Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 406: 131070, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971392

RESUMEN

In this study, two bioprocess models were first constructed with the newly-discovered comammox process described as one-step and two-step nitrification and evaluated against relevant experimental data. The validated models were then applied to reveal the potential effect of comammox bacteria on the granular bioreactor particularly suitable for undertaking partial nitritation/anammox (PN/A) under different operating conditions of bulk dissolved oxygen (DO) and influent NH4+. The results showed although comammox bacteria-based PN/A could achieve > 80.0 % total nitrogen (TN) removal over a relatively wider range of bulk DO and influent NH4+ (i.e., 0.25-0.40 g-O2/m3 and 470-870 g-N/m3, respectively) without significant nitrous oxide (N2O) production (< 0.1 %), the bulk DO should be finely controlled based on the influent NH4+ to avoid the undesired full nitrification by comammox bacteria. Comparatively, conventional ammonium-oxidizing bacteria (AOB)-based PN/A not only required higher bulk DO to achieve > 80.0 % TN removal but also suffered from 1.7 %∼2.8 % N2O production.


Asunto(s)
Bacterias , Reactores Biológicos , Nitrificación , Nitrógeno , Reactores Biológicos/microbiología , Nitrógeno/metabolismo , Bacterias/metabolismo , Oxígeno/metabolismo , Óxido Nitroso/metabolismo , Compuestos de Amonio/metabolismo , Oxidación-Reducción
2.
Water Res ; 257: 121698, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705066

RESUMEN

Research has revealed that comammox Nitrospira and anammox bacteria engage in dynamic interactions in partial nitritation-anammox reactors, where they compete for ammonium and nitrite or comammox Nitrospria supply nitrite to anammox bacteria. However, two gaps in the literature are present: the know-how to manipulate the interactions to foster a stable and symbiotic relationship and the assessment of how effective this partnership is for treating low-strength ammonium wastewater at high hydraulic loads. In this study, we employed a membrane bioreactor designed to treat synthetic ammonium wastewater at a concentration of 60 mg N/L, reaching a peak loading of 0.36 g N/L/day by gradually reducing the hydraulic retention time to 4 hr. Throughout the experiment, the reactor achieved an approximately 80 % nitrogen removal rate through strategically adjusting intermittent aeration at every stage. Notably, the genera Ca. Kuenena, Nitrosomonas, and Nitrospira collectively constituted approximately 40 % of the microbial community. Under superior intermittent aeration conditions, the expression of comammox amoA was consistently higher than that of Nitrospira nxrB and AOB amoA in the biofilm, despite the higher abundance of Nitrosomonas than comammox Nitrospira, implying that the biofilm environment is favorable for fostering cooperation between comammox and anammox bacteria. We then assessed the in situ activity of comammox Nitrospira in the reactor by selectively suppressing Nitrosomonas using 1-octyne, thereby confirming that comammox Nitrospira played the primary role in facilitating the nitritation (33.1 % of input ammonium) rather than complete nitrification (7.3 % of input ammonium). Kinetic analysis revealed a specific ammonia-oxidizing rate 5.3 times higher than the nitrite-oxidizing rate in the genus Nitrospira, underscoring their critical role in supplying nitrite. These findings provide novel insights into the cooperative interplay between comammox Nitrospira and anammox bacteria, potentially reshaping the management of nitrogen cycling in engineered environments, and aiding the development of microbial ecology-driven wastewater treatment technologies.


Asunto(s)
Compuestos de Amonio , Reactores Biológicos , Aguas Residuales , Reactores Biológicos/microbiología , Aguas Residuales/microbiología , Compuestos de Amonio/metabolismo , Bacterias/metabolismo , Eliminación de Residuos Líquidos/métodos , Nitrógeno/metabolismo , Nitrificación , Nitritos/metabolismo , Oxidación-Reducción
3.
Bioresour Technol ; 400: 130679, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588781

RESUMEN

Mainstream partial denitrification anammox was achieved through inoculation of side-stream mature partial nitritation anammox biofilm without domestication. The contribution of anammox to nitrogen removal was 29.4 %. Moreover, prolonging anoxic hydraulic retention time and introducing side-stream nitrite under different carbon/nitrogen ratios enriched anammox bacteria. The abundance of anammox bacteria increased by âˆ¼ 10 times ((2.19 ± 0.17) × 1012 copies gene / g dry sludge) with a total relative abundance of 18.51 %. During 258 days of operation, the contribution of anammox to nitrogen removal gradually increased to 68.8 %. The total nitrogen in the effluent decreased to 8.84 mg/L with a total nitrogen removal efficiency of 76.4 % under a carbon/nitrogen ratio of 3. This paper proposes a novel way to rapidly achieve mainstream partial denitrification anammox via inoculation with side-stream mature partial nitritation anammox biofilm. This method achieves advanced nitrogen removal from municipal wastewater, even under low carbon/nitrogen ratios.


Asunto(s)
Biopelículas , Desnitrificación , Nitrógeno , Aguas del Alcantarillado , Nitrógeno/metabolismo , Aguas del Alcantarillado/microbiología , Bacterias/metabolismo , Reactores Biológicos/microbiología , Anaerobiosis , Purificación del Agua/métodos , Oxidación-Reducción , Carbono/metabolismo , Nitritos/metabolismo
4.
Environ Res ; 251(Pt 2): 118575, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431068

RESUMEN

The Partial nitritation-Anammox (PN/A) process can be restricted when treating high ammonia nitrogen wastewater containing antibiotics. This study aims to explore the response mechanism of the PN/A process under antibiotic stress. Results showed the PN/A process achieved a nitrogen removal rate higher than 1.01 ± 0.03 kg N/m3/d under long-term sulfamethazine stress. The increase of extracellular polymers from 22.52 to 43.96 mg/g VSS was conducive to resisting antibiotic inhibitory. The increase of Denitratisoma and SM1A02 abundance as well as functional genes nirS and nirK indicated denitrifiers should play an important role in the stability of the PN/A system under sulfamethazine stress. In addition, antibiotic-resistant genes (ARGs) sul1 and intI1 significantly increased by 8.78 and 5.12 times of the initial values to maintain the resistance of PN/A process to sulfamethazine stress. This study uncovers the response mechanism of the PN/A process under antibiotic stress, offering a scientific basis and guidance for further application in the future.


Asunto(s)
Antibacterianos , Antibacterianos/farmacología , Microbiota/efectos de los fármacos , Reactores Biológicos , Aguas Residuales/microbiología , Eliminación de Residuos Líquidos/métodos , Nitrógeno/metabolismo
5.
Chemosphere ; 352: 141465, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364918

RESUMEN

Biochar has been extensively studied in wastewater treatment systems. However, the role of biochar in the single-stage partial nitritation anammox (SPNA) system remains not fully understood. This study explored the impact of biochar on the SPNA at ambient temperatures (20 °C and 15 °C). The nitrogen removal rate of the system raised from 0.43 to 0.50 g N/(L·d) as the biochar addition was raised from 2 to 4 g/L. Metagenomic analysis revealed that gene abundances of amino sugar metabolism and nucleotide sugar metabolism, amino acid metabolism, and quorum sensing were decreased after the addition of biochar. However, the gene abundance of enzymes synthesizing NADH and trehalose increased, indicating that biochar could stimulate electron transfer reactions in microbial metabolism and assist microorganisms in maintaining a steady state at lower temperatures. The findings of this study provide valuable insights into the mechanism behind the improved nitrogen removal facilitated by biochar in the single-stage partial nitritation anammox system.


Asunto(s)
Compuestos de Amonio , Carbón Orgánico , Aguas del Alcantarillado , Temperatura , Oxidación Anaeróbica del Amoníaco , Oxidación-Reducción , Nitrógeno/metabolismo , Reactores Biológicos , Desnitrificación , Compuestos de Amonio/metabolismo
6.
J Environ Manage ; 345: 118761, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37683380

RESUMEN

Despite the advantages of the combined anammox and fermentation-driven denitrification process in nitrogen removal and energy consumption, stable performance at decreased temperatures remains a challenge. In this study, a robust and high-efficient nitrogen removal efficiency (95.0-93.1 âˆ¼ 86.8-93.4%) with desirable effluent quality (3.0-4.1 âˆ¼ 7.9-4.9 mg/L) under long-term decreased temperatures (30 °C→25 °C→20 °C) was achieved in a zero-external carbon Partial Nitritation/Anammox combined with in-situ sludge Fermentation-Denitrification process treating sewage. Excellent sludge reduction averaged at 14.9% assuming no microbial growth. Increased hzsB mRNA (2.2-fold) and reduced Ea (80.9 kJ/mol) proved resilient anammox to lower temperature. RT-qPCR tests revealed increased NarG/NirK (5.1) and NarG/NirS (4.9) mRNA at 20 °C, suggesting higher NO3-→NO2- over NO2-→N2 pathway. Metagenomics unraveled dominant anammox bacteria (Candidatus_Brocadia, 2.27%), increased denitritation bacteria containing more NarG (Hyphomicrobium, 0.8%), fatty acid biosynthesis and CAZymes genes. Enhanced denitritation with recovered organics from sludge reserved nitrite for anammox and facilitated higher anammox contribution to N removal at 20 °C (42.4%) than 30 °C (39.5%). This study proposed an innovative low-temperature strategy for in-situ sludge fermentation, and demonstrated stability of advanced municipal wastewater treatment and sludge disposal through energy savings and carbon recovery under decreased temperatures.


Asunto(s)
Desnitrificación , Aguas del Alcantarillado , Fermentación , Dióxido de Nitrógeno , Temperatura , Carbono , Nitrógeno
7.
Water Environ Res ; 95(10): e10931, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37759340

RESUMEN

A sequencing batch reactor (SBR) was operated to investigate variations of extracellular polymeric substances (EPS) and microbial community during the start-up of the single-stage partial nitritation/anammox (SPN/A) process at intermittent aeration mode. The SPN/A system was successfully started on day 34, and the nitrogen removal efficiency and total nitrogen loading rate were 82.29% and 0.31 kg N/(m3 ·day), respectively. Furthermore, the relationship between the protein secondary structures and microbial aggregation was strongly related. The α-helix/ (ß-sheet + random coil) ratios increased obviously from 0.20 ± 0.03 to 0.23 ± 0.01, with the sludge aggregation mean size increased from 56 to 107 µm during the start-up of SPN/A. During the start-up of SPN/A, Candidatus Kuenenia was the primary anammox bacteria, whereas Nitrospira was the main functional bacteria of nitrite-oxidizing bacteria. Correlation between the microbial community and EPS components was performed. The EPS and microbial community played important roles in keeping stable nitrogen removal and the formation of sludge granules. PRACTITIONER POINTS: Intermittent aeration strategy promoted SPN/A system start-up. EPS composition and protein secondary structure were related with the sludge disintegration and aggregation. Microbial community shift existed and promoted the stability of sludge and reactor performance during SPN/A start-up.


Asunto(s)
Compuestos de Amonio , Microbiota , Aguas del Alcantarillado/microbiología , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Oxidación Anaeróbica del Amoníaco , Oxidación-Reducción , Reactores Biológicos/microbiología , Nitrógeno/metabolismo , Bacterias/metabolismo , Compuestos de Amonio/metabolismo , Desnitrificación
8.
Water Res ; 241: 120120, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37270946

RESUMEN

Current research focuses on efficient single-stage nitrogen removal from organic matter wastewater using the partial nitritation-anammox (PNA) process. In this study, we constructed a single-stage partial nitritation-anammox and denitrification (SPNAD) system using a dissolved oxygen-differentiated airlift internal circulation reactor. The system was operated continuously for 364 days at 250 mg/L NH4+-N. During the operation, the COD/NH4+-N ratio (C/N) was increased from 0.5 to 4 (0.5, 1, 2, 3, and 4), and the aeration rate (AR) gradually increased. The results showed that the SPNAD system maintained efficient and stable operation at C/N = 1-2 and AR = 1.4-1.6 L/min, with an average total nitrogen removal efficiency of 87.2%. The removal pathways of pollutants in the system and the interactions between microbes were revealed by analyzing the changes in sludge characteristics and microbial community structure at different phases. As the influent C/N increased, the relative abundance of Nitrosomonas and Candidatus Brocadia decreased, and that of denitrifying bacteria, such as Denitratisoma, increased to 44%. The nitrogen removal pathway of the system gradually changed from autotrophic nitrogen removal to nitrification-denitrification. At the optimum C/N, the SPNAD system synergistically removed nitrogen through PNA and nitrification-denitrification. Overall, the unique reactor configuration facilitated the formation of dissolved oxygen compartments, providing a suitable environment for different microbes. An appropriate organic matter concentration maintained the dynamic stability of microbial growth and interactions. These enhance microbial synergy and enable efficient single-stage nitrogen removal.


Asunto(s)
Desnitrificación , Nitrógeno , Nitrógeno/metabolismo , Oxidación-Reducción , Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Nitrificación , Interacciones Microbianas
9.
Environ Res ; 226: 115701, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36931374

RESUMEN

Granular sludges are commonly microbial aggregates used to apply partial nitritation/anammox (PN/A) processes during efficient biological nitrogen removal from ammonium-rich wastewater. Considering keystone taxa of anammox bacteria (AnAOB) in granules and their sensitivity to unfavorable environments, it is essential to investigate microbial responses of autotrophic PN/A granules to real water matrices containing organic and inorganic pollutants. In this study, tap water, surface water, and biotreated wastewater effluents were fed into a series of continuous PN/A granular reactors, respectively, and the differentiation in functional activity, sludge morphology, microbial community structure, and nitrogen metabolic pathways was analyzed by integrating kinetic batch testing, size characterization, and metagenomic sequencing. The results showed that feeding of biotreated wastewater effluents causes significant decreases in nitrogen removal activity and washout of AnAOB (dominated by Candidatus Kuenenia) from autotrophic PN/A granules due to the accumulation of heavy metals and formation of cavities. Microbial co-occurrence networks and nitrogen cycle-related genes provided evidence for the high dependence of symbiotic heterotrophs (such as Proteobacteria, Chloroflexi, and Bacteroidetes) on anammox metabolism. The enhancement of Nitrosomonas nitritation in the granules would be considered as an important contributor to greenhouse gas (N2O) emissions from real water matrices. In a novel view on the application of microbial responses, we suggest a bioassay of PN/A granules by size characterization of red-color cores in ecological risk assessment of water environments.


Asunto(s)
Compuestos de Amonio , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Aguas Residuales , Agua , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos/microbiología , Compuestos de Amonio/química , Compuestos de Amonio/metabolismo , Bacterias/genética , Bacterias/metabolismo , Oxidación-Reducción , Nitrógeno/metabolismo
10.
Front Microbiol ; 14: 1046769, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778888

RESUMEN

The partial nitritation-anaerobic ammonium oxidation (anammox; PN-A) process has been considered a sustainable method for wastewater ammonium removal, with recent attempts to treat low-strength wastewater. However, how microbes adapt to the alternate microaerobic-anoxic operation of the process when treating low ammonium concentrations remains poorly understood. In this study, we applied a metagenomic approach to determine the genomic contents of core members in a PN-A reactor treating inorganic ammonium wastewater at loading as low as 0.0192 kg-N/m3/day. The metabolic traits of metagenome-assembled genomes from 18 core species were analyzed. Taxonomically diverse ammonia oxidizers, including two Nitrosomonas species, a comammox Nitrospira species, a novel Chloroflexota-related species, and two anammox bacteria, Ca. Brocadia and Ca. Jettenia, accounted for the PN-A reactions. The characteristics of a series of genes encoding class II ribonucleotide reductase, high-affinity bd-type terminal oxidase, and diverse antioxidant enzymes revealed that comammox Nitrospira has a superior adaptation ability over the competitors, which may confer the privileged partnership with anammox bacteria in the PN-A reactor. This finding is supported by the long-term monitoring experiment, showing the predominance of the comammox Nitrospira in the ammonia-oxidizing community. Metagenomic analysis of seven heterotrophs suggested that nitrate reduction is a common capability in potentially using endogenous carbohydrates and peptides to enhance nitrogen removals. The prevalence of class II ribonucleotide reductase and antioxidant enzymes genes may grant the adaptation to cyclically microaerobic/anoxic environments. The predominant heterotroph is affiliated with Chloroflexota; its genome encodes complete pathways for synthesizing vitamin B6 and methionine. By contrast, other than the two growth factors, Nitrospira and anammox bacteria are complementary to produce various vitamins and amino acids. Besides, the novel Chloroflexota-related ammonia oxidizer lacks corresponding genes for detoxifying the reactive oxygen species and thus requires the aid of co-existing members to alleviate oxidative stress. The analysis results forecast the exchanges of substrates and nutrients as well as the collective alleviation of oxidative stress among the core populations. The new findings of the genomic features and predicted microbial interplay shed light on microbial adaptation to intermittent microaeration specific to the PN-A reactor, which may aid in improving its application to low-strength ammonium wastewater.

11.
J Environ Sci (China) ; 126: 29-39, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36503757

RESUMEN

Residual ammonium is a critical parameter affecting the stability of mainstream partial nitritation/anammox (PN/A), but the underlying mechanism remains unclear. In this study, mainstream PN/A was established and operated with progressively decreasing residual ammonium. PN/A deteriorated as the residual ammonium decreased to below 5 mg/L, and this was paralleled by a significant loss in anammox activity in situ and an increasing nitrite oxidation rate. Further analysis revealed that the low-ammonium condition directly decreased anammox activity in situ via two distinct mechanisms. First, anammox bacteria were located in the inner layer of the granular sludge, and thus were disadvantageous when competing for ammonium with ammonium-oxidizing bacteria (AOB) in the outer layer. Second, the complete ammonia oxidizer (comammox) was enriched at low residual ammonium concentrations because of its high ammonium affinity. Both AOB and comammox presented kinetic advantages over anammox bacteria. At high residual ammonium concentrations, nitrite-oxidizing bacteria (NOB) were effectively suppressed, even when their maximum activity was high due to competition for nitrite with anammox bacteria. At low residual ammonium concentrations, the decrease in anammox activity in situ led to an increase in nitrite availability for nitrite oxidation, facilitating the activation of NOB despite the dissolved oxygen limitation (0.15-0.35 mg/L) for NOB persisting throughout the operation. Therefore, the deterioration of mainstream PN/A at low residual ammonium was primarily triggered by a decline in anammox activity in situ. This study provides novel insights into the optimized design of mainstream PN/As in engineering applications.


Asunto(s)
Compuestos de Amonio , Nitritos , Amoníaco , Aguas del Alcantarillado , Cinética
12.
Water Res ; 225: 119194, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36215833

RESUMEN

Partial nitritation-anammox (PN/A) is a promising deammonification process to develop energy-neutral wastewater treatment plants. However, the mainstream application of PN/A still faces the challenges of low nitrogen concentration and low temperatures, and has not been studied under a realistic condition of large-scale reactor (kiloliter level), real municipal wastewater (MWW) and seasonal temperatures. In this research, a pilot-scale one-stage PN/A, with integrated fixed-film activated sludge (IFAS) configuration, was operated to treat the real MWW pretreated by anaerobic membrane bioreactor. The removal efficiency of total nitrogen (TN) was 79.4%, 75.7% and 65.9% at 25, 20 and 15°C, corresponding to the effluent TN of 7.3, 9.7 and 12.0 mg/L, respectively. The suppression of ammonium-oxidizing bacteria (AOB) and anammox bacteria (AnAOB) occurred at lower temperatures, and the significant decrease in AOB treatment capacity was the reason for the poorer nitrogen removal at 15°C. Biomass retention and microbial segregation were successfully achieved. Specifically, Candidatus_Brocadia and Candidatus_Kuenenia were main AnAOB genera and mainly enriched on carriers, Nitrosomonas and uncultured f_Chitinophagaceae were main AOB genera and mainly distributed in suspended sludge and retained by sedimentation tank. Moreover, nitrite-oxidizing bacteria (NOB) were sufficiently suppressed by intermittent aeration and low dissolved oxygen, the presence of heterotrophic bacteria upgraded the PN/A to a simultaneous partial nitritation, anammox, denitrification, and COD oxidation (SNADCO) system, which improved the overall removal of TN and COD. The results of this investigation clearly evidence the strong feasibility of PN/A as a mainstream nitrogen removal process in temperate climates.


Asunto(s)
Compuestos de Amonio , Aguas del Alcantarillado , Aguas Residuales , Nitritos , Biomasa , Temperatura , Oxidación Anaeróbica del Amoníaco , Estaciones del Año , Reactores Biológicos/microbiología , Nitrógeno , Bacterias , Oxidación-Reducción , Oxígeno
13.
Bioresour Technol ; 364: 127992, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36150424

RESUMEN

The anaerobic ammonia oxidation (anammox) process is a promising biological nitrogen removal technology. However, owing to the sensitivity and slow cell growth of anammox bacteria, long startup time and initially low nitrogen removal rate (NRR) are still limiting factors of practical applications of anammox process. Moreover, nitrogen removal efficiency (NRE) is often lower than 88 %. This review summarizes the most common methods for improving NRR by increasing microorganism concentration, and modifying reactor configuration. Recent integrated anammox-based systems were evaluated, including hydroxyapatite (HAP)-enhanced one-stage partial nitritation/anammox (PNA) process for a high NRR of over 2 kg N/m3/d at 25 °C, partial denitrification/anammox (PDA) process, and simultaneous partial nitrification, anammox, and denitrification process for a high NRE of up to 100 %. After discussing the challenges for the application of these systems critically, a combined system of anaerobic digestion, HAP-enhanced one-stage PNA and PDA is proposed in order to achieve a high NRR, high NRE, and phosphorus removal simultaneously.

14.
Bioresour Technol ; 361: 127750, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35944867

RESUMEN

Partial nitritation-anammox (PNA) deteriorates easily and is difficult to recover. After an airlift inner-circulation partition bioreactor was impacted by low NH4+-N wastewater containing organic matter, Nitrospira and Denitratisoma propagated rapidly, granular sludge disintegrated, and the total nitrogen removal efficiency (TNRE) decreased from 68.27 % to 5.97 %. This study used a unique strategy to recover deteriorated single-stage PNA systems and explored the mechanism of rapid performance recovery. The TNRE of the system recovered up to 61.77 % in 43 days. The high nitrogen loading rate and hydraulic shear force from the airlift caused the sludge in the reactor to granulate again. The microbial community structure recovered, with a decrease in the abundance of Nitrospira (0.05 %) and enrichment of Candidatus Brocadia (8.82 %). A favorable synergy among functional microbes in the reactor was thus re-established, promoting the rapid recovery of the nitrogen removal performance. This study provides a feasible recovery strategy for PNA processes.


Asunto(s)
Compuestos de Amonio , Aguas del Alcantarillado , Oxidación Anaeróbica del Amoníaco , Bacterias , Reactores Biológicos , Desnitrificación , Nitrógeno , Oxidación-Reducción , Aguas Residuales
15.
Front Microbiol ; 13: 927650, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35722350

RESUMEN

The understanding of microbial compositions in different dimensions is essential to achieve the successful design and operation of the partial nitritation/anammox (PN/A) process. This study investigated the microbial communities of different sludge morphologies and spatial distribution in the one-stage PN/A process of treating real coal to ethylene glycol (CtEG) wastewater at a pilot-scale integrated fixed-film activated sludge (IFAS) reactor. The results showed that ammonia-oxidizing bacteria (AOB) was mainly distributed in flocs (13.56 ± 3.16%), whereas anammox bacteria (AnAOB) was dominated in the biofilms (17.88 ± 8.05%). Furthermore, the dominant AnAOB genus in biofilms among the first three chambers was Candidatus Brocadia (6.46 ± 2.14% to 11.82 ± 6.33%), whereas it was unexpectedly transformed to Candidatus Kuenenia (9.47 ± 1.70%) and Candidatus Anammoxoglobus (8.56 ± 4.69%) in the last chamber. This demonstrated that the niche differentiation resulting from morphological (dissolved oxygen) and spatial heterogeneity (gradient distribution of nutrients and toxins) was the main reason for dominant bacterial distribution. Overall, this study presents more comprehensive information on the heterogeneous distribution and transformation of communities in PN/A processes, providing a theoretical basis for targeted culture and selection of microbial communities in practical engineering.

16.
Bioresour Technol ; 357: 127379, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35642853

RESUMEN

Successful application of partial nitritation-anammox (PNA) processes is currently and primarily associated with biofilm systems. Biofilm characteristics significantly influence start-up, performance stability, and recovery. Here, two PNA systems with and without carriers were implemented simultaneously for treating wastewater containing 50 mg-NH4/L. The performance characteristics of these two PNA systems were compared. Stable nitrogen removal efficiencies of 76.3 ± 2.8% and 72.9 ± 1.6% were obtained for suspended sludge and biofilm systems, respectively. The slow process of biofilm colonization resulted in a long start-up time in the biofilm system. Biofilm enrichment and protection conferred stable performance when exposed to aeration shock. The suspended sludge system displayed good elasticity during performance recovery after shock compared to the slow recovery in the biofilm system. Moreover, suitable control of dissolved oxygen could improve the activity and abundance of the functional microbes. This study provides new insights into the operation and control of PNA systems for treating mainstream wastewater.


Asunto(s)
Compuestos de Amonio , Aguas del Alcantarillado , Oxidación Anaeróbica del Amoníaco , Biopelículas , Reactores Biológicos , Nitrógeno , Oxidación-Reducción , Aguas Residuales
17.
Bioresour Technol ; 356: 127310, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35569714

RESUMEN

Two-stage Partial nitritation/Anammox (PN/A) was firstly performed for recalcitrant organics (RO)-rich thermal hydrolysis pretreated anaerobic digestion (THP-AD) centrate treatment with municipal wastewater (MW) as co-substrate. Results indicated the inhibitory effects of RO was alleviated and high nitrate issue in PN/A effluent was addressed by cotreatment strategy. Stable PN with nitrite accumulation ratio of 95% and N removal efficiency of 97.1% were well maintained at MW of 80%. Nevertheless, nitrate accumulation and anammox activity loss were observed with lowering MW proportion owing to the weakened denitrification activity and aggravated inhibitory effect. Microbial analysis revealed Nitrosomonas was the major ammonium oxidizing bacteria and the ideal PN performance was due to the effective out-selection of nitrite oxidizing bacteria. Candidatus Kuenenia was identified as the primary bacteria for nitrogen removal (82.7%), and the controlled abundance of heterotrophic denitrifiers in anammox system ensured the enhanced nitrogen removal regardless of high COD loading from THP-AD centrate.


Asunto(s)
Compuestos de Amonio , Purificación del Agua , Oxidación Anaeróbica del Amoníaco , Anaerobiosis , Bacterias , Reactores Biológicos/microbiología , Desnitrificación , Hidrólisis , Nitratos , Nitritos , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado , Aguas Residuales
18.
Bioresour Technol ; 358: 127354, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35609747

RESUMEN

In low-ammonia sewage anammox process, cultivation and enrichment of anammox bacteria (AnAOB) is a challenge especially from traditional activated sludge. To this end, a novel strategy solely using activated sludge as inoculum and biocarrier in a dynamic fixed-bed reactor was proposed in this study. During 115-day operation, excellent performance was achieved with influent total inorganic nitrogen (TIN) and effluent TIN of 55.3 mg·L-1 and 4.1 mg·L-1, respectively. Rapid enrichment of AnAOB (doubling time: 8.5 days) was demonstrated by augmented specific anammox activity (trace value to 1.85 mg N·g VSS-1·h-1) and increased hzsB gene number (106 to 109 copies·g-1 dry sludge), with predominance of Candidatus_Brocadia. Large-flocs aggregate was the primary habitat for AnAOB with highest abundance and capacity. The distinctive sludge properties, symbiotic microbial interactions and dynamic operation scheme facilitated AnAOB growth and retention. This study provides a simple, economic and workable approach for the start-up of mainstream anammox process.


Asunto(s)
Compuestos de Amonio , Aguas del Alcantarillado , Oxidación Anaeróbica del Amoníaco , Anaerobiosis , Bacterias/genética , Reactores Biológicos/microbiología , Desnitrificación , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado/microbiología , Aguas Residuales/microbiología
19.
Water Res ; 218: 118517, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35512538

RESUMEN

Sidestream partial nitritation and deammonification (pN/A) of high-strength ammonia wastewater is a well-established technology. Its expansion to the mainstream is, however mainly impeded by poor retention of anaerobic ammonia oxidizing bacteria (AnAOB), insufficient repression of nitrite oxidizing bacteria (NOB) and difficult control of soluble chemical oxygen demand and nitrite levels. At the municipal wastewater treatment plant in Strass (Austria) the microbial consortium was exhaustively monitored at full-scale over one and a half year with regular transfer of sidestream DEMON® biomass and further retention and enrichment of granular anammox biomass via hydrocyclone operation. Routine process parameters were surveyed and the response and evolution of the microbiota was followed by molecular tools, ex-situ activity tests and further, AnAOB quantification through particle tracking and heme measurement. After eight months of operation, the first anaerobic, simultaneous depletion of ammonia and nitrite was observed ex-situ, together with a direction to higher nitrite generation (68% of total NOx-N) as compared to nitrate under aerobic conditions. Our dissolved oxygen (DO) scheme allowed for transient anoxic conditions and had a strong influence on nitrite levels and the NOB community, where Nitrobacter eventually dominated Nitrospira. The establishment of a minor but stable AnAOB biomass was accompanied by the rise of Chloroflexi and distinct emergence of Chlorobi, a trend not seen in the sidestream system. Interestingly, the most pronounced switch in the microbial community and noticeable NOB repression occurred during unfavorable conditions, i.e. the cold winter season and high organic load. Further abatement of NOB was achieved through bioaugmentation of aerobic ammonia oxidizing bacteria (AerAOB) from the sidestream-DEMON® tank. Performance of the sidestream pN/A was not impaired by this operational scheme and the average volumetric nitrogen removal rate of the mainstream even doubled in the second half of the monitoring campaign. We conclude that a combination of both, regular sidestream-DEMON® biomass transfer and granular SRT increase via hydrocyclone operation was crucial for AnAOB establishment within the mainstream.


Asunto(s)
Amoníaco , Nitritos , Bacterias , Biomasa , Reactores Biológicos , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado , Aguas Residuales/análisis
20.
Bioresour Technol ; 349: 126864, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35183723

RESUMEN

A pilot-scale anaerobic membrane bioreactor (AnMBR) integrated with a one-stage partial nitritation-anammox (PN/A) reactor was operated for the treatment of municipal wastewater (MWW) at seasonal temperatures of 15-25 °C. The removal efficiencies of COD and total nitrogen (TN) were always > 90% and > 75% respectively. The methanogenesis and PN/A were identified as the primary removal pathways of COD and TN, respectively, and were suppressed at low temperatures. With the temperature dropped from 25 °C to 20 °C to 15 °C, the methane-accounted COD decreased from 63.1% to 59.6% to 48.4%, and the PN/A-accounted TN decreased from 58.1% to 51.7% to 45.3%. The AnMBR and PN/A mutually complement each other in this combined process, as the AnMBR removed 8.5%-16.1% of TN by sludge entrainment and the PN/A reactor removed 2.6%-3.4% of COD by denitrification and aerobic oxidation. These results highlighted the strong feasibility of applying the AnMBR-PN/A process to the treatment of MWW in temperate climate.


Asunto(s)
Compuestos de Amonio , Aguas Residuales , Compuestos de Amonio/metabolismo , Oxidación Anaeróbica del Amoníaco , Anaerobiosis , Reactores Biológicos , Desnitrificación , Nitrógeno , Oxidación-Reducción , Estaciones del Año , Aguas del Alcantarillado , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA