Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Synth Syst Biotechnol ; 8(4): 724-731, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38033756

RESUMEN

l-Tyrosine, an aromatic non-essential amino acid, is the raw material for many important chemical products, including levodopa, resveratrol, and hydroxytyrosol. It is widely used in the food, drug, and chemical industries. There are many studies on the synthesis of l-tyrosine by microorganisms, however, the low titer of l-tyrosine limited the industrial large-scale production. In order to enhance l-tyrosine production in Escherichia coli, the expression of key enzymes in the shikimate pathway was up- or down-regulated. The l-tyrosine transport system and the acetic acid biosynthesis pathway were modified to further enhance l-tyrosine production. In addition, the phosphoketolase pathway was introduced in combination with cofactor engineering to redirect carbon flux to the shikimate pathway. Finally, after adaptive laboratory evolution to low pH an optimal strain was obtained. The strain can produce 92.5 g/L of l-tyrosine in a 5-L fermenter in 62 h, with a yield of 0.266 g/g glucose.

2.
Microb Cell Fact ; 21(1): 69, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459213

RESUMEN

BACKGROUND: Cyanobacteria receive huge interest as green catalysts. While exploiting energy from sunlight, they co-utilize sugar and CO2. This photomixotrophic mode enables fast growth and high cell densities, opening perspectives for sustainable biomanufacturing. The model cyanobacterium Synechocystis sp. PCC 6803 possesses a complex architecture of glycolytic routes for glucose breakdown that are intertwined with the CO2-fixing Calvin-Benson-Bassham (CBB) cycle. To date, the contribution of these pathways to photomixotrophic metabolism has remained unclear. RESULTS: Here, we developed a comprehensive approach for 13C metabolic flux analysis of Synechocystis sp. PCC 6803 during steady state photomixotrophic growth. Under these conditions, the Entner-Doudoroff (ED) and phosphoketolase (PK) pathways were found inactive but the microbe used the phosphoglucoisomerase (PGI) (63.1%) and the oxidative pentose phosphate pathway (OPP) shunts (9.3%) to fuel the CBB cycle. Mutants that lacked the ED pathway, the PK pathway, or phosphofructokinases were not affected in growth under metabolic steady-state. An ED pathway-deficient mutant (Δeda) exhibited an enhanced CBB cycle flux and increased glycogen formation, while the OPP shunt was almost inactive (1.3%). Under fluctuating light, ∆eda showed a growth defect, different to wild type and the other deletion strains. CONCLUSIONS: The developed approach, based on parallel 13C tracer studies with GC-MS analysis of amino acids, sugars, and sugar derivatives, optionally adding NMR data from amino acids, is valuable to study fluxes in photomixotrophic microbes to detail. In photomixotrophic cells, PGI and OPP form glycolytic shunts that merge at switch points and result in synergistic fueling of the CBB cycle for maximized CO2 fixation. However, redirected fluxes in an ED shunt-deficient mutant and the impossibility to delete this shunt in a GAPDH2 knockout mutant, indicate that either minor fluxes (below the resolution limit of 13C flux analysis) might exist that could provide catalytic amounts of regulatory intermediates or alternatively, that EDA possesses additional so far unknown functions. These ideas require further experiments.


Asunto(s)
Synechocystis , Aldehído-Liasas , Aminoácidos/metabolismo , Dióxido de Carbono/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Análisis de Flujos Metabólicos , Azúcares/metabolismo , Synechocystis/metabolismo
3.
Biotechnol J ; 12(8)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28418108

RESUMEN

The non-dairy lactic acid bacterium Lactococcus lactis KF147 can utilize xylose as the sole energy source. To assess whether KF147 could serve as a platform organism for converting second generation sugars into useful chemicals, the authors characterized growth and product formation for KF147 when grown on xylose. In a defined medium KF147 was found to co-metabolize xylose and arginine, resulting in bi-phasic growth. Especially at low xylose concentrations, arginine significantly improved growth rate. To facilitate further studies of the xylose metabolism, the authors eliminated arginine catabolism by deleting the arcA gene encoding the arginine deiminase. The fermentation product profile suggested two routes for xylose degradation, the phosphoketolase pathway and the pentose phosphate pathway. Inactivation of the phosphoketolase pathway redirected the entire flux through the pentose phosphate pathway whereas over-expression of phosphoketolase increased the flux through the phosphoketolase pathway. In general, significant amounts of the mixed-acid products, including lactate, formate, acetate and ethanol, were formed irrespective of xylose concentrations. To demonstrate the potential of KF147 for converting xylose into useful chemicals the authors chose to redirect metabolism towards ethanol production. A synthetic promoter library was used to drive the expression of codon-optimized versions of the Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase, and the outcome was a strain producing ethanol as the sole fermentation product with a high yield corresponding to 83% of the theoretical maximum. The results clearly indicate the great potential of using the more metabolically diverse non-dairy L. lactis strains for bio-production based on xylose containing feedstocks.


Asunto(s)
Etanol/metabolismo , Ingeniería Genética , Lactococcus lactis/enzimología , Ingeniería Metabólica , Alcohol Deshidrogenasa/química , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Etanol/química , Fermentación , Ácido Láctico/química , Ácido Láctico/metabolismo , Lactococcus lactis/genética , Xilosa/química , Xilosa/genética , Xilosa/metabolismo
4.
Biotechnol Prog ; 32(6): 1397-1403, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27602554

RESUMEN

Metabolic flux analyses were performed based on the carbon balance of six different Lactobacillus strains used in this study. Results confirmed that L. delbrueckii, L. plantarum ATCC 21028, L. plantarum NCIMB 8826 ΔldhL1, L. plantarum NCIMB 8826 ΔldhL1-pCU-PxylAB, and L. plantarum NCIMB 8826 ΔldhL1-pLEM415-xylAB metabolized glucose via EMP: whereas, L. brevis metabolized glucose via PK pathway. Xylose was metabolized through the PK pathway in L. brevis, L. plantarum NCIMB 8826 ΔldhL1-pCU-PxylAB and L. plantarum NCIMB 8826 ΔldhL1-pLEM415-xylAB. Operation of both EMP and PK pathways was found in L. brevis, L. plantarum NCIMB 8826 ΔldhL1-pCU-PxylAB, and L. plantarum NCIMB 8826 ΔldhL1-pLEM415-xylAB when glucose plus xylose were used as carbon source. The information of detailed carbon flow may help the strain and biomass selection in a designed process of lactic acid biosynthesis. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1397-1403, 2016.


Asunto(s)
Carbono/metabolismo , Lactobacillus/metabolismo , Análisis de Flujos Metabólicos , Biomasa , Ácido Láctico/biosíntesis , Ácido Láctico/química
5.
J Microbiol ; 53(10): 702-10, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26428921

RESUMEN

The aims of this study is to compare the growth and glucose metabolism of three Lactobacillus reuteri strains (i.e. DSM 20016, DSM 17938, and ATCC 53608) which are lactic acid bacteria of interest used for diverse applications such as probiotics implying the production of biomass, or for the production of valuable chemicals (3-hydroxypropionaldehyde, 3-hydroxypropionic acid, 1,3-propanediol). However, the physiological diversity inside the species, even for basic metabolisms, like its capacity of acidification or glucose metabolism, has not been studied yet. In the present work, the growth and metabolism of three strains representative of the species diversity have been studied in batch mode. The strains were compared through characterization of growth kinetics and evaluation of acidification kinetics, substrate consumption and product formation. The results showed significant differences between the three strains which may be explained, at least in part, by variations in the distribution of carbon source between two glycolytic pathways during the bacterial growth: the phosphoketolase or heterolactic pathway (PKP) and the Embden-Meyerhof pathway (EMP). It was also shown that, in the context of obtaining a large amount of biomass, DSM 20016 and DSM 17938 strains were the most effective in terms of growth kinetics. The DSM 17938 strain, which shows the more significant metabolic shift from EMP to PKP when the pH decreases, is more effective for lactate production.


Asunto(s)
Aldehído-Liasas/metabolismo , Ácido Láctico/biosíntesis , Limosilactobacillus reuteri/metabolismo , Biomasa , Cromatografía Líquida de Alta Presión , Medios de Cultivo , Fermentación , Genoma Bacteriano , Glucosa/metabolismo , Gliceraldehído/análogos & derivados , Gliceraldehído/metabolismo , Glucólisis , Concentración de Iones de Hidrógeno , Ácido Láctico/análogos & derivados , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/crecimiento & desarrollo , Redes y Vías Metabólicas , Propano/metabolismo , Glicoles de Propileno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA