Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurochem ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115041

RESUMEN

The accumulation of ß-amyloid in Alzheimer's disease greatly impacts neuronal health and synaptic function. To maintain network stability in the face of altered synaptic activity, neurons engage a feedback mechanism termed homeostatic scaling; however, this process is thought to be disrupted during disease progression. Previous proteomics studies have shown that one of the most highly regulated proteins in cell culture models of homeostatic scaling is the small secretory chaperone proSAAS. Our prior work has shown that proSAAS exhibits anti-aggregant behavior against alpha-synuclein and ß-amyloid fibrillation in vitro and is up-regulated in cell models of proteostatic stress. However, the specific role that this protein might play in homeostatic scaling, and its anti-aggregant role in Alzheimer's progression, is not clear. To learn more about the role of proSAAS in maintaining hippocampal proteostasis, we compared its expression in a primary neuron model of homeostatic scaling to other synaptic components using western blotting and qPCR, revealing that proSAAS protein responses to homeostatic up- and down-regulation were significantly higher than those of two other synaptic vesicle components, 7B2 and carboxypeptidase E. However, proSAAS mRNA expression was static, suggesting translational control and/or altered protein degradation. ProSAAS was readily released upon depolarization of differentiated hippocampal cultures, supporting its synaptic localization. Immunohistochemical analysis demonstrated abundant proSAAS within the mossy fiber layer of the hippocampus in both wild-type and 5xFAD mice; in the latter, proSAAS was also concentrated around amyloid plaques. Importantly, overexpression of proSAAS in the CA1 region via stereotaxic injection of proSAAS-encoding AAV2/1 significantly decreased amyloid plaque burden in 5xFAD mice. We hypothesize that dynamic changes in proSAAS expression play a critical role in hippocampal proteostatic processes, both in the context of normal homeostatic plasticity and in the control of protein aggregation during Alzheimer's disease progression.

2.
J Pediatr Endocrinol Metab ; 36(12): 1140-1145, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37877373

RESUMEN

OBJECTIVES: To study the prevalence and influence on metabolic profile of the prohormone-convertase-1 (PCSK1) N221D variant in childhood obesity, proven its role in the leptin-melanocortin signaling pathway as in proinsulin and other prohormone cleavage. METHODS: Transversal study of 1066 children with obesity (mean age and BMI Z-score 10.38 ± 3.44 years and +4.38 ± 1.77, respectively), 51.4 % males, 54.4 % prepubertal, 71.5 % Caucasians and 20.8 % Latinos. Anthropometric and metabolic features were compared between patients carrying the N221D variant in PCSK1 and patients with no variants found after next generation sequencing analysis of 17 genes (CREBBP, CPE, HTR2C, KSR2, LEP, LEPR, MAGEL2, MC3R, MC4R, MRAP2, NCOA1, PCSK1, POMC, SH2B1, SIM1, TBX3 and TUB) involved in the leptin-melanocortin pathway. RESULTS: No variants were found in 531 patients (49.8 %), while 68 patients carried the PCSK1 N221D variant (42 isolately, and 26 with at least one additional gene variant). Its prevalence was higher in Caucasians vs. Latinos (χ2 7.81; p<0.01). Patients carrying exclusively the PCSK1 N221D variant (n=42) showed lower insulinemia (p<0.05), HOMA index (p<0.05) and area under the curve for insulin in the oral glucose tolerance test (p<0.001) and higher WBISI (p<0.05) than patients with no variants, despite similar obesity severity, age, sex and ethnic distribution. CONCLUSIONS: The N221D variant in PCSK1 is highly prevalent in childhood obesity, influenced by ethnicity. Indirect estimation of insulin resistance, based on insulinemia could be byassed in these patients and underestimate their type 2 diabetes mellitus risk.


Asunto(s)
Diabetes Mellitus Tipo 2 , Obesidad Infantil , Masculino , Humanos , Niño , Femenino , Obesidad Infantil/epidemiología , Obesidad Infantil/genética , Leptina/genética , Leptina/metabolismo , Melanocortinas/metabolismo , Metaboloma , Proteínas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proproteína Convertasa 1/genética , Proproteína Convertasa 1/metabolismo
3.
Genes (Basel) ; 14(9)2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37761915

RESUMEN

Metabolic diseases, including obesity, diabetes, and metabolic syndrome, are among the most important public health challenges worldwide. Metabolic diseases are classified as multifactorial diseases in which genetic variants such as single-nucleotide polymorphisms (SNPs) may play an important role. The present study aimed to identify associations linking allelic variants of the PCSK1, TMEM18, GPX5, ZPR1, ZBTB16, and PPARG1 genes with anthropometric and biochemical traits and metabolic diseases (obesity or metabolic syndrome) in an adult population from northwestern Mexico. METHODS: Blood samples were collected from 523 subjects, including 247 with normal weight, 276 with obesity, and 147 with metabolic syndrome. Anthropometric and biochemical characteristics were recorded, and single-nucleotide polymorphisms (SNPs) were genotyped by real-time PCR. RESULTS: PCSK1 was significantly (p < 0.05) associated with BMI, weight, and waist-to-hip ratio; TMEM18 was significantly associated with systolic blood pressure and triglyceride levels; GPX5 was significantly associated with HDL cholesterol levels. In addition, PCSK1 was associated with obesity (p = 1.0 × 10-4) and metabolic syndrome (p = 3.0 × 10-3), whereas PPARG1 was associated with obesity (p = 0.044). CONCLUSIONS: The associations found in this study, mainly between allelic variants of PCSK1 and metabolic traits, obesity, and metabolic syndrome, may represent a risk for developing metabolic diseases in adult subjects from northwestern Mexico.


Asunto(s)
Síndrome Metabólico , Adulto , Humanos , Síndrome Metabólico/genética , México/epidemiología , Alelos , Obesidad/genética , Genotipo , PPAR gamma/genética , Proproteína Convertasa 1
4.
Adv Biol (Weinh) ; 7(8): e2300061, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37083215

RESUMEN

Nonsyndromic monogenic obesity (NSMO) is a class of individual obesity that is independent of the environment and caused by a single gene mutation. It is mostly caused by mutations in LEP, LEPR, PCSK1, as well as some rare mutations in UCP3, NR0B2, and PPARG. Among 30 obesity patients, five patients are identified with positive gene detection. For the first time, the c.624C>T mutation associated with PCSK1, and the c.50G>A and c.293_301delinsAC mutations associated with NR0B2, as well as the obesity phenotype mutation (c.284A>G) associated with PPARG is confirmed. Following this, the genotype-clinical phenotype, mutation hotspots, and mutation distributions of each gene are summarized, and the genetic characteristics of NSMO are analyzed. The locations of mutation c.50G>A, and c.284A>G are highly conserved according to the sequencing alignment. According to the findings, the c.624C>T mutation in PCSK1 is a newly discovered synonymous mutation, but it can result in significant early-onset obesity. Additionally, the mutation of c.284A>G(PPARG) can lead to a variety of clinical phenotypes and the mutation of UCP3 and NR0B2 may increase the risk of type 2 diabetes mellitus. This study enriches the human NSMO gene mutation database and provides a scientific basis for clinically accurate diagnosis and treatment.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , PPAR gamma/genética , Obesidad/genética , Mutación , Fenotipo
5.
Front Pediatr ; 10: 1026707, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389395

RESUMEN

Objectives: Preprotein convertase 1/3 deficiency is a rare autosomal recessive disorder in which patients present with malabsorptive diarrhea and a series of symptoms of endocrine disorders such as polydipsia, reactive hypoglycemia, growth hormone deficiency, hypothyroidism, adrenal insufficiency, and early onset obesity. In its essence, pituitary hormone deficiency is caused by insufficient cleavage of pituitary prohormones. Here, we describe a female child with a rare double-site homozygous mutation in PCSK1 (Proprotein convertase subtilisin/kexin-type 1) gene, and thereby intend to investigate the relationship between these novel mutation sites and changes in protein synthesis and function. Methods: We tested this patient's blood and urine fecal indicators of infection, blood electrolytes, and relevant endocrine hormone levels in the laboratory. Next Generation Sequencing was applied to screen the patient's DNA. Western Blot was performed to evaluate the mutant protein's expression. The enzymatic activity was measured as the rate of cleavage of a synthetic fluorogenic substrate in a specific solution. Results: We found that this patient presented shortly after birth with uncorrectable diarrhea and symptoms of metabolic acidosis with hypothyroidism. Next Generation Sequencing revealed that a rare double-site homozygous missense mutation, c.763G > A (p.G255R) and c.758C > T (p.S253L), were detected in exon 7 of PCSK1 (Proprotein convertase subtilisin/kexin-type 1) gene on chromosome 5 of the patient. Western blotting revealed that there was no significant decrease in protein synthesis levels in the mutant phenotype compared to the wild type. Compared with WT type, the proteins expressed by the mutations showed a significant decrease in the enzyme activity towards the fluorescent substrates. However, neither the single site mutation p.S253L or p.G255R, nor the double-site mutation of both, all showed no significant differences from each other. Conclusions: These two missense mutations have not been reported before, and it is even rarer to find homozygous variation of two sites in one patient. This study identifies two novel mutations for the first time and further investigates the changes in protein synthesis and enzyme activity, providing a new pathway to continue to explore the pathogenesis of diseases associated with the function of PC1/3.

6.
Genes (Basel) ; 13(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36292633

RESUMEN

Recently, it was reported that heterozygous PCSK1 variants, causing partial PC1/3 deficiency, result in a significant increased risk for obesity. This effect was almost exclusively generated by the rare p.Y181H (rs145592525, GRCh38.p13 NM_000439.5:c.541T>C) variant, which affects PC1/3 maturation but not enzymatic capacity. As most of the identified individuals with the heterozygous p.Y181H variant were of Belgian origin, we performed a follow-up study in a population of 481 children and adolescents with obesity, and 486 lean individuals. We identified three obese (0.62%) and four lean (0.82%) p.Y181H carriers (p = 0.506) through sanger sequencing and high resulting melting curve analysis, indicating no association with obesity. Haplotype analysis was performed in 13 p.Y181H carriers, 20 non-carriers (10 with obesity and 10 lean), and two p.Y181H families, and showed identical haplotypes for all heterozygous carriers (p < 0.001). Likewise, state-of-the-art literature concerning the role of rare heterozygous PCSK1 variants implies them to be rarely associated with monogenic obesity, as first-degree carrier relatives of patients with PC1/3 deficiency are mostly not reported to be obese. Furthermore, recent meta-analyses have only indicated a robust association for scarce disruptive heterozygous PCSK1 variants with obesity, while clinical significance is less or sometimes lacking for most nonsynonymous variants.


Asunto(s)
Obesidad , Proproteína Convertasa 1 , Niño , Adolescente , Humanos , Estudios de Seguimiento , Obesidad/genética , Heterocigoto , Proproteína Convertasa 1/genética
7.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35955861

RESUMEN

Prader−Willi syndrome (PWS) is a complex neurodevelopmental disorder caused by the deletion or inactivation of paternally expressed imprinted genes at the chromosomal region 15q11−q13. The PWS-critical region (PWScr) harbors tandemly repeated non-protein coding IPW-A exons hosting the intronic SNORD116 snoRNA gene array that is predominantly expressed in brain. Paternal deletion of PWScr is associated with key PWS symptoms in humans and growth retardation in mice (PWScr model). Dysregulation of the hypothalamic−pituitary axis (HPA) is thought to be causally involved in the PWS phenotype. Here we performed a comprehensive reverse transcription quantitative PCR (RT-qPCR) analysis across nine different brain regions of wild-type (WT) and PWScr mice to identify stably expressed reference genes. Four methods (Delta Ct, BestKeeper, Normfinder and Genorm) were applied to rank 11 selected reference gene candidates according to their expression stability. The resulting panel consists of the top three most stably expressed genes suitable for gene-expression profiling and comparative transcriptome analysis of WT and/or PWScr mouse brain regions. Using these reference genes, we revealed significant differences in the expression patterns of Igfbp7, Nlgn3 and three HPA associated genes: Pcsk1, Pcsk2 and Nhlh2 across investigated brain regions of wild-type and PWScr mice. Our results raise a reasonable doubt on the involvement of the Snord116 in posttranscriptional regulation of Nlgn3 and Nhlh2 genes. We provide a valuable tool for expression analysis of specific genes across different areas of the mouse brain and for comparative investigation of PWScr mouse models to discover and verify different regulatory pathways affecting this complex disorder.


Asunto(s)
Síndrome de Prader-Willi , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Exones , Impresión Genómica , Humanos , Ratones , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Proproteína Convertasa 1/genética , Proproteína Convertasa 1/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo
8.
J Parkinsons Dis ; 12(5): 1463-1478, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35527562

RESUMEN

BACKGROUND: Parkinson's disease involves aberrant aggregation of the synaptic protein alpha-synuclein (aSyn) in the nigrostriatal tract. We have previously shown that proSAAS, a small neuronal chaperone, blocks aSyn-induced dopaminergic cytotoxicity in primary nigral cultures. OBJECTIVE: To determine if proSAAS overexpression is neuroprotective in animal models of Parkinson's disease. METHODS: proSAAS- or GFP-encoding lentivirus was injected together with human aSyn-expressing AAV unilaterally into the substantia nigra of rats and motor asymmetry assessed using a battery of motor performance tests. Dopamine neuron survival was assessed by nigral stereology and striatal tyrosine hydroxylase (TH) densitometry. To examine transsynaptic spread of aSyn, aSyn AAV was injected into the vagus of mice in the presence of AAVs encoding either GFP or proSAAS; the spread of aSyn-positive neurites into rostral nuclei was quantified following immunohistochemistry. RESULTS: Coinjection of proSAAS-encoding lentivirus profoundly reduced the motor asymmetry caused by unilateral nigral AAV-mediated human aSyn overexpression. This was accompanied by significant amelioration of the human aSyn-induced loss of both nigral TH-positive cells and striatal TH-positive terminals, demonstrating clear proSAAS-mediated protection of the nigrostriatal tract. ProSAAS overexpression reduced human aSyn protein levels in nigra and striatum and reduced the loss of TH protein in both regions. Following vagal administration of human aSyn-encoding AAV, the number of human aSyn-positive neurites in the pons and caudal midbrain was considerably reduced in mice coinjected with proSAAS-, but not GFP-encoding AAV, supporting proSAAS-mediated blockade of transsynaptic aSyn transmission. CONCLUSION: The proSAAS chaperone may represent a promising target for therapeutic development in Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ratones , Neuroprotección , Enfermedad de Parkinson/terapia , Ratas , Roedores/metabolismo , Sustancia Negra/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , alfa-Sinucleína/metabolismo
9.
ACS Chem Neurosci ; 13(11): 1651-1665, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35549000

RESUMEN

As neurons age, protein homeostasis becomes less efficient, resulting in misfolding and aggregation. Chaperone proteins perform vital functions in the maintenance of cellular proteostasis, and chaperone-based therapies that promote sequestration of toxic aggregates may prove useful in blocking the development of neurodegenerative disease. We previously demonstrated that proSAAS, a small secreted neuronal protein, exhibits potent chaperone activity against protein aggregation in vitro and blocks the cytotoxic effects of amyloid and synuclein oligomers in cell culture systems. We now examine whether cytoplasmic expression of proSAAS results in interactions with protein aggregates in this cellular compartment. We report that expression of proSAAS within the cytoplasm generates dense, membraneless 2 µm proSAAS spheres which progressively fuse to form larger spheres, suggesting liquid droplet-like properties. ProSAAS spheres selectively accumulate a C-terminally truncated fluorescently tagged form of TDP-43, initiating its cellular redistribution; these TDP-43-containing spheres also exhibit dynamic fusion. Efficient encapsulation of TDP-43 into proSAAS spheres is driven by its C-terminal prion-like domain; spheres must be formed for sequestration to occur. Three proSAAS sequences, a predicted coiled-coil, a conserved region (residues 158-169), and the positively charged sequence 181-185, are all required for proSAAS to form spheres able to encapsulate TDP-43 aggregates. Substitution of lysines for arginines in the 181-185 sequence results in nuclear translocation of proSAAS and encapsulation of nuclear-localized TDP-43216-414. As a functional output, we demonstrate that proSAAS expression results in cytoprotection against full-length TDP-43 toxicity in yeast. We conclude that proSAAS can act as a functional holdase for TDP-43 via this phase-separation property, representing a cytoprotectant whose unusual biochemical properties can potentially be exploited in the design of therapeutic molecules.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/metabolismo , Citoplasma/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Chaperonas Moleculares/genética , Agregado de Proteínas
10.
Artículo en Inglés | MEDLINE | ID: mdl-35331396

RESUMEN

Congenital enteropathies (CE) are a group of rare inherited diseases with a typical onset early in life. They involve defects in enterocyte structure or differentiation. They can cause a severe condition of intestinal failure (IF). The diagnostic approach is based first on clinical presentation (consanguinity, prenatal expression, polyhydramnios, early neonatal onset, aspect of stools, persistence at bowel rest, associated extra-digestive manifestations….) and histo-pathological analyses. These rare intestinal diseases cause protracted diarrhea that might resolve, for a few, with a dietetic approach. However, protracted or permanent IF may require long term parenteral nutrition and, in limited cases, intestinal transplantation. With the progresses in both clinical nutrition and genetics, many of these CE are nowadays associated with recognized gene mutations. It improved our knowledge and the understanding in the patho-physiology of these diseases, thus, leading potentially to therapeutic perspectives. These review cover most of the early onset CE and excludes the immune related diarrhea.


Asunto(s)
Enterocitos , Enfermedades Intestinales , Diarrea/etiología , Diarrea/terapia , Enterocitos/patología , Humanos , Recién Nacido , Enfermedades Intestinales/diagnóstico , Enfermedades Intestinales/genética , Enfermedades Intestinales/terapia , Intestinos/patología , Nutrición Parenteral
11.
Endocrinology ; 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35245347

RESUMEN

PCSK1 encodes an enzyme required for prohormone maturation into bioactive peptides. A striking number of SNPs and rare mutations in PCSK1 are associated with a range of clinical phenotypes. Infants bearing two copies of a catalytically inactivating mutation, such as G209R, exhibit life-threatening chronic diarrhea and subsequently develop systemic endocrinopathies. Using CRISPR/Cas9 technology, we have engineered a mouse model bearing a G209R missense mutation in exon 6 of the murine Pcsk1 locus. Most pups homozygous for the G209R mutation succumbed by day 2, and surviving pups were severely dwarfed. In homozygous (but not heterozygous) pups, blood glucose levels were significantly lower, accompanied by elevated plasma insulin-like immunoreactivity and accumulation of large quantities of unprocessed proinsulin in the pancreas. Peptide hormone processing was also aberrant in G209R mouse pituitary, with mature ACTH levels markedly reduced in homozygotes, accompanied by a significant accumulation of POMC. We also observed a significant reduction in PC1/3 protein in the brains of G209R homozygous mice by Western blotting, while PC2 levels remained unaffected. Most likely due to the continued presence of PC2, pituitary and brain levels of α-MSH were not impaired. Analysis of intestinal cell types indicated a modest reduction of enteroendocrine cells in G209R homozygotes. We suggest that the G209R Pcsk1 mouse model recapitulates many of the dramatic neonatal deficiencies of human patients with this homozygous mutation.

12.
Transl Neurodegener ; 10(1): 37, 2021 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-34565482

RESUMEN

BACKGROUND: New fluid biomarkers for Alzheimer's disease (AD) that reveal synaptic and neural network dysfunctions are needed for clinical practice and therapeutic trial design. Dense core vesicle (DCV) cargos are promising cerebrospinal fluid (CSF) indicators of synaptic failure in AD patients. However, their value as biomarkers has not yet been determined. METHODS: Immunoassays were performed to analyze the secretory proteins prohormone convertases PC1/3 and PC2, carboxypeptidase E (CPE), secretogranins SgIII and SgII, and Cystatin C in the cerebral cortex (n = 45, provided by Bellvitge University Hospital) and CSF samples (n = 66, provided by The Sant Pau Initiative on Neurodegeneration cohort) from AD patients (n = 56) and age-matched controls (n = 55). RESULTS: In AD tissues, most DCV proteins were aberrantly accumulated in dystrophic neurites and activated astrocytes, whereas PC1/3, PC2 and CPE were also specifically accumulated in hippocampal granulovacuolar degeneration bodies. AD individuals displayed an overall decline of secretory proteins in the CSF. Interestingly, in AD patients, the CSF levels of prohormone convertases strongly correlated inversely with those of neurodegeneration markers and directly with cognitive impairment status. CONCLUSIONS: These results demonstrate marked alterations of neuronal-specific prohormone convertases in CSF and cortical tissues of AD patients. The neuronal DCV cargos are biomarker candidates for synaptic dysfunction and neurodegeneration in AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/metabolismo , Biomarcadores/líquido cefalorraquídeo , Corteza Cerebral/metabolismo , Disfunción Cognitiva/líquido cefalorraquídeo , Vesículas de Núcleo Denso , Humanos
13.
Genes (Basel) ; 12(5)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068683

RESUMEN

Proprotein convertase 1/3 (PC1/3), encoded by the PCSK1 gene, is expressed in neuronal and (entero)endocrine cell types, where it cleaves and hence activates a number of protein precursors that play a key role in energy homeostasis. Loss-of-function mutations in PCSK1 cause a recessive complex endocrinopathy characterized by malabsorptive diarrhea and early-onset obesity. Despite the fact that neonatal malabsorptive diarrhea is observed in all patients, it has remained understudied. The aim of this study was to investigate the enteroendocrine pathologies in a male patient with congenital PCSK1 deficiency carrying the novel homozygous c.1034A>C (p.E345A) mutation. This patient developed malabsorptive diarrhea and metabolic acidosis within the first week of life, but rapid weight gain was observed after total parenteral nutrition, and he displayed high proinsulin levels and low adrenocorticotropin. In vitro analysis showed that the p.E345A mutation in PC1/3 resulted in a (near) normal autocatalytic proPC1/3 processing and only partially impaired PC1/3 secretion, but the processing of a substrate in trans was completely blocked. Immunohistochemical staining did not reveal changes in the proGIP/GIP and proglucagon/GLP-1 ratio in colonic tissue. Hence, we report a novel PCSK1 deficient patient who, despite neonatal malabsorptive diarrhea, showed a normal morphology in the small intestine.


Asunto(s)
Diarrea/congénito , Diarrea/genética , Enfermedades del Sistema Endocrino/genética , Mutación/genética , Proproteína Convertasa 1/genética , Línea Celular , Células HEK293 , Homocigoto , Humanos , Lactante , Masculino , Obesidad/genética
14.
Front Genet ; 12: 668326, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025722

RESUMEN

Congenital diarrhea diseases are a heterogeneous group of conditions and are the major cause of neonatal mortality worldwide. Proprotein convertase 1/3 (PC1/3) deficiency has been associated with severe malabsorptive diarrhea, obesity, and certain endocrine abnormalities. We report an infant born to non-consanguineous parents who is diagnosed with PC1/3 deficiency due to nonsense homozygous variant (c.238 C>T, p.Arg80Ter) in the PCSK1 gene, identified by Trio-exome sequencing (Trio-ES). The baby girl presented with recurrent diarrhea, transient liver dysfunction and hypoglycemia. Trio-ES showed complete maternal uniparental isodisomy (iUPD) of chromosome 5. Our finding provides accurate genetic counseling to this family and expands the clinical spectrum of iUPD with pathogenic variants causing recessive disease.

15.
Turk Arch Pediatr ; 56(1): 81-84, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34013237

RESUMEN

Prohormone convertase 1/3, encoded by the proprotein convertase subtilisin/kexin type 1 gene, is essential for processing prohormones; therefore, its deficiency is characterized by a deficiency of variable levels in all hormone systems. Although a case of postprandial hypoglycemia has been previously reported in the literature, prohormone convertase insufficiency with type 2 diabetes mellitus has not yet been reported. Our case, a 14-year-old girl, was referred due to excess weight gain. She was diagnosed as having type 2 diabetes mellitus based on laboratory test results. Prohormone convertase deficiency was considered due to the history of resistant diarrhea during the infancy period and her rapid weight gain. Proinsulin level was measured as >700 pmol/L(3.60-22) during diagnosis. In genetic analysis, a c.685G> T(p.V229F) homozygous mutation in the PCSK1 gene was detected and this has not been reported in relation to this disorder. In conclusion, patients with recurrent resistant diarrhea during infancy followed by rapid weight gain need to be evaluated with the diagnosis of prohormone convertase deficiency.

16.
Clin Res Hepatol Gastroenterol ; 45(6): 101640, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33662777

RESUMEN

Proprotein convertase 1 (PCSK1, PC1/3) deficiency is an uncommon cause of neonatal malabsorptive diarrhoea associated with endocrinopathies that are due to the disrupted processing of a large number of prohormones, including proinsulin. To date, only 26 cases have been reported. Herein, we describe two siblings with typical features including severe congenital diarrhoea, central diabetes insipidus, growth hormone deficiency, and hypoadrenalism. Next generation sequencing found a homozygous missense mutation in exon 5 of PCSK1 gene, c.500A>C (p.Asp167Ala), located within the catalytic domain. Both patients presented a high level of proinsulin. In the first years of life they required parenteral nutrition and hormone replacement therapy. The patients, aged 3 and 1.5 years, experienced several infectious episodes associated with septic shocks. While the mechanism underlying intestinal failure remains poorly investigated, parenteral nutrition is essential in order to ensure normal growth in early childhood.


Asunto(s)
Insuficiencia Intestinal , Proproteína Convertasa 1 , Preescolar , Diarrea , Humanos , Recién Nacido , Mutación , Obesidad , Proinsulina , Proproteína Convertasa 1/genética , Hermanos
17.
Cell Stress Chaperones ; 25(6): 929-941, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32607937

RESUMEN

The secretory pathway of neurons and endocrine cells contains a variety of mechanisms designed to combat cellular stress. These include not only the unfolded protein response pathways but also diverse chaperone proteins that collectively work to ensure proteostatic control of secreted and membrane-bound molecules. One of the least studied of these chaperones is the neural- and endocrine-specific molecule known as proSAAS. This small chaperone protein acts as a potent anti-aggregant both in vitro and in cellulo and also represents a cerebrospinal fluid biomarker in Alzheimer's disease. In the present study, we have examined the idea that proSAAS, like other secretory chaperones, might represent a stress-responsive protein. We find that exposure of neural and endocrine cells to the cell stressors tunicamycin and thapsigargin increases cellular proSAAS mRNA and protein in Neuro2A cells. Paradoxically, proSAAS secretion is inhibited by these same drugs. Exposure of Neuro2A cells to low concentrations of the hypoxic stress inducer cobalt chloride, or to sodium arsenite, an oxidative stressor, also increases cellular proSAAS content and reduces its secretion. We conclude that the cellular levels of the small secretory chaperone proSAAS are positively modulated by cell stress.


Asunto(s)
Chaperonas Moleculares/metabolismo , Neuropéptidos/metabolismo , Estrés Fisiológico , Animales , Arsenitos/farmacología , Hipoxia de la Célula/efectos de los fármacos , Línea Celular , Cobalto/farmacología , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Proteínas de Choque Térmico/metabolismo , Ratones , Neuropéptidos/genética , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Compuestos de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Tapsigargina/farmacología , Tunicamicina/farmacología , Regulación hacia Arriba/efectos de los fármacos
18.
Onco Targets Ther ; 13: 3141-3150, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32346297

RESUMEN

BACKGROUND: In a data mining search for potential therapeutic targets to improve the outcome of rectal cancer, we identified PCSK1 as the cell-cell signaling gene most significantly associated with poor response to concurrent chemoradiotherapy (CCRT). This study aims to investigate the prognostic value of PCSK1 expression in rectal cancer patients who underwent neoadjuvant CCRT. METHODS: Endoscopic biopsy specimens from 172 rectal cancer patients receiving neoadjuvant CCRT followed by curative surgery were assessed immunohistochemically for PCSK1 expression, and H-scores were determined. Expression levels of PCSK1 were further analyzed for correlations with clinicopathologic features, tumor regression grade, metastasis-free survival, disease-specific survival, and recurrence-free survival. RESULTS: PCKS1 overexpression was significantly associated with pretreatment tumor status (T3-4; p = 0.009), pretreatment nodal status (N1-2; p < 0.001), posttreatment tumor status (T3-4; p < 0.001), posttreatment nodal status (N1-2; p < 0.001), vascular invasion (p = 0.003), and perineurial invasion (p = 0.023). PCKS1 overexpression was also found to be significantly associated with a lower degree of tumor regression (p < 0.001). In the univariate analysis, PCSK1 overexpression was significantly associated with lower disease-specific survival, metastasis-free survival, and recurrence-free survival (p < 0.005). PCSK1 overexpression remained an independent prognostic factor of lower disease-specific survival (p = 0.003; hazard ratio, 5.478) in the multivariate analysis. CONCLUSION: Determination of PCSK1 overexpression may be useful for identifying rectal cancer patients at risk for a poor response and worse survival after CCRT.

19.
Anim Sci J ; 91(1): e13371, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32285539

RESUMEN

Protein proteolytic enzymes (Proprotein Convertase, PC) is a Ca2+ -dependent serine protease family, whose main function is to cleave precursors of biologically inactive proteins or peptide chains into active functional molecules. Proprotein convertase subtilisin/kexin type 1 (PCSK1) gene is mainly expressed in nerve and endocrine tissues. In this study, PCSK1 was selected as an important candidate gene for abdominal fat content in broilers. We cloned the exon region of chicken PCSK1 gene and found six single-nucleotide polymorphisms (SNPs). Association analysis was carried out and we found that the polymorphisms of these six SNPs were significantly associated with abdominal fat content in G19 and G20 populations. Five of these SNPs were significantly associated with abdominal fat content in G19 and G20 combined population. The polymorphism of these five SNPs was significantly correlated with the abdominal fat content of AA broilers. Together, our study demonstrated that c.927T>C, c.1880C>T, c.*900G>A, and c.*1164C>T were significantly associated with abdominal fat content in populations used in this study, which means that these SNPs in PCSK1 gene could be used as candidate markers to select lean broiler lines.


Asunto(s)
Pollos/genética , Metabolismo de los Lípidos/genética , Polimorfismo de Nucleótido Simple , Proproteína Convertasa 1/genética , Grasa Abdominal/metabolismo , Animales , Estudios de Asociación Genética , Polimorfismo Genético
20.
Mamm Genome ; 31(1-2): 17-29, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31974728

RESUMEN

The proprotein convertase subtilisin/Kexin type 1 (PCSK1/PC1) protein processes inactive pro-hormone precursors into biologically active hormones in a number of neuroendocrine and endocrine cell types. Patients with recessive mutations in PCSK1 exhibit a complex spectrum of traits including obesity, diarrhoea and endocrine disorders. We describe here a new mouse model with a point mutation in the Pcsk1 gene that exhibits obesity, hyperphagia, transient diarrhoea and hyperproinsulinaemia, phenotypes consistent with human patient traits. The mutation results in a pV96L amino acid substitution and changes the first nucleotide of mouse exon 3 leading to skipping of that exon and in homozygotes very little full-length transcript. Overexpression of the exon 3 deleted protein or the 96L protein results in ER retention in Neuro2a cells. This is the second Pcsk1 mouse model to display obesity phenotypes, contrasting knockout mouse alleles. This model will be useful in investigating the basis of endocrine disease resulting from prohormone processing defects.


Asunto(s)
Diabetes Mellitus/genética , Obesidad/genética , Proproteína Convertasa 1/genética , Alelos , Animales , Línea Celular , Diarrea/genética , Retículo Endoplásmico/metabolismo , Exones , Femenino , Intolerancia a la Glucosa/genética , Homocigoto , Hiperfagia/genética , Masculino , Ratones , Mutación , Proproteína Convertasa 1/metabolismo , Empalme del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA