Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; 25(14): e202400341, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878294

RESUMEN

Despite prenol emerging as a next-generation biofuel, some questions about its mechanism still need to be adequately proposed to rationalize its consumption and evaluate its efficiency in spark-ignition (SI) engines. Here, we present new insights into the reaction mechanism of prenol (3-methyl-2-buten-1-ol) with OH radicals as a function of temperature and pressure. We have determined that the different temperature and pressure conditions control the preferred products. At combustion temperatures and low pressures, OH-addition adducts are suppressed, increasing the formation of α and δ allylic radicals responsible for the auto-ignition.

2.
ChemSusChem ; : e202400718, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38840571

RESUMEN

Sulfide solid state electrolytes (SSE) are among the most promising materials in the effort to replace liquid electrolytes, largely due to their comparable ionic conductivities. Among the sulfide SSEs, Argyrodites (Li6PS5X, X=Cl, Br, I) further stand out due to their high theoretical ionic conductivity (~1×10-2 S cm-1) and interfacial stability against reactive metal anodes such as lithium. Generally, solid state electrolyte pellets are pressed from powder feedstock at room temperature, however, pellets fabricated by cold pressing consistently result in low bulk density and high porosity, facilitating interfacial degradation reactions and allowing dendrites to propagate through the pores and grain boundaries. Here, we demonstrate the mechanical and electrochemical implications of hot-pressing standalone LPSCl SSE pellets with near-theoretical ionic conductivity, superior cycling performance, and enhanced mechanical stability. X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and x-ray diffraction spectroscopy (XRD) analysis reveal no chemical changes to the Argyrodite surface after hot pressing up to 250 °C. Moreover, we use electrochemical impedance spectroscopy (EIS) to understand mechanical stability of Argyrodite SSE pellets as a function of externally applied pressure, demonstrating for the first time pressed standalone Argyrodite pellets with near-theoretical conductivities at external pressures below 14 MPa.

3.
Materials (Basel) ; 16(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37687497

RESUMEN

Calorimetry is a commonly used method in plasma characterization, but the accuracy of the method is tied to the accuracy of the recombination coefficient, which in turn depends on a number of surface effects. Surface effects also govern the kinetics in advanced methods such as atomic layer oxidation of inorganic materials and functionalization of organic materials. The flux of the reactive oxygen atoms for the controlled oxidation of such materials depends on the recombination coefficient of materials placed into the reaction chamber, which in turn depends on the surface morphology, temperature, and pressure in the processing chamber. The recombination coefficient of a well-oxidized cobalt surface was studied systematically in a range of temperatures from 300 to 800 K and pressures from 40 to 200 Pa. The coefficient increased monotonously with decreasing pressure and increasing temperature. The lowest value was about 0.05, and the highest was about 0.30. These values were measured for cobalt foils previously oxidized with oxygen plasma at the temperature of 1300 K. The oxidation caused a rich morphology with an average roughness as deduced from atomic force images of 0.9 µm. The results were compared with literature data, and the discrepancy between results reported by different authors was explained by taking into account the peculiarities of their experimental conditions.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122871, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37209477

RESUMEN

This work presents a pressure-dependent behavior of silver trimolybdate dihydrate (Ag2Mo3O10·2H2O) nanorods using in situ Raman scattering. The Ag2Mo3O10·2H2O nanorods were obtained by the hydrothermal method at 140 °C for 6 h. The structural and morphological characterization of the sample was performed by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). Pressure-dependent Raman scattering studies were performed on Ag2Mo3O10·2H2O nanorods up to 5.0 GPa using a membrane diamond-anvil cell (MDAC). The vibrational spectra under high pressure showed splitting and emergence of new bands above 0.5 GPa and 2.9 GPa. Reversible phase transformations under pressure were observed in silver trimolybdate dihydrate nanorods: Phase I - ambient phase (1 atm - 0.5 GPa) â†’ Phase II (0.8 GPa - 2.9 GPa) â†’ Phase III (above 3.4 GPa).

5.
Membranes (Basel) ; 12(10)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36295775

RESUMEN

Heterogeneous membranes, otherwise known as Mixed Matrix Membranes (MMMs), which are used in gas separation processes, are the subject of growing interest. This is due to their potential to improve the process properties of membranes compared to those of homogeneous membranes, i.e., those made of polymer only. Using such membranes in a process involves subjecting them to varying temperatures and pressures. This paper investigates the effects of temperature and feed pressure on the process properties of homogeneous and heterogeneous membranes. Membranes made of Pebax®2533 copolymer and containing additional fillers such as SiO2, ZIF-8, and POSS-Ph were investigated. Tests were performed over a temperature range of 25-55 °C and a pressure range of 2-8 bar for N2, CH4, and CO2 gases. It was found that temperature positively influences the increase in permeability, while pressure influences permeability depending on the gas used, which is related to the effect of pressure on the solubility of the gas in the membrane.

6.
Molecules ; 27(7)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35408700

RESUMEN

The kinetics of the reaction of hydroxyl radical (OH) with dimethyl methylphosphonate (DMMP, (CH3O)2CH3PO) (reaction 1) OH + DMMP → products (1) was studied at the bath gas (He) pressure of 1 bar over the 295-837 K temperature range. Hydroxyl radicals were produced in the fast reaction of electronically excited oxygen atoms O(1D) with H2O. The time-resolved kinetic profiles of hydroxyl radicals were recorded via UV absorption at around 308 nm using a DC discharge H2O/Ar lamp. The reaction rate constant exhibits a pronounced V-shaped temperature dependence, negative in the low temperature range, 295-530 K (the rate constant decreases with temperature), and positive in the elevated temperature range, 530-837 K (the rate constant increases with temperature), with a turning point at 530 ± 10 K. The rate constant could not be adequately fitted with a standard 3-parameter modified Arrhenius expression. The data were fitted with a 5-parameter expression as: k1 = 2.19 × 10-14(T/298)2.43exp(15.02 kJ mol-1/RT) + 1.71 × 10-10exp(-26.51 kJ mol-1/RT) cm3molecule-1s-1 (295-837 K). In addition, a theoretically predicted pressure dependence for such reactions was experimentally observed for the first time.

7.
J Colloid Interface Sci ; 607(Pt 2): 1571-1579, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34587531

RESUMEN

HYPOTHESIS: Pressure dependence of contact angle is expected to be influenced by temperature. Nevertheless, the correlation of water contact angle with pressure is rarely investigated at high temperatures (over 100 ℃). EXPERIMENTS: In this work, measurements of the contact angle and interfacial tension of water in N2 atmosphere were conducted at various pressures and temperatures (up to 17 MPa and 300 ℃). The experimental observations were elucidated based on the theory of surface thermodynamics. FINDINGS: It was shown that the water-N2 interfacial tension linearly decreases with increasing the pressure, and that the pressure coefficient declines as temperature rises. The pressure dependence of the water contact angle was found to be different for the low- and high-temperature regimes: the water contact angle increases below 100 ℃, whereas an inverse variation occurs over 100 ℃. According to the theoretical analysis, the pressure dependence of both the water interfacial tension and contact angle is attributed to N2 adsorption on the surfaces of water and silicon. The variations in the water contact angle with pressure, including both the sign and magnitude, are actually the consequence of the changes of water-N2 and Si-N2 interfacial tensions manipulated by pressure and temperature.

8.
ACS Appl Mater Interfaces ; 13(31): 37809-37815, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34324288

RESUMEN

To match the high capacity of metallic anodes, all-solid-state batteries require high energy density, long-lasting composite cathodes such as Ni-Mn-Co (NMC)-based lithium oxides mixed with a solid-state electrolyte (SSE). However in practice, cathode capacity typically fades due to NMC cracking and increasing NMC/SSE interface debonding because of NMC pulverization, which is only partially mitigated by the application of a high cell pressure during cycling. Using smart processing protocols, we report a single-crystal particulate LiNi0.83Mn0.06Co0.11O2 and Li6PS5Cl SSE composite cathode with outstanding discharge capacity of 210 mA h g-1 at 30 °C. A first cycle coulombic efficiency of >85, and >99% thereafter, was achieved despite a 5.5% volume change during cycling. A near-practical discharge capacity at a high areal capacity of 8.7 mA h cm-2 was obtained using an asymmetric anode/cathode cycling pressure of only 2.5 MPa/0.2 MPa.

9.
Biophys Physicobiol ; 18: 145-158, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178565

RESUMEN

The green fluorescent protein (GFP) derived from Pacific Ocean jellyfish is an essential tool in biology. GFP-solvent interactions can modulate the fluorescent property of GFP. We previously reported that glycine insertion is an effective mutation in the yellow variant of GFP, yellow fluorescent protein (YFP). Glycine insertion into one of the ß-strands comprising the barrel structure distorts its structure, allowing water molecules to invade near the chromophore, enhancing hydrostatic pressure or solution hydrophobicity sensitivity. However, the underlying mechanism of how glycine insertion imparts environmental sensitivity to YFP has not been elucidated yet. To unveil the relationship between fluorescence and ß-strand distortion, we investigated the effects of glycine insertion on the dependence of the optical properties of GFP variants named enhanced-GFP (eGFP) and its yellow (eYFP) and cyan (eCFP) variants with respect to pH, temperature, pressure, and hydrophobicity. Our results showed that the quantum yield decreased depending on the number of inserted glycines in all variants, and the dependence on pH, temperature, pressure, and hydrophobicity was altered, indicating the invasion of water molecules into the ß-barrel. Peak shifts in the emission spectrum were observed in glycine-inserted eGFP, suggesting a change of the electric state in the excited chromophore. A comparative investigation of the spectral shift among variants under different conditions demonstrated that glycine insertion rearranged the hydrogen bond network between His148 and the chromophore. The present results provide important insights for further understanding the fluorescence mechanism in GFPs and suggest that glycine insertion could be a potent approach for investigating the relationship between water molecules and the intra-protein chromophore.

10.
Polymers (Basel) ; 13(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557292

RESUMEN

Rheological properties related to the extrusion of polyolefins are the shear viscosity, the elongational viscosity, the slip velocity and their temperature- and pressure-dependencies. These properties are measured in the rheology lab mainly via a parallel-plate rheometer and a capillary rheometer. Then appropriate rheological models have to be used to account for all these properties. Such models are either viscous (e.g, the Cross model) or viscoelastic (e.g, the K-BKZ model). The latter gives the best fitting of the experimental data and offers excellent results in numerical simulations, especially in extrusion flows. Wall slip effects are also found and measured by rheometric flows. Modeling of extrusion flows should make use of appropriate slip models that take into effect the various slip parameters, including the effects of shear stress, molecular characteristics, temperature and pressure on the slip velocity. In this paper the importance of these properties in extrusion are discussed.

11.
Am J Hypertens ; 34(7): 737-743, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-33564865

RESUMEN

BACKGROUND: Conventional measures for assessing arterial stiffness are inherently pressure dependent. Whereas statistical pressure adjustment is feasible in (larger) populations, it is unsuited for the evaluation of an individual patient. Moreover, statistical "correction" for blood pressure may actually correct for: (i) the acute dependence of arterial stiffness on blood pressure at the time of measurement; and/or (ii) the remodeling effect that blood pressure (hypertension) may have on arterial stiffness, but it cannot distinguish between these processes. METHODS: We derived-assuming a single-exponential pressure-diameter relationship-3 theoretically pressure-independent carotid stiffness measures suited for individual patient evaluation: (i) stiffness index ß0, (ii) pressure-corrected carotid pulse wave velocity (cPWVcorr), and (iii) pressure-corrected Young's modulus (Ecorr). Using linear regression analysis, we evaluated in a sample of the CATOD study cohort changes in mean arterial pressure (ΔMAP) and comparatively the changes in the novel (Δß0, ΔcPWVcorr, and ΔEcorr) as well as conventional (ΔcPWV and ΔE) stiffness measures after a 2.9 ± 1.0-year follow-up. RESULTS: We found no association between ΔMAP and Δß0, ΔcPWVcorr, or ΔEcorr. In contrast, we did find a significant association between ΔMAP and conventional measures ΔcPWV and ΔE. Additional adjustments for biomechanical confounders and traditional risk factors did neither materially change these associations nor the lack thereof. CONCLUSIONS: Our newly proposed pressure-independent carotid stiffness measures avoid the need for statistical correction. Hence, these measures (ß0, cPWVcorr, and Ecorr) can be used in a clinical setting for (i) patient-specific risk assessment and (ii) investigation of potential remodeling effects of (changes in) blood pressure on intrinsic arterial stiffness.


Asunto(s)
Determinación de la Presión Sanguínea , Arterias Carótidas , Módulo de Elasticidad , Rigidez Vascular , Instituciones de Atención Ambulatoria , Presión Sanguínea/fisiología , Determinación de la Presión Sanguínea/métodos , Arterias Carótidas/fisiopatología , Humanos , Análisis de la Onda del Pulso , Reproducibilidad de los Resultados , Rigidez Vascular/fisiología
12.
J Mech Behav Biomed Mater ; 115: 104278, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33340776

RESUMEN

Despite the excellent clinical performance of joint replacements, wear-induced aseptic loosening is a main cause of premature implant failure. Tribological testing is usually carried out using bovine serum as an artificial synovial fluid. In order to gain new insights into the suitability to simulate human synovial fluid and provide recommendations for the conditions of tribological testing, accurate rheological measurements on the influence of temperature, shear rate and pressure on density and viscosity were performed. Thus, a temperature dependence of density and viscosity could be verified, whereas both values decreased with higher temperatures. The temperature dependency of viscosity could be approximated by an Arrhenius model. Moreover, shear-thinning characteristics could be demonstrated and fitted to a Cross model, which agreed well with investigations on human synovial fluid reported in literature. Furthermore, an anomaly of pressure dependence of viscosity was found and correlated with the behavior of water as a main constituent. At room temperature, the viscosity initially decreased to a minimum and then increased again as a function of pressure. This was no longer distinct at human body temperatures. Consequently, the present study confirms the suitability of bovine serum as a substitute synovial fluid and emphasizes the importance of realistic testing conditions in order to ensure transferability and comparability.


Asunto(s)
Calor , Líquido Sinovial , Animales , Bovinos , Humanos , Reología , Temperatura , Viscosidad
13.
Am J Hypertens ; 33(12): 1112-1118, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-32634245

RESUMEN

BACKGROUND: Aortic stiffness as measured by carotid-femoral pulse wave velocity (cfPWV) is known to depend on blood pressure (BP), and this dependency may change with age. Therefore, the hydrostatic BP gradient resulting from a change in body posture may elicit a cfPWV change that is age-dependent. We aimed to analyze the relationship between BP gradient-induced by head-up body tilting-and related changes in cfPWV in individuals of varying age. METHODS: cfPWV and other hemodynamic parameters were measured in 30 healthy individuals at a head-up tilt of 0° (supine), 30°, and 60°. At each angle, the PWV gradient and resulting cfPWV were also estimated (predicted) by assuming a global nonlinear, exponential, pressure-diameter relationship characterized by a constant ß0, and taking into account that (diastolic) foot-to-foot cfPWV acutely depends on diastolic BP. RESULTS: cfPWV significantly increased upon body tilting (8.0 ± 2.0 m/s supine, 9.1 ± 2.6 m/s at 30°, 9.5 ± 3.2 m/s at 60°, P for trend <0.01); a positive trend was also observed for heart rate (HR; P < 0.01). When the observed, tilt-induced cfPWV change measured by applanation tonometry was compared with that predicted from the estimated BP hydrostatic gradient, the difference in observed-vs.-predicted PWV change increased nonlinearly as a function of age (R2 for quadratic trend = 0.38, P < 0.01, P vs. linear = 0.04). This result was unaffected by HR tilt-related variations (R2 for quadratic trend = 0.37, P < 0.01, P vs. linear = 0.04). CONCLUSIONS: Under a hydrostatic pressure gradient, the pulse wave traveling along the aorta undergoes an age-related, nonlinear PWV increase exceeding the increase predicted from BP dependency.


Asunto(s)
Envejecimiento/fisiología , Presión Sanguínea/fisiología , Velocidad de la Onda del Pulso Carotídeo-Femoral , Postura/fisiología , Rigidez Vascular/fisiología , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Manometría , Persona de Mediana Edad , Adulto Joven
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 239: 118501, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32473562

RESUMEN

We report here the analysis of vibrational properties of the ZnMoO4 by using theoretical and experimental approaches, well as results of high pressure experiments in this system. The analysis of the lattice dynamics calculations through the classical rigid ion model, was applied to determine the mode assignment in the triclinic phase of the ZnMoO4. Additionally, the experimental high-pressure Raman spectra of the ZnMoO4 were carried out from 0 GPa up to 6.83 GPa to shed light on the structural stability of this system. The pressure-dependent studies showed that this crystal undergoes a first order phase transition at around 1.05 GPa. The Raman spectrum analysis of the new phase shows a significant change in the number of modes for the spectral range of 20-1000 cm-1. The instability of this phase occurs due to the decrease of the MoO bond lengths in the high-pressure phase, connected with tilting and/or rotations of the MoO4 tetrahedra leading to a disorder at the MoO4 sites. The second and third phase transformations were observed, respectively, at about 2.9 GPa and 4.77 GPa, with strong evidences, in the Raman spectra, of crystal symmetry change. The principal component analysis (PCA) and the hierarchical cluster analysis (HCA) were used in order to infer the intervals of pressure where the different phases do exist. Discussion about the number of non equivalent sites for Mo ions and the kind of coordination for molybdenum atoms is also furnished.

15.
Kidney Blood Press Res ; 45(1): 51-60, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31804225

RESUMEN

INTRODUCTION: End-stage renal disease (ESRD) is associated with exponentially elevated cardiovascular mortality. Arterial stiffness (AS) - usually expressed with pulse wave velocity (PWV) - is an established independent predictor of cardiovascular risk beyond the traditional risk factors. Higher PWV values are frequently observed in patients with ESRD. Due to the intrinsic physiologic relationship between PWV and prevailing arterial pressure, PWV can change without relevant changes in the arterial wall structure, and thus an individual pressure-independent expression of PWV is essential. METHODS: The study is a single-center observational study. Repeated measurements of blood pressure (BP) and pulse wave analysis were performed during each dialysis session of 1 week. Aortic PWV was then adjusted to 120 mm Hg central systolic BP (PWV120) based on individually determined relationship. PWV120 values were compared between single sessions. Calculation of the PWV120 was performed retrospectively. RESULTS: Fifty-four subjects were included, 61.1% of whom were male. The median age was 75.5 years, and median dialysis vintage was 33.1 months. Mean systolic/diastolic BP was 121.4/70.5 mm Hg, and the median heart rate was 64.6 beats/min. Mean PWV was 10.9 m/s, and mean PWV120 was 11.3 m/s. PWV120 did not change across single dialysis session during 1 week, while systolic, diastolic BP, PWV, and ultrafiltration volume differed significantly. DISCUSSION/CONCLUSIONS: Our data suggest that true AS does not change in the short-term course in dialysis patients. The observed changes in PWV are rather associated with BP change due to intrinsic pressure dependence. Our analytical approach represents a novel method for this purpose, which is easy in performance and also applicable for large interventional trials and clinical practice.


Asunto(s)
Diálisis/efectos adversos , Fallo Renal Crónico/complicaciones , Rigidez Vascular/fisiología , Anciano , Humanos , Fallo Renal Crónico/terapia , Pacientes Ambulatorios , Factores de Tiempo
16.
ACS Appl Mater Interfaces ; 12(1): 678-685, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31815414

RESUMEN

Three-electrode studies coupled with tomographic imaging of the Na/Na-ß″-alumina interface reveal that voids form in the Na metal at the interface on stripping and they accumulate on cycling, leading to increasing interfacial current density, dendrite formation on plating, short circuit, and cell failure. The process occurs above a critical current for stripping (CCS) for a given stack pressure, which sets the upper limit on current density that avoids cell failure, in line with results for the Li/solid-electrolyte interface. The pressure required to avoid cell failure varies linearly with current density, indicating that Na creep rather than diffusion per se dominates Na transport to the interface and that significant pressures are required to prevent cell death, >9 MPa at 2.5 mA·cm-2.

17.
Materials (Basel) ; 12(21)2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31731398

RESUMEN

The effect of compression on the thermal conductivity of CuGaS2, CuInS2, CuInTe2, and AgInTe2 chalcopyrites (space group I-42d) was studied at 300 K using phonon Boltzmann transport equation (BTE) calculations. The thermal conductivity was evaluated by solving the BTE with harmonic and third-order interatomic force constants. The thermal conductivity of CuGaS2 increases with pressure, which is a common behavior. Striking differences occur for the other three compounds. CuInTe2 and AgInTe2 exhibit a drop in the thermal conductivity upon increasing pressure, which is anomalous. AgInTe2 reaches a very low thermal conductivity of 0.2 W·m-1·K-1 at 2.6 GPa, being beneficial for many energy devices, such as thermoelectrics. CuInS2 is an intermediate case. Based on the phonon dispersion data, the phonon frequencies of the acoustic modes for CuInTe2 and AgInTe2 decrease with increasing pressure, thereby driving the anomaly, while there is no significant pressure effect for CuGaS2. This leads to the negative Grüneisen parameter for CuInTe2 and AgInTe2, a decreased phonon relaxation time, and a decreased thermal conductivity. This softening of the acoustic modes upon compression is suggested to be due to a rotational motion of the chalcopyrite building blocks rather than a compressive oscillation. The negative Grüneisen parameters and the anomalous phonon behavior yield a negative thermal expansion coefficient at lower temperatures, based on the Grüneisen vibrational theory.

18.
Chemphyschem ; 20(12): 1567-1571, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31087509

RESUMEN

The thermodynamic stability of a cytosine(C)-rich i-motif tract of DNA, which features pH-sensitive [C..H..C]+ moieties, has been studied as function of both pressure (0.1-200 MPa) and pH (3.7-6.2). Careful attention was paid to correcting citrate buffer pH for known variations that stem from changes in pressure. Once pH-corrected, (i) at pH >4.6 the i-motif becomes less stable as pressure is increased (KD decreases), giving a small negative volume change for dissociation (ΔD V°) of the i-motif - a conclusion opposite to that which would be drawn if the buffer pH was not corrected for the effects of pressure; (ii) the i-motif's melting temperature increases by more than 30 K between pH 6.5 and 4.5, the consequence of an enthalpy for dissociation (ΔD H°) of 77(3) and 90(3) kJ (mol H+ )-1 at 0.1 and 200 MPa, respectively; (iii) below pH 4.6 at 0.1 MPa (pH 4.3 at 200 MPa) the melting temperature decreases as a result of double protonation of cytosine pairs, and ΔD H° and ΔD V° change signs; and (iv) the combination of ΔD H° and ΔD V° lead to the melting temperature at pH 4.3 being 3 K higher at 200 MPa than at 0.1 MPa.


Asunto(s)
ADN/química , Secuencia de Bases , Dicroismo Circular , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Conformación de Ácido Nucleico , Presión , Termodinámica , Temperatura de Transición
19.
ACS Appl Mater Interfaces ; 11(15): 14463-14477, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30892861

RESUMEN

For the development of next-generation lithium batteries, major research effort is made to enable a reversible lithium metal anode by the use of solid electrolytes. However, the fundamentals of the solid-solid interface and especially the processes that take place under current load are still not well characterized. By measuring pressure-dependent electrode kinetics, we explore the electrochemo-mechanical behavior of the lithium metal anode on the garnet electrolyte Li6.25Al0.25La3Zr2O12. Because of the stability against reduction in contact with the lithium metal, this serves as an optimal model system for kinetic studies without electrolyte degradation. We show that the interfacial resistance becomes negligibly small and converges to practically 0 Ω·cm2 at high external pressures of several 100 MPa. To the best of our knowledge, this is the smallest reported interfacial resistance in the literature without the need for any interlayer. We interpret this observation by the concept of constriction resistance and show that the contact geometry in combination with the ionic transport in the solid electrolyte dominates the interfacial contributions for a clean interface in equilibrium. Furthermore, we show that-under anodic operating conditions-the vacancy diffusion limitation in the lithium metal restricts the rate capability of the lithium metal anode because of contact loss caused by vacancy accumulation and the resulting pore formation near the interface. Results of a kinetic model show that the interface remains morphologically stable only when the anodic load does not exceed a critical value of approximately 100 µA·cm-2, which is not high enough for practical cell setups employing a planar geometry. We highlight that future research on lithium metal anodes on solid electrolytes needs to focus on the transport within and the morphological instability of the metal electrode. Overall, the results help to develop a deeper understanding of the lithium metal anode on solid electrolytes, and the major conclusions are not limited to the Li|Li6.25Al0.25La3Zr2O12 interface.

20.
Nanoscale Res Lett ; 13(1): 118, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29693209

RESUMEN

Atomistic simulations are capable of providing insights into physical mechanisms responsible for mechanical properties of the transition metal of Tantalum (Ta). By using molecular dynamics (MD) method, temperature and pressure dependences of the elastic properties of Ta single crystals are investigated through <100> tensile loading. First of all, a comparative study between two types of embedded-atom method (EAM) potentials is made in term of the elastic properties of Ta single crystals. The results show that Ravelo-EAM (Physical Review B, 2013, 88: 134101) potential behaves well at different hydrostatic pressures. Then, the MD simulation results based on the Ravelo-EAM potential show that Ta will experience a body-centered-cubic (BCC) to face-centered-cubic (FCC) phase transition before fracture under <100> tensile loading at 1 K temperature, and model size and strain rate have no obvious effects on tensile behaviors of Ta. Next, from the simulation results at the system temperature from 1 to 1500 K, it can be derived that the elastic modulus of E100 linearly decrease with the increasing temperature, while the yielding stress decrease with conforming a quadratic polynomial formula. Finally, the pressure dependence of the elastic properties is performed from 0 to 140 GPa and the observations show that the elastic modulus increases with the increasing pressure overall.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA