeability transition of mitochondria isolated from mouse kidney that was fully prevented by co-incubation of the mitochondria with desensitizers of the mitochondrial transition pore cyclosporin A or L-carnitine. The protective effect of L-carnitine was confirmed in experiments in primary cultured mouse tubular cells. Consistently, the relative risk of colistin-induced kidney damage, calculated based on histological analysis as well as by the early marker of tubular kidney injury, Kim-1, was halved under co-administration with L-carnitine in vivo. Notably, L-carnitine neither affected the pharmacokinetics of colistin nor its antimicrobial activity against relevant bacterial strains. In conclusion, colistin targets the mitochondria and induces permeability transition thereof. L-carnitine prevents colistin-induced permeability transition in vitro. Moreover, L-carnitine co-administration confers partial nephroprotection in mice treated with colistin, without interfering with its pharmacokinetics and antibacterial activity.


Asunto(s)
Lesión Renal Aguda , Antibacterianos , Carnitina , Colistina , Mitocondrias , Animales , Colistina/efectos adversos , Colistina/administración & dosificación , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Carnitina/farmacología , Carnitina/administración & dosificación , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Masculino , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos C57BL , Ciclosporina
15.
Adv Sci (Weinh) ; 11(30): e2400970, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38872259

RESUMEN

Organ-on-a-chip (OOC) models based on microfluidic technology are increasingly used to obtain mechanistic insight into (patho)physiological processes in humans, and they hold great promise for application in drug development and regenerative medicine. Despite significant progress in OOC development, several limitations of conventional microfluidic devices pose challenges. First, most microfluidic systems have rectangular cross sections and flat walls, and therefore tubular/ curved structures, like blood vessels and nephrons, are not well represented. Second, polymers used as base materials for microfluidic devices are much stiffer than in vivo extracellular matrix (ECM). Finally, in current cell seeding methods, challenges exist regarding precise control over cell seeding location, unreachable spaces due to flow resistances, and restricted dimensions/geometries. To address these limitations, an alternative cell seeding technique and a corresponding workflow is introduced to create circular cross-sectioned tubular OOC models by pre-wrapping cells around sacrificial fiber templates. As a proof of concept, a perfusable renal proximal tubule-on-a-chip is demonstrated with a diameter as small as 50 µm, cellular tubular structures with branches and curvature, and a preliminary vascular-renal tubule interaction model. The cell pre-wrapping seeding technique promises to enable the construction of diverse physiological/pathological models, providing tubular OOC systems for mechanistic investigations and drug development.


Asunto(s)
Hidrogeles , Dispositivos Laboratorio en un Chip , Hidrogeles/química , Humanos , Animales , Ingeniería de Tejidos/métodos , Diseño de Equipo/métodos , Ratas , Sistemas Microfisiológicos
16.
Am J Physiol Cell Physiol ; 327(3): C525-C544, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38881421

RESUMEN

Sodium-glucose cotransporter 2 inhibitors (SGLT2is), initially developed for type 2 diabetes (T2D) treatment, have demonstrated significant cardiovascular and renal benefits in heart failure (HF) and chronic kidney disease (CKD), irrespective of T2D. This review provides an analysis of the multifaceted mechanisms underlying the cardiorenal benefits of SGLT2i in HF and CKD outside of the T2D context. Eight major aspects of the protective effects of SGLT2i beyond glycemic control are explored: 1) the impact on renal hemodynamics and tubuloglomerular feedback; 2) the natriuretic effects via proximal tubule Na+/H+ exchanger NHE3 inhibition; 3) the modulation of neurohumoral pathways with evidence of attenuated sympathetic activity; 4) the impact on erythropoiesis, not only in the context of local hypoxia but also systemic inflammation and iron regulation; 5) the uricosuria and mitigation of the hyperuricemic environment in cardiorenal syndromes; 6) the multiorgan metabolic reprogramming including the potential induction of a fasting-like state, improvement in glucose and insulin tolerance, and stimulation of lipolysis and ketogenesis; 7) the vascular endothelial growth factor A (VEGF-A) upregulation and angiogenesis, and 8) the direct cardiac effects. The intricate interplay between renal, neurohumoral, metabolic, and cardiac effects underscores the complexity of SGLT2i actions and provides valuable insights into their therapeutic implications for HF and CKD. Furthermore, this review sets the stage for future research to evaluate the individual contributions of these mechanisms in diverse clinical settings.


Asunto(s)
Insuficiencia Cardíaca , Insuficiencia Renal Crónica , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/fisiopatología , Animales , Riñón/efectos de los fármacos , Riñón/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/antagonistas & inhibidores
17.
J Physiol ; 602(14): 3575-3592, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38857419

RESUMEN

In early diabetic nephropathy (DN), recent studies have shown that albuminuria stems mostly from alterations in tubular function rather than from glomerular damage. Several factors in DN, including hyperfiltration, hypertrophy and reduced abundance of the albumin receptors megalin and cubilin, affect albumin endocytosis in the proximal tubule (PT). To assess their respective contribution, we developed a model of albumin handling in the rat PT that couples the transport of albumin to that of water and solutes. Our simulations suggest that, under basal conditions, ∼75% of albumin is retrieved in the S1 segment. The model predicts negligible uptake in S3, as observed experimentally. It also accurately predicts the impact of acute hyperglycaemia on urinary albumin excretion. Simulations reproduce observed increases in albumin excretion in early DN by considering the combined effects of increased glomerular filtration rate (GFR), osmotic diuresis, hypertrophy, and megalin and cubilin downregulation, without stipulating changes in glomerular permselectivity. The results indicate that in isolation, glucose-elicited osmotic diuresis and glucose transporter upregulation raise albumin excretion only slightly. Enlargement of PT diameter not only augments uptake via surface area expansion, but also reduces fluid velocity and thus shear stress-induced stimulation of endocytosis. Overall, our model predicts that downregulation of megalin and cubilin and hyperfiltration both contribute significantly to increasing albumin excretion in rats with early-stage diabetes. The results also suggest that acute sodium-glucose cotransporter 2 inhibition lowers albumin excretion only if GFR decreases sufficiently, and that angiotensin II receptor blockers mitigate urinary albumin loss in early DN in large part by upregulating albumin receptor abundance. KEY POINTS: The urinary excretion of albumin is increased in early diabetic nephropathy (DN). It is difficult to experimentally disentangle the multiple factors that affect the renal handling of albumin in DN. We developed a mathematical model of albumin transport in the rat proximal tubule (PT) to examine the impact of elevated plasma glucose, hyperfiltration, PT hypertrophy and reduced abundance of albumin receptors on albumin uptake and excretion in DN. Our model predicts that glucose-elicited osmotic diuresis per se raises albumin excretion only slightly. Conversely, increases in PT diameter and length favour reduced albumin excretion. Our results suggest that downregulation of the receptors megalin and cubilin in PT cells and hyperfiltration both contribute significantly to increasing albumin excretion in DN. The model helps to better understand the mechanisms underlying urinary loss of albumin in early-stage diabetes, and the impact of specific treatments thereupon.


Asunto(s)
Nefropatías Diabéticas , Túbulos Renales Proximales , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad , Animales , Ratas , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/fisiopatología , Túbulos Renales Proximales/metabolismo , Albúminas/metabolismo , Tasa de Filtración Glomerular , Receptores de Superficie Celular/metabolismo , Albuminuria/metabolismo , Modelos Biológicos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Endocitosis/fisiología
18.
Cells ; 13(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38920639

RESUMEN

The polarised expression of specific transporters in proximal tubular epithelial cells is important for the renal clearance of many endogenous and exogenous compounds. Thus, ideally, the in vitro tools utilised for predictions would have a similar expression of apical and basolateral xenobiotic transporters as in vivo. Here, we assessed the functionality of organic cation and anion transporters in proximal tubular-like cells (PTL) differentiated from human induced pluripotent stem cells (iPSC), primary human proximal tubular epithelial cells (PTEC), and telomerase-immortalised human renal proximal tubular epithelial cells (RPTEC/TERT1). Organic cation and anion transport were studied using the fluorescent substrates 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP) and 6-carboxyfluorescein (6-CF), respectively. The level and rate of intracellular ASP accumulation in PTL following basolateral application were slightly lower but within a 3-fold range compared to primary PTEC and RPTEC/TERT1 cells. The basolateral uptake of ASP and its subsequent apical efflux could be inhibited by basolateral exposure to quinidine in all models. Of the three models, only PTL showed a modest preferential basolateral-to-apical 6-CF transfer. These results show that organic cation transport could be demonstrated in all three models, but more research is needed to improve and optimise organic anion transporter expression and functionality.


Asunto(s)
Células Epiteliales , Túbulos Renales Proximales , Humanos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/citología , Células Epiteliales/metabolismo , Modelos Biológicos , Compuestos de Piridinio/metabolismo , Aniones/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Transporte Biológico , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/genética , Línea Celular , Cationes/metabolismo , Fluoresceínas/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Proteínas de Transporte de Catión Orgánico/genética
19.
Am J Physiol Renal Physiol ; 327(2): F208-F223, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38870264

RESUMEN

Increased dietary phosphate consumption intensifies renal phosphate burden. Several mechanisms for phosphate-induced renal tubulointerstitial fibrosis have been reported. Considering the dual nature of phosphate as both a potential renal toxin and an essential nutrient for the body, kidneys may possess inherent protective mechanisms against phosphate overload, rather than succumbing solely to injury. However, there is limited understanding of such mechanisms. To identify these mechanisms, we conducted single-cell RNA sequencing (scRNA-seq) analysis of the kidneys of control and dietary phosphate-loaded (Phos) mice at a time point when the Phos group had not yet developed tubulointerstitial fibrosis. scRNA-seq analysis identified the highest number of differentially expressed genes in the clusters belonging to proximal tubular epithelial cells (PTECs). Based on these differentially expressed genes, in silico analyses suggested that the Phos group activated peroxisome proliferator-activated receptor-α (PPAR-α) and fatty acid ß-oxidation (FAO) in the PTECs. This activation was further substantiated through various experiments, including the use of an FAO activity visualization probe. Compared with wild-type mice, Ppara knockout mice exhibited exacerbated tubulointerstitial fibrosis in response to phosphate overload. Experiments conducted with cultured PTECs demonstrated that activation of the PPAR-α/FAO pathway leads to improved cellular viability under high-phosphate conditions. The Phos group mice showed a decreased serum concentration of free fatty acids, which are endogenous PPAR-α agonists. Instead, experiments using cultured PTECs revealed that phosphate directly activates the PPAR-α/FAO pathway. These findings indicate that noncanonical metabolic reprogramming via endogenous activation of the PPAR-α/FAO pathway in PTECs is essential to counteract phosphate toxicity.NEW & NOTEWORTHY This study revealed the activation of peroxisome proliferator-activated receptor-α and fatty acid ß-oxidation in proximal tubular epithelial cells as an endogenous mechanism to protect the kidney from phosphate toxicity. These findings highlight noncanonical metabolic reprogramming as a potential target for suppressing phosphate toxicity in the kidneys.


Asunto(s)
Túbulos Renales Proximales , PPAR alfa , Fosfatos , Animales , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Túbulos Renales Proximales/efectos de los fármacos , PPAR alfa/metabolismo , PPAR alfa/genética , Fosfatos/metabolismo , Fosfatos/toxicidad , Fibrosis , Ratones Endogámicos C57BL , Masculino , Ratones , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Ácidos Grasos/metabolismo , Ratones Noqueados , Oxidación-Reducción
20.
Acta Physiol (Oxf) ; 240(8): e14190, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38884453

RESUMEN

AIM: Calcineurin inhibitors (CNIs) are the backbone for immunosuppression after solid organ transplantation. Although successful in preventing kidney transplant rejection, their nephrotoxic side effects contribute to allograft injury. Renal parenchymal lesions occur for cyclosporine A (CsA) as well as for the currently favored tacrolimus (Tac). We aimed to study whether chronic CsA and Tac exposures, before reaching irreversible nephrotoxic damage, affect renal compartments differentially and whether related pathogenic mechanisms can be identified. METHODS: CsA and Tac were administered chronically in wild type Wistar rats using osmotic minipumps over 4 weeks. Functional parameters were controlled. Electron microscopy, confocal, and 3D-structured illumination microscopy were used for histopathology. Clinical translatability was tested in human renal biopsies. Standard biochemical, RNA-seq, and proteomic technologies were applied to identify implicated molecular pathways. RESULTS: Both drugs caused significant albeit differential damage in vasculature and nephron. The glomerular filtration barrier was more affected by Tac than by CsA, showing prominent deteriorations in endothelium and podocytes along with impaired VEGF/VEGFR2 signaling and podocyte-specific gene expression. By contrast, proximal tubule epithelia were more severely affected by CsA than by Tac, revealing lysosomal dysfunction, enhanced apoptosis, impaired proteostasis and oxidative stress. Lesion characteristics were confirmed in human renal biopsies. CONCLUSION: We conclude that pathogenetic alterations in the renal compartments are specific for either treatment. Considering translation to the clinical setting, CNI choice should reflect individual risk factors for renal vasculature and tubular epithelia. As a step in this direction, we share protein signatures identified from multiomics with potential pathognomonic relevance.


Asunto(s)
Ciclosporina , Inmunosupresores , Riñón , Ratas Wistar , Tacrolimus , Tacrolimus/farmacología , Animales , Ciclosporina/efectos adversos , Ciclosporina/toxicidad , Inmunosupresores/efectos adversos , Inmunosupresores/farmacología , Ratas , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Masculino , Humanos , Trasplante de Riñón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA