Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
AAPS J ; 26(6): 106, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289253

RESUMEN

To evaluate the artificial intelligence (AI)-guided AlphaFold algorithm for studying the binding interactions of human huntingtin and the aggregation of huntingtin peptides. Variants of huntingtin protein implicated in Huntington's disease were used as a model system to evaluate AlphaFold. Variants of huntingtin and huntingtin peptides with polyglutamine tracts (PQT) containing 21, 31, 51, or 78 glutamines were studied. The 3-dimensional structures of huntingtin variants and their interactions with huntingtin-associated protein-40 (HAP40) were obtained. Aggregation experiments were conducted with peptide sequences corresponding to variants of PQT, amino terminal sequence (NTS) plus PQT, NTS plus PQT plus proline rich region (PRR), and the 300 amino acid sequence from the NTS through HEAT3 of huntingtin. Oligomerization experiments with 1, 3, 6, or 12 peptide sequences were used to assess the quaternary structures of aggregates. The PQT and PQT plus NTS peptides formed a helical secondary structure that formed a central core in the quaternary structure of the aggregates The PRR formed an extended type II polyproline helix that did not participate in central core the aggregates. The distance between the amino and carboxyl termini of disease-linked 31Q, 51Q, and 78Q variants of full-length huntingtin was prominently decreased compared to the 21Q huntingtin. The interaction of HAP40 with the 78Q variant increased the distance between the amino and carboxyl termini. AlphaFold identified key tertiary structure changes in human huntingtin that have been independently corroborated in experimental models. The results highlight the utility of AlphaFold for hypothesis generation in pharmaceutical research.


Asunto(s)
Proteína Huntingtina , Enfermedad de Huntington , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/metabolismo , Humanos , Farmacogenética/métodos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Inteligencia Artificial , Algoritmos , Péptidos/genética , Péptidos/química , Modelos Moleculares , Secuencia de Aminoácidos
2.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125644

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is the most common type of disease related to poly-glutamine (polyQ) repeats. Its hallmark pathology is related to the abnormal accumulation of ataxin 3 with a longer polyQ tract (polyQ-ATXN3). However, there are other mechanisms related to SCA3 progression that require identifying trait and state biomarkers for a more accurate diagnosis and prognosis. Moreover, the identification of potential pharmacodynamic targets and assessment of therapeutic efficacy necessitates valid biomarker profiles. The aim of this review was to identify potential trait and state biomarkers and their potential value in clinical trials. Our results show that, in SCA3, there are different fluid biomarkers involved in neurodegeneration, oxidative stress, metabolism, miRNA and novel genes. However, neurofilament light chain NfL and polyQ-ATXN3 stand out as the most prevalent in body fluids and SCA3 stages. A heterogeneity analysis of NfL revealed that it may be a valuable state biomarker, particularly when measured in plasma. Nonetheless, since it could be a more beneficial approach to tracking SCA3 progression and clinical trial efficacy, it is more convenient to perform a biomarker profile evaluation than to rely on only one.


Asunto(s)
Biomarcadores , Enfermedad de Machado-Joseph , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Ataxina-3/genética , Ataxina-3/metabolismo , Proteínas de Neurofilamentos/metabolismo , Péptidos/metabolismo , Progresión de la Enfermedad , Estrés Oxidativo
3.
Front Neurosci ; 18: 1422442, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38894941

RESUMEN

Spinocerebellar ataxia is a phenotypically and genetically heterogeneous group of autosomal dominant-inherited degenerative disorders. The gene mutation spectrum includes dynamic expansions, point mutations, duplications, insertions, and deletions of varying lengths. Dynamic expansion is the most common form of mutation. Mutations often result in indistinguishable clinical phenotypes, thus requiring validation using multiple genetic testing techniques. Depending on the type of mutation, the pathogenesis may involve proteotoxicity, RNA toxicity, or protein loss-of-function. All of which may disrupt a range of cellular processes, such as impaired protein quality control pathways, ion channel dysfunction, mitochondrial dysfunction, transcriptional dysregulation, DNA damage, loss of nuclear integrity, and ultimately, impairment of neuronal function and integrity which causes diseases. Many disease-modifying therapies, such as gene editing technology, RNA interference, antisense oligonucleotides, stem cell technology, and pharmacological therapies are currently under clinical trials. However, the development of curative approaches for genetic diseases remains a global challenge, beset by technical, ethical, and other challenges. Therefore, the study of the pathogenesis of spinocerebellar ataxia is of great importance for the sustained development of disease-modifying molecular therapies.

4.
Epigenetics ; 19(1): 2368995, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38900099

RESUMEN

Machado-Joseph disease (MJD) is an autosomal dominant spinocerebellar ataxia (SCA) caused by a polyglutamine expansion in the ataxin-3 protein, which initiates a cascade of pathogenic events, including transcriptional dysregulation. Genotype-phenotype correlations in MJD are incomplete, suggesting an influence of additional factors, such as epigenetic modifications, underlying the MJD pathogenesis. DNA methylation is known to impact the pathophysiology of neurodegenerative disorders through gene expression regulation and increased methylation has been reported for other SCAs. In this work we aimed to analyse global methylation in MJD carriers. Global 5-mC levels were quantified in blood samples of 33 MJD mutation carriers (patients and preclinical subjects) and 33 healthy controls, matched by age, sex, and smoking status. For a subset of 16 MJD subjects, a pilot follow-up analysis with two time points was also conducted. No differences were found in median global 5-mC levels between MJD mutation carriers and controls and no correlations between methylation levels and clinical or genetic variables were detected. Also, no alterations in global 5-mC levels were observed over time. Our findings do not support an increase in global blood methylation levels associated with MJD.


Asunto(s)
Metilación de ADN , Heterocigoto , Enfermedad de Machado-Joseph , Mutación , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/sangre , Masculino , Femenino , Adulto , Persona de Mediana Edad , Estudios de Casos y Controles , Ataxina-3/genética , 5-Metilcitosina/metabolismo , 5-Metilcitosina/sangre , Anciano , Epigénesis Genética
5.
J Cell Biochem ; 125(7): e30611, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38884365

RESUMEN

Spinocerebellar ataxia (SCA) is a rare neurological illness inherited dominantly that causes severe impairment and premature mortality. While each rare disease may affect individuals infrequently, collectively they pose a significant healthcare challenge. It is mainly carried out due to the expansion of RNA triplet (CAG) repeats, although missense or point mutations can also be induced. Unfortunately, there is no cure; only symptomatic treatments are available. To date, SCA has about 48 subtypes, the most common of these being SCA 1, 2, 3, 6, 7, 12, and 17 having CAG repeats. Using molecular docking and molecular dynamics (MD) simulation, this study seeks to investigate effective natural herbal neuroprotective compounds against CAG repeats, which are therapeutically significant in treating SCA. Initially, virtual screening followed by molecular docking was used to estimate the binding affinity of neuroprotective natural compounds toward CAG repeats. The compound with the highest binding affinity, somniferine, was then chosen for MD simulation. The structural stability, interaction mechanism, and conformational dynamics of CAG repeats and somniferine were investigated via MD simulation. The MD study revealed that during the simulation period, the interaction between CAG repeats and somniferine stabilizes and results in fewer conformational variations. This in silico study suggests that Somniferine can be used as a therapeutic medication against RNA CAG repeats in SCA.


Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Humanos , Descubrimiento de Drogas/métodos , ARN/química , ARN/metabolismo , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/metabolismo , Expansión de Repetición de Trinucleótido , Repeticiones de Trinucleótidos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química
6.
Trends Mol Med ; 30(9): 804-808, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839514

RESUMEN

Polyglutamine (polyQ) disorders are monogenic neurodegenerative disorders. Currently, no therapies are available for this complex group of disorders. Here, we aim to provide an overview of recent promising preclinical studies and the ongoing clinical trials focusing on molecular therapies for polyQ disorders.


Asunto(s)
Ensayos Clínicos como Asunto , Enfermedades Neurodegenerativas , Péptidos , Humanos , Péptidos/uso terapéutico , Animales , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/terapia , Enfermedades Neurodegenerativas/metabolismo , Terapia Molecular Dirigida/métodos
7.
EBioMedicine ; 103: 105124, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38701619

RESUMEN

BACKGROUND: PolyQ diseases are autosomal dominant neurodegenerative disorders caused by the expansion of CAG repeats. While of slow progression, these diseases are ultimately fatal and lack effective therapies. METHODS: A high-throughput chemical screen was conducted to identify drugs that lower the toxicity of a protein containing the first exon of Huntington's disease (HD) protein huntingtin (HTT) harbouring 94 glutamines (Htt-Q94). Candidate drugs were tested in a wide range of in vitro and in vivo models of polyQ toxicity. FINDINGS: The chemical screen identified the anti-leprosy drug clofazimine as a hit, which was subsequently validated in several in vitro models. Computational analyses of transcriptional signatures revealed that the effect of clofazimine was due to the stimulation of mitochondrial biogenesis by peroxisome proliferator-activated receptor gamma (PPARγ). In agreement with this, clofazimine rescued mitochondrial dysfunction triggered by Htt-Q94 expression. Importantly, clofazimine also limited polyQ toxicity in developing zebrafish and neuron-specific worm models of polyQ disease. INTERPRETATION: Our results support the potential of repurposing the antimicrobial drug clofazimine for the treatment of polyQ diseases. FUNDING: A full list of funding sources can be found in the acknowledgments section.


Asunto(s)
Clofazimina , Glutamina , Proteína Huntingtina , Enfermedad de Huntington , PPAR gamma , Péptidos , Pez Cebra , Animales , Humanos , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Clofazimina/farmacología , Modelos Animales de Enfermedad , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/metabolismo , Leprostáticos/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Péptidos/metabolismo , Péptidos/toxicidad , PPAR gamma/metabolismo , PPAR gamma/genética , Glutamina/metabolismo , Glutamina/toxicidad
8.
Mol Cell ; 84(10): 1980-1994.e8, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38759629

RESUMEN

Aggregation of proteins containing expanded polyglutamine (polyQ) repeats is the cytopathologic hallmark of a group of dominantly inherited neurodegenerative diseases, including Huntington's disease (HD). Huntingtin (Htt), the disease protein of HD, forms amyloid-like fibrils by liquid-to-solid phase transition. Macroautophagy has been proposed to clear polyQ aggregates, but the efficiency of aggrephagy is limited. Here, we used cryo-electron tomography to visualize the interactions of autophagosomes with polyQ aggregates in cultured cells in situ. We found that an amorphous aggregate phase exists next to the radially organized polyQ fibrils. Autophagosomes preferentially engulfed this amorphous material, mediated by interactions between the autophagy receptor p62/SQSTM1 and the non-fibrillar aggregate surface. In contrast, amyloid fibrils excluded p62 and evaded clearance, resulting in trapping of autophagic structures. These results suggest that the limited efficiency of autophagy in clearing polyQ aggregates is due to the inability of autophagosomes to interact productively with the non-deformable, fibrillar disease aggregates.


Asunto(s)
Amiloide , Autofagosomas , Autofagia , Proteína Huntingtina , Enfermedad de Huntington , Péptidos , Agregado de Proteínas , Proteína Sequestosoma-1 , Péptidos/metabolismo , Péptidos/química , Péptidos/genética , Humanos , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/química , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Proteína Sequestosoma-1/metabolismo , Proteína Sequestosoma-1/genética , Amiloide/metabolismo , Amiloide/química , Amiloide/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Microscopía por Crioelectrón , Animales , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/genética
9.
Ther Adv Rare Dis ; 5: 26330040241249189, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716233

RESUMEN

Dentatorubral-pallidoluysian atrophy (DRPLA) is an ultra-rare neurodegenerative disorder characterized by ataxia, cognitive decline, myoclonus, chorea, epilepsy, and psychiatric manifestations. This article delves into the multifaceted efforts of CureDRPLA, a family-driven non-profit organization, in advancing research, raising awareness, and developing therapeutic strategies for this complex condition. CureDRPLA's inception in 2019 led to the establishment of the DRPLA Research Program, and since then have funded research projects to advance the understanding of DRPLA including but not limited to human cellular and mouse models, a natural history and biomarkers study, and a patient registry. There are currently no disease-modifying treatments for DRPLA, motivating a concerted effort on behalf of CureDRPLA to hasten their development by funding and coordinating preclinical studies of therapies in multiple modalities. Of particular interest are therapies focused on lowering the expression (or downregulation) of ATN1, the mutant gene that causes DRPLA, in hopes of tackling the pathology at its root. As with many ultra-rare diseases, a key challenge in DRPLA remains the complexity of coordinating both basic and clinical research efforts across multiple sites around the world. Finally, despite the generous financial support provided by CureDRPLA, more funding and collective efforts are still required to advance research toward the clinic and develop effective treatments for individuals with DRPLA.


Funding research projects and activities to advance research towards treatments for dentatorubral-pallidoluysian atrophy (DRPLA) This article describes the journey of CureDRPLA, a family-driven non-profit organization dedicated to making strides against dentatorubral-pallidoluysian atrophy (DRPLA), an ultra-rare brain disorder. It describes CureDRPLA's tireless efforts to understand, treat, and raise awareness about DRPLA, a condition marked by movement difficulties (ataxia), intellectual disability, uncontrollable jerky movements (myoclonus), involuntary or irregular muscle movements (chorea) and seizures. This disorder is caused by a mutation in a gene called ATN1. The gene produces a protein called atrophin-1, and when the DRPLA-causing mutation is present, the protein becomes abnormal and can build up in the brain, affecting its normal functions. Since its founding in 2019, CureDRPLA has funded research projects to unravel the mysteries of the disease and provide support for affected individuals. CureDRPLA has funded projects to create models of DRPLA using human cells and mice, which helps scientists study the disease and test potential treatments. We have started a study to learn more about how DRPLA progresses in people and are building a global database of information from individuals with DRPLA. Due to the absence of a treatment or cure, CureDRPLA is focused on testing treatments. We are particularly interested in exploring different approaches to lower the levels of the abnormal protein in the brain. CureDRPLA is actively involving the DRPLA community worldwide, raising awareness through events, conferences, and social media. We aim to connect with medical professionals, researchers, and affected families to build a strong community focused on understanding and managing DRPLA. In summary, CureDRPLA is working hard to better understand DRPLA, support affected families, and accelerate the development of treatments for this challenging condition. Our collaborative efforts and dedication underscore the importance of a united global approach to address the complexities of DRPLA.

10.
Proteomics ; 24(12-13): e2300114, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615323

RESUMEN

Currently, nine polyglutamine (polyQ) expansion diseases are known. They include spinocerebellar ataxias (SCA1, 2, 3, 6, 7, 17), spinal and bulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), and Huntington's disease (HD). At the root of these neurodegenerative diseases are trinucleotide repeat mutations in coding regions of different genes, which lead to the production of proteins with elongated polyQ tracts. While the causative proteins differ in structure and molecular mass, the expanded polyQ domains drive pathogenesis in all these diseases. PolyQ tracts mediate the association of proteins leading to the formation of protein complexes involved in gene expression regulation, RNA processing, membrane trafficking, and signal transduction. In this review, we discuss commonalities and differences among the nine polyQ proteins focusing on their structure and function as well as the pathological features of the respective diseases. We present insights from AlphaFold-predicted structural models and discuss the biological roles of polyQ-containing proteins. Lastly, we explore reported protein-protein interaction networks to highlight shared protein interactions and their potential relevance in disease development.


Asunto(s)
Péptidos , Humanos , Péptidos/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/genética , Animales , Mapas de Interacción de Proteínas , Expansión de Repetición de Trinucleótido/genética
11.
Structure ; 32(6): 662-678.e8, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38508190

RESUMEN

J-domain protein (JDP) molecular chaperones have emerged as central players that maintain a healthy proteome. The diverse members of the JDP family function as monomers/dimers and a small subset assemble into micron-sized oligomers. The oligomeric JDP members have eluded structural characterization due to their low-complexity, intrinsically disordered middle domains. This in turn, obscures the biological significance of these larger oligomers in protein folding processes. Here, we identified a short, aromatic motif within DNAJB8 that drives self-assembly through π-π stacking and determined its X-ray structure. We show that mutations in the motif disrupt DNAJB8 oligomerization in vitro and in cells. DNAJB8 variants that are unable to assemble bind to misfolded tau seeds more specifically and retain capacity to reduce protein aggregation in vitro and in cells. We propose a new model for DNAJB8 function in which the sequences in the low-complexity domains play distinct roles in assembly and substrate activity.


Asunto(s)
Proteínas del Choque Térmico HSP40 , Multimerización de Proteína , Humanos , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/genética , Modelos Moleculares , Secuencias de Aminoácidos , Cristalografía por Rayos X , Unión Proteica , Proteínas tau/metabolismo , Proteínas tau/química , Proteínas tau/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutación , Pliegue de Proteína
12.
Life Sci ; 344: 122562, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492921

RESUMEN

Polyglutamine/poly(Q) diseases are a group nine hereditary neurodegenerative disorders caused due to abnormally expanded stretches of CAG trinucleotide in functionally distinct genes. All human poly(Q) diseases are characterized by the formation of microscopically discernable poly(Q) positive aggregates, the inclusion bodies. These toxic inclusion bodies are responsible for the impairment of several cellular pathways such as autophagy, transcription, cell death, etc., that culminate in disease manifestation. Although, these diseases remain largely without treatment, extensive research has generated mounting evidences that various events of poly(Q) pathogenesis can be developed as potential drug targets. The present review article briefly discusses the key events of disease pathogenesis, model system-based investigations that support the development of effective therapeutic interventions against pathogenesis of human poly(Q) disorders, and a comprehensive list of pharmacological and bioactive compounds that have been experimentally shown to alleviate poly(Q)-mediated neurotoxicity. Interestingly, due to the common cause of pathogenesis, all poly(Q) diseases share etiology, thus, findings from one disease can be potentially extrapolated to other poly(Q) diseases as well.


Asunto(s)
Síndromes de Neurotoxicidad , Péptidos , Humanos , Muerte Celular/genética , Síndromes de Neurotoxicidad/metabolismo
13.
Mol Brain ; 17(1): 15, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443995

RESUMEN

Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3, is a fatal neurodegenerative disease that causes loss of balance and motor co-ordination, eventually leading to paralysis. It is caused by the autosomal dominant inheritance of a long CAG trinucleotide repeat sequence within the ATXN3 gene, encoding for an expanded polyglutamine (polyQ) repeat sequence within the ataxin-3 protein. Ataxin-3 containing an expanded polyQ repeat is known to be highly prone to intraneuronal aggregation, and previous studies have demonstrated that protein quality control pathways, such as autophagy, are impaired in MJD patients and animal models of the disease. In this study, we tested the therapeutic potential of spermidine on zebrafish and rodent models of MJD to determine its capacity to induce autophagy and improve functional output. Spermidine treatment of transgenic MJD zebrafish induced autophagy and resulted in increased distances swum by the MJD zebrafish. Interestingly, treatment of the CMVMJD135 mouse model of MJD with spermidine added to drinking water did not produce any improvement in motor behaviour assays, neurological testing or neuropathology. In fact, wild type mice treated with spermidine were found to have decreased rotarod performance when compared to control animals. Immunoblot analysis of protein lysates extracted from mouse cerebellar tissue found little differences between the groups, except for an increased level of phospho-ULK1 in spermidine treated animals, suggesting that autophagy was indeed induced. As we detected decreased motor performance in wild type mice following treatment with spermidine, we conducted follow up studies into the effects of spermidine treatment in zebrafish. Interestingly, we found that in addition to inducing autophagy, spermidine treatment also induced apoptosis, particularly in wild type zebrafish. These findings suggest that spermidine treatment may not be therapeutically beneficial for the treatment of MJD, and in fact warrants caution due to the potential negative side effects caused by induction of apoptosis.


Asunto(s)
Enfermedad de Machado-Joseph , Enfermedades Neurodegenerativas , Humanos , Animales , Ratones , Espermidina/farmacología , Espermidina/uso terapéutico , Pez Cebra , Apoptosis , Autofagia , Modelos Animales de Enfermedad
14.
Heliyon ; 10(4): e26393, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38434042

RESUMEN

Huntington's disease is caused by an expansion of CAG repeats in exon 1 of the huntingtin gene encoding an extended PolyQ tract within the Huntingtin protein (mHtt). This expansion results in selective degeneration of striatal medium spiny projection neurons in the basal ganglia. The mutation causes abnormalities during neurodevelopment in human and mouse models. Here, we report that mHtt/PolyQ aggregates inhibit the cell cycle in the Drosophila brain during development. PolyQ aggregates disrupt the nuclear pore complexes of the cells preventing the translocation of cell cycle proteins such as Cyclin E, E2F and PCNA from cytoplasm to the nucleus, thus affecting cell cycle progression. PolyQ aggregates also disrupt the nuclear pore complex and nuclear import in mHtt expressing mammalian CAD neurons. PolyQ toxicity and cell cycle defects can be restored by enhancing RanGAP-mediated nuclear import, suggesting a potential therapeutic approach for this disease.

15.
Neurobiol Dis ; 193: 106456, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423193

RESUMEN

Spinocerebellar ataxia type 3 (SCA3)/Machado-Joseph disease (MJD) is a heritable proteinopathy disorder, whose causative gene, ATXN3, undergoes alternative splicing. Ataxin-3 protein isoforms differ in their toxicity, suggesting that certain ATXN3 splice variants may be crucial in driving the selective toxicity in SCA3. Using RNA-seq datasets we identified and determined the abundance of annotated ATXN3 transcripts in blood (n = 60) and cerebellum (n = 12) of SCA3 subjects and controls. The reference transcript (ATXN3-251), translating into an ataxin-3 isoform harbouring three ubiquitin-interacting motifs (UIMs), showed the highest abundance in blood, while the most abundant transcript in the cerebellum (ATXN3-208) was of unclear function. Noteworthy, two of the four transcripts that encode full-length ataxin-3 isoforms but differ in the C-terminus were strongly related with tissue expression specificity: ATXN3-251 (3UIM) was expressed in blood 50-fold more than in the cerebellum, whereas ATXN3-214 (2UIM) was expressed in the cerebellum 20-fold more than in the blood. These findings shed light on ATXN3 alternative splicing, aiding in the comprehension of SCA3 pathogenesis and providing guidance in the design of future ATXN3 mRNA-lowering therapies.


Asunto(s)
Enfermedad de Machado-Joseph , Humanos , Enfermedad de Machado-Joseph/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Cerebelo/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
16.
FASEB J ; 38(2): e23429, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38258931

RESUMEN

Spinocerebellar ataxia type 3 (SCA3, also known as Machado Joseph disease) is a fatal neurodegenerative disease caused by the expansion of the trinucleotide repeat region within the ATXN3/MJD gene. Mutation of ATXN3 causes formation of ataxin-3 protein aggregates, neurodegeneration, and motor deficits. Here we investigated the therapeutic potential and mechanistic activity of sodium butyrate (SB), the sodium salt of butyric acid, a metabolite naturally produced by gut microbiota, on cultured SH-SY5Y cells and transgenic zebrafish expressing human ataxin-3 containing 84 glutamine (Q) residues to model SCA3. SCA3 SH-SY5Y cells were found to contain high molecular weight ataxin-3 species and detergent-insoluble protein aggregates. Treatment with SB increased the activity of the autophagy protein quality control pathway in the SCA3 cells, decreased the presence of ataxin-3 aggregates and presence of high molecular weight ataxin-3 in an autophagy-dependent manner. Treatment with SB was also beneficial in vivo, improving swimming performance, increasing activity of the autophagy pathway, and decreasing the presence of insoluble ataxin-3 protein species in the transgenic SCA3 zebrafish. Co-treating the SCA3 zebrafish with SB and chloroquine, an autophagy inhibitor, prevented the beneficial effects of SB on zebrafish swimming, indicating that the improved swimming performance was autophagy-dependent. To understand the mechanism by which SB induces autophagy we performed proteomic analysis of protein lysates from the SB-treated and untreated SCA3 SH-SY5Y cells. We found that SB treatment had increased activity of Protein Kinase A and AMPK signaling, with immunoblot analysis confirming that SB treatment had increased levels of AMPK protein and its substrates. Together our findings indicate that treatment with SB can increase activity of the autophagy pathway process and that this has beneficial effects in vitro and in vivo. While our results suggested that this activity may involve activity of a PKA/AMPK-dependent process, this requires further confirmation. We propose that treatment with sodium butyrate warrants further investigation as a potential treatment for neurodegenerative diseases underpinned by mechanisms relating to protein aggregation including SCA3.


Asunto(s)
Enfermedad de Machado-Joseph , Neuroblastoma , Enfermedades Neurodegenerativas , Humanos , Animales , Ácido Butírico/farmacología , Ataxina-3/genética , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , Pez Cebra , Proteínas Quinasas Activadas por AMP , Agregado de Proteínas , Proteómica , Autofagia , Animales Modificados Genéticamente , Proteínas Quinasas Dependientes de AMP Cíclico
17.
Cells ; 12(23)2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067163

RESUMEN

Spinocerebellar ataxia type 7 (SCA7) is an autosomal-dominant inherited disease characterized by progressive ataxia and retinal degeneration. SCA7 belongs to a group of neurodegenerative diseases caused by an expanded CAG repeat in the disease-causing gene, resulting in aberrant polyglutamine (polyQ) protein synthesis. PolyQ ataxin-7 is prone to aggregate in intracellular inclusions, perturbing cellular processes leading to neuronal death in specific regions of the central nervous system (CNS). Currently, there is no treatment for SCA7; however, a promising approach successfully applied to other polyQ diseases involves the clearance of polyQ protein aggregates through pharmacological activation of autophagy. Nonetheless, the blood-brain barrier (BBB) poses a challenge for delivering drugs to the CNS, limiting treatment effectiveness. This study aimed to develop a polymeric nanocarrier system to deliver therapeutic agents across the BBB into the CNS. We prepared poly(lactic-co-glycolic acid) nanoparticles (NPs) modified with Poloxamer188 and loaded with rapamycin to enable NPs to activate autophagy. We demonstrated that these rapamycin-loaded NPs were successfully taken up by neuronal and glial cells, demonstrating high biocompatibility without adverse effects. Remarkably, rapamycin-loaded NPs effectively cleared mutant ataxin-7 aggregates in a SCA7 glial cell model, highlighting their potential as a therapeutic approach to fight SCA7 and other polyQ diseases.


Asunto(s)
Ataxias Espinocerebelosas , Humanos , Ataxina-7/genética , Ataxina-7/metabolismo , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/genética , Neuronas/metabolismo , Neuroglía/metabolismo , Sirolimus
18.
Front Aging Neurosci ; 15: 1223911, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37823007

RESUMEN

Huntington's disease (HD) is a neurodegenerative disease characterized by movement and cognitive dysfunction. HD is caused by a CAG expansion in exon 1 of the HTT gene that leads to a polyglutamine (PQ) repeat in the huntingtin protein, which aggregates in the brain and periphery. Previously, we used Drosophila models to determine that Htt-PQ aggregation in the heart causes shortened lifespan and cardiac dysfunction that is ameliorated by promoting chaperonin function or reducing oxidative stress. Here, we further study the role of neuronal mutant huntingtin and how it affects peripheral function. We overexpressed normal (Htt-PQ25) or expanded mutant (Htt-PQ72) exon 1 of huntingtin in Drosophila neurons and found that mutant huntingtin caused age-dependent Htt-PQ aggregation in the brain and could cause a loss of synapsin. To determine if this neuronal dysfunction led to peripheral dysfunction, we performed a negative geotaxis assay to measure locomotor performance and found that neuronal mutant huntingtin caused an age-dependent decrease in locomotor performance. Next, we found that rapamycin reduced Htt-PQ aggregation in the brain. These results demonstrate the role of neuronal Htt-PQ in dysfunction in models of HD, suggest that brain-periphery crosstalk could be important to the pathogenesis of HD, and show that rapamycin reduces mutant huntingtin aggregation in the brain.

19.
Cells ; 12(19)2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37830620

RESUMEN

Mitochondrial dysfunction has been reported in many Huntington's disease (HD) models; however, it is unclear how these defects occur. Here, we test the hypothesis that excess pathogenic huntingtin (HTT) impairs mitochondrial homeostasis, using Drosophila genetics and pharmacological inhibitors in HD and polyQ-expansion disease models and in a mechanical stress-induced traumatic brain injury (TBI) model. Expression of pathogenic HTT caused fragmented mitochondria compared to normal HTT, but HTT did not co-localize with mitochondria under normal or pathogenic conditions. Expression of pathogenic polyQ (127Q) alone or in the context of Machado Joseph Disease (MJD) caused fragmented mitochondria. While mitochondrial fragmentation was not dependent on the cellular location of polyQ accumulations, the expression of a chaperone protein, excess of mitofusin (MFN), or depletion of dynamin-related protein 1 (DRP1) rescued fragmentation. Intriguingly, a higher concentration of nitric oxide (NO) was observed in polyQ-expressing larval brains and inhibiting NO production rescued polyQ-mediated fragmented mitochondria, postulating that DRP1 nitrosylation could contribute to excess fission. Furthermore, while excess PI3K, which suppresses polyQ-induced cell death, did not rescue polyQ-mediated fragmentation, it did rescue fragmentation caused by mechanical stress/TBI. Together, our observations suggest that pathogenic polyQ alone is sufficient to cause DRP1-dependent mitochondrial fragmentation upstream of cell death, uncovering distinct physiological mechanisms for mitochondrial dysfunction in polyQ disease and mechanical stress.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Enfermedad de Huntington , Animales , Estrés Mecánico , Muerte Celular , Drosophila , Enfermedad de Huntington/metabolismo , Mitocondrias/metabolismo , Lesiones Traumáticas del Encéfalo/patología
20.
Protein Sci ; 32(12): e4810, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37853955

RESUMEN

Huntington disease (HD) is associated with aggregation of huntingtin (HTT) protein containing over 35 continuous Q residues within the N-terminal exon 1 encoded region. The C-terminal of the HTT protein consists mainly of HEAT repeat structure which serves as a scaffold for multiple cellular activities. Structural and biochemical analysis of the intact HTT protein has been hampered by its huge size (~300 kDa) and most in vitro studies to date have focused on the properties of the exon 1 region. To explore the interaction between HTT exon 1 and the HEAT repeat structure, we constructed chimeric proteins containing the N-terminal HTT exon 1 region and the HEAT repeat protein PR65/A. The results indicate that HTT exon 1 slightly destabilizes the downstream HEAT repeat structure and endows the HEAT repeat structure with more conformational flexibility. Wild-type and pathological lengths of polyQ did not show differences in the interaction between HTT exon 1 and the HEAT repeats. With the C-terminal fusion of PR65/A, HTT exon 1 containing pathological lengths of polyQ could still form amyloid fibrils, but the higher-order architecture of fibrils and kinetics of fibril formation were affected by the C-terminal fusion of HEAT repeats. This indicates that interaction between HTT exon 1 and HEAT repeat structure is compatible with both normal function of HTT protein and the pathogenesis of HD, and this study provides a potential model for further exploration.


Asunto(s)
Proteína Huntingtina , Exones , Proteína Huntingtina/genética , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA