Your browser doesn't support javascript.
loading
Spermidine treatment: induction of autophagy but also apoptosis?
Watchon, Maxinne; Wright, Amanda L; Ahel, Holly I; Robinson, Katherine J; Plenderleith, Stuart K; Kuriakose, Andrea; Yuan, Kristy C; Laird, Angela S.
Afiliación
  • Watchon M; Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Rd, 2109, Sydney, NSW, Australia.
  • Wright AL; Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Rd, 2109, Sydney, NSW, Australia.
  • Ahel HI; Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Rd, 2109, Sydney, NSW, Australia.
  • Robinson KJ; Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Rd, 2109, Sydney, NSW, Australia.
  • Plenderleith SK; Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Rd, 2109, Sydney, NSW, Australia.
  • Kuriakose A; Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Rd, 2109, Sydney, NSW, Australia.
  • Yuan KC; Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Rd, 2109, Sydney, NSW, Australia.
  • Laird AS; Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Rd, 2109, Sydney, NSW, Australia. angela.laird@mq.edu.au.
Mol Brain ; 17(1): 15, 2024 Mar 05.
Article en En | MEDLINE | ID: mdl-38443995
ABSTRACT
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3, is a fatal neurodegenerative disease that causes loss of balance and motor co-ordination, eventually leading to paralysis. It is caused by the autosomal dominant inheritance of a long CAG trinucleotide repeat sequence within the ATXN3 gene, encoding for an expanded polyglutamine (polyQ) repeat sequence within the ataxin-3 protein. Ataxin-3 containing an expanded polyQ repeat is known to be highly prone to intraneuronal aggregation, and previous studies have demonstrated that protein quality control pathways, such as autophagy, are impaired in MJD patients and animal models of the disease. In this study, we tested the therapeutic potential of spermidine on zebrafish and rodent models of MJD to determine its capacity to induce autophagy and improve functional output. Spermidine treatment of transgenic MJD zebrafish induced autophagy and resulted in increased distances swum by the MJD zebrafish. Interestingly, treatment of the CMVMJD135 mouse model of MJD with spermidine added to drinking water did not produce any improvement in motor behaviour assays, neurological testing or neuropathology. In fact, wild type mice treated with spermidine were found to have decreased rotarod performance when compared to control animals. Immunoblot analysis of protein lysates extracted from mouse cerebellar tissue found little differences between the groups, except for an increased level of phospho-ULK1 in spermidine treated animals, suggesting that autophagy was indeed induced. As we detected decreased motor performance in wild type mice following treatment with spermidine, we conducted follow up studies into the effects of spermidine treatment in zebrafish. Interestingly, we found that in addition to inducing autophagy, spermidine treatment also induced apoptosis, particularly in wild type zebrafish. These findings suggest that spermidine treatment may not be therapeutically beneficial for the treatment of MJD, and in fact warrants caution due to the potential negative side effects caused by induction of apoptosis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedad de Machado-Joseph / Enfermedades Neurodegenerativas Límite: Animals / Humans Idioma: En Revista: Mol Brain Asunto de la revista: BIOLOGIA MOLECULAR / CEREBRO Año: 2024 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedad de Machado-Joseph / Enfermedades Neurodegenerativas Límite: Animals / Humans Idioma: En Revista: Mol Brain Asunto de la revista: BIOLOGIA MOLECULAR / CEREBRO Año: 2024 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido