Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202409234, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39168829

RESUMEN

Cells have evolved intricate mechanisms for recognizing and responding to changes in oxygen (O2) concentrations. Here, we have reprogrammed cellular hypoxia (low O2) signaling via gas tunnel engineering of prolyl hydroxylase 2 (PHD2), a non-heme iron dependent O2 sensor. Using computational modeling and protein engineering techniques, we identify a gas tunnel and critical residues therein that limit the flow of O2 to PHD2's catalytic core. We show that systematic modification of these residues can open the constriction topology of PHD2's gas tunnel. Using kinetic stopped-flow measurements with NO as a surrogate diatomic gas, we demonstrate up to 3.5-fold enhancement in its association rate to the iron center of tunnel-engineered mutants. Our most effectively designed mutant displays 9-fold enhanced catalytic efficiency (kcat/KM = 830 ± 40 M-1 s-1) in hydroxylating a peptide mimic of hypoxia inducible transcription factor HIF-1α, as compared to WT PHD2 (kcat/KM = 90 ± 9 M-1 s-1). Furthermore, transfection of plasmids that express designed PHD2 mutants in HEK-293T mammalian cells reveal significant reduction of HIF-1α and downstream hypoxia response transcripts under hypoxic conditions of 1% O2. Overall, these studies highlight activation of PHD2 as a new pathway to reprogram hypoxia responses and HIF signaling in cells.

2.
Proc Natl Acad Sci U S A ; 121(34): e2405628121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39141355

RESUMEN

Fluorescence guidance is routinely used in surgery to enhance perfusion contrast in multiple types of diseases. Pressure-enhanced sensing of tissue oxygenation (PRESTO) via fluorescence is a technique extensively analyzed here, that uses an FDA-approved human precursor molecule, 5-aminolevulinic acid (ALA), to stimulate a unique delayed fluorescence signal that is representative of tissue hypoxia. The ALA precontrast agent is metabolized in most tissues into a red fluorescent molecule, protoporphyrin IX (PpIX), which has both prompt fluorescence, indicative of the concentration, and a delayed fluorescence, that is amplified in low tissue oxygen situations. Applied pressure from palpation induces transient capillary stasis and a resulting transient PRESTO contrast, dominant when there is near hypoxia. This study examined the kinetics and behavior of this effect in both normal and tumor tissues, with a prolonged high PRESTO contrast (contrast to background of 7.3) across 5 tumor models, due to sluggish capillaries and inhibited vasodynamics. This tissue function imaging approach is a fundamentally unique tool for real-time palpation-induced tissue response in vivo, relevant for chronic hypoxia, such as vascular diseases or oncologic surgery.


Asunto(s)
Ácido Aminolevulínico , Neoplasias , Oxígeno , Protoporfirinas , Animales , Oxígeno/metabolismo , Ratones , Ácido Aminolevulínico/metabolismo , Neoplasias/metabolismo , Neoplasias/cirugía , Protoporfirinas/metabolismo , Humanos , Presión , Porfirinas/metabolismo
3.
J Inorg Biochem ; 260: 112686, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39106644

RESUMEN

Heme-based sensor proteins are used by organisms to control signaling and physiological effects in response to their gaseous environment. Globin-coupled sensors (GCS) are oxygen-sensing proteins that are widely distributed in bacteria. These proteins consist of a heme globin domain linked by a middle domain to various output domains, including diguanylate cyclase domains, which are responsible for synthesizing c-di-GMP, a bacterial second messenger crucial for regulating biofilm formation. To understand the roles of heme pocket residues in controlling activity of the diguanylate cyclase domain, variants of the Pectobacterium carotovorum GCS (PccGCS) were characterized by enzyme kinetics and resonance Raman (rR) spectroscopy. Results of these studies have identified roles for hydrogen bonding and heme edge residues in modulating heme pocket conformation and flexibility. Better understanding of the ligand-dependent GCS signaling mechanism and the residues involved may allow for future development of methods to control O2-dependent c-di-GMP production.


Asunto(s)
Proteínas Bacterianas , Hemo , Enlace de Hidrógeno , Pectobacterium carotovorum , Liasas de Fósforo-Oxígeno , Espectrometría Raman , Liasas de Fósforo-Oxígeno/metabolismo , Liasas de Fósforo-Oxígeno/química , Espectrometría Raman/métodos , Hemo/química , Hemo/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Pectobacterium carotovorum/enzimología , Globinas/química , Globinas/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , GMP Cíclico/química , Proteínas de Escherichia coli
4.
J Biol Chem ; 300(9): 107653, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39122008

RESUMEN

The non-heme iron-dependent dioxygenase 2-aminoethanethiol (aka cysteamine) dioxygenase (ADO) has recently been identified as an enzymatic oxygen sensor that coordinates cellular changes to hypoxia by regulating the stability of proteins bearing an N-terminal cysteine (Nt-cys) through the N-degron pathway. It catalyzes O2-dependent Nt-cys sulfinylation, which promotes proteasomal degradation of the target. Only a few ADO substrates have been verified, including regulators of G-protein signaling (RGS) 4 and 5, and the proinflammatory cytokine interleukin-32, all of which exhibit cell and/or tissue specific expression patterns. ADO, in contrast, is ubiquitously expressed, suggesting it can regulate the stability of additional Nt-cys proteins in an O2-dependent manner. However, the role of individual chemical groups, active site metal, amino acid composition, and globular structure on protein substrate association remains elusive. To help identify new targets and examine the underlying biochemistry of the system, we conducted a series of biophysical experiments to investigate the binding requirements of established ADO substrates RGS5 and interleukin-32. We demonstrate, using surface plasmon response and enzyme assays, that a free, unmodified Nt-thiol and Nt-amine are vital for substrate engagement through active site metal coordination, with residues next to Nt-cys moderately impacting association and catalytic efficiency. Additionally, we show, through 1H-15N heteronuclear single quantum coherence nuclear magnetic resonance titrations, that the globular portion of RGS5 has limited impact on ADO association, with interactions restricted to the N-terminus. This work establishes key features involved in ADO substrate binding, which will help identify new protein targets and, subsequently, elucidate its role in hypoxic adaptation.

5.
Pflugers Arch ; 476(9): 1423-1444, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38955833

RESUMEN

Cellular responses to hypoxia are crucial in various physiological and pathophysiological contexts and have thus been extensively studied. This has led to a comprehensive understanding of the transcriptional response to hypoxia, which is regulated by hypoxia-inducible factors (HIFs). However, the detailed molecular mechanisms of HIF regulation in hypoxia remain incompletely understood. In particular, there is controversy surrounding the production of mitochondrial reactive oxygen species (ROS) in hypoxia and how this affects the stabilization and activity of HIFs. This review examines this controversy and attempts to shed light on its origin. We discuss the role of physioxia versus normoxia as baseline conditions that can affect the subsequent cellular response to hypoxia and highlight the paucity of data on pericellular oxygen levels in most experiments, leading to variable levels of hypoxia that might progress to anoxia over time. We analyze the different outcomes reported in isolated mitochondria, versus intact cells or whole organisms, and evaluate the reliability of various ROS-detecting tools. Finally, we examine the cell-type and context specificity of oxygen's various effects. We conclude that while recent evidence suggests that the effect of hypoxia on ROS production is highly dependent on the cell type and the duration of exposure, efforts should be made to conduct experiments under carefully controlled, physiological microenvironmental conditions in order to rule out potential artifacts and improve reproducibility in research.


Asunto(s)
Mitocondrias , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Humanos , Animales , Mitocondrias/metabolismo , Hipoxia/metabolismo , Hipoxia de la Célula/fisiología , Oxígeno/metabolismo
6.
Cureus ; 16(6): e62416, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39011232

RESUMEN

Background and objective While hypertension (HTN) is a major health-related threat globally, it is often an under-reported clinical condition as most of the stage I hypertensive patients do not present with any symptoms. The relationship between endogenous oxygen-sensing protein [erythropoietin (EPO) and vascular endothelial growth factor (VEGF)] levels and vascular stress in hypertensive patients is not fully understood as the mechanistic pathway by which these oxygen-sensing proteins alter the vascular physiology and cause hypertension is still a matter of debate. In light of this, we explored the role of these two proteins in the development of vascular stress including increased pulse wave velocity (PWV). We aimed to examine the correlation between oxygen-sensing proteins and vascular stress markers including PWV in hypertensive patients. Materials and methods We conducted a cross-sectional study involving age-matched participants classified into three groups (group 1: normotensive persons, n=36; group 2: stage I hypertensive patients, n=36; and group 3, stage II hypertensive patients, n=36). Adiposity-related parameters such as waist circumference (WC), hip circumference (HC), BMI, and waist-hip ratio (WHR) were measured. BP was recorded manually in resting posture by using a sphygmomanometer. PWV, which predicts the progression of BP and the development of HTN, was recorded using a periscope, which works based on the oscillometric method. Vascular stress-induced oxidative stress parameters [serum malondialdehyde (MDA) and serum nitric oxide (NO)] were also estimated by using a UV spectrophotometer. Quantitative estimations of oxygen-sensing proteins (serum EPO and serum VEGF) were done by using the ELISA kit method. The results were expressed as mean ± standard deviation (SD). The correlation between the variables was done using Spearman's correlation. A p-value <0.05 was considered statistically significant. Results Adiposity indices and vascular stiffness parameters were found to be significantly (p <0.05) increased in group 2 and group 3 compared to group 1. The levels of serum MDA were found to be significantly (p<0.05) increased in group 2 and group 3 than group 1, whereas the levels of serum NO were significantly (p<0.05) decreased in group 3 and group 2 than group 1. A significant (p<0.05) positive correlation was observed between the PWV and EPO (r=0.492) while a significant (p<0.05) negative correlation was observed between PWV and VEGF (r=-0.406) among the study population. Conclusion The results are indicative of the influence of vascular stress in stage I and II hypertensive patients. Furthermore, the relationship between oxygen-sensing proteins and vascular stress in hypertensive patients has also been established.

7.
ACS Sens ; 9(6): 3307-3315, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38826054

RESUMEN

Fluorescent nanosensors have revolutionized diagnostics and our ability to monitor cellular dynamics. Yet, distinguishing sensor signals from autofluorescence remains a challenge. Here, we merged optode-based sensing with near-infrared-emitting ZnGa2O4:Cr3+ persistent luminescence nanoparticles (PLNPs) to create nanocomposites for autofluorescence-free "glow-in-the-dark" sensing. Hydrophobic modification and incorporation of the persistent luminescence nanoparticles into an optode-based nanoparticle core yielded persistent luminescence nanosensors (PLNs) for five analytes (K+, Na+, Ca2+, pH, and O2) via two distinct mechanisms. We demonstrated the viability of the PLNs by quantifying K+ in fetal bovine serum, calibrating the pH PLNs in the same, and ratiometrically monitoring O2 metabolism in cultures of Saccharomyces cerevisiae, all the while overcoming their respective autofluorescence signatures. This highly modular platform allows for facile tuning of the sensing functionality, optical properties, and surface chemistry and promises high signal-to-noise ratios in complex optical environments.


Asunto(s)
Saccharomyces cerevisiae , Saccharomyces cerevisiae/química , Oxígeno/química , Nanopartículas/química , Concentración de Iones de Hidrógeno , Animales , Mediciones Luminiscentes/métodos , Técnicas Biosensibles/métodos , Luminiscencia , Potasio/análisis , Bovinos
8.
J Inorg Biochem ; 258: 112638, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38878680

RESUMEN

Bacteria use the second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) to control biofilm formation and other key phenotypes in response to environmental signals. Changes in oxygen levels can alter c-di-GMP signaling through a family of proteins termed globin coupled sensors (GCS) that contain diguanylate cyclase domains. Previous studies have found that GCS diguanylate cyclase activity is controlled by ligand binding to the heme within the globin domain, with oxygen binding resulting in the greatest increase in catalytic activity. Herein, we present evidence that heme-edge residues control O2-dependent signaling in PccGCS, a GCS protein from Pectobacterium carotovorum, by modulating heme distortion. Using enzyme kinetics, resonance Raman spectroscopy, small angle X-ray scattering, and multi-wavelength analytical ultracentrifugation, we have developed an integrated model of the full-length PccGCS tetramer and have identified conformational changes associated with ligand binding, heme conformation, and cyclase activity. Taken together, these studies provide new insights into the mechanism by which O2 binding modulates activity of diguanylate cyclase-containing GCS proteins.


Asunto(s)
Proteínas Bacterianas , Hemo , Pectobacterium carotovorum , Liasas de Fósforo-Oxígeno , Liasas de Fósforo-Oxígeno/metabolismo , Liasas de Fósforo-Oxígeno/química , Hemo/química , Hemo/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Pectobacterium carotovorum/enzimología , Conformación Proteica , Oxígeno/química , Oxígeno/metabolismo , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/química , Proteínas de Escherichia coli
9.
Physiol Rev ; 104(4): 1611-1642, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38696337

RESUMEN

A canonical view of the primary physiological function of myoglobin (Mb) is that it is an oxygen (O2) storage protein supporting mitochondrial oxidative phosphorylation, especially as the tissue O2 partial pressure (Po2) drops and Mb off-loads O2. Besides O2 storage/transport, recent findings support functions for Mb in lipid trafficking and sequestration, interacting with cellular glycolytic metabolites such as lactate (LAC) and pyruvate (PYR), and "ectopic" expression in some types of cancer cells and in brown adipose tissue (BAT). Data from Mb knockout (Mb-/-) mice and biochemical models suggest additional metabolic roles for Mb, especially regulation of nitric oxide (NO) pools, modulation of BAT bioenergetics, thermogenesis, and lipid storage phenotypes. From these and other findings in the literature over many decades, Mb's function is not confined to delivering O2 in support of oxidative phosphorylation but may serve as an O2 sensor that modulates intracellular Po2- and NO-responsive molecular signaling pathways. This paradigm reflects a fundamental change in how oxidative metabolism and cell regulation are viewed in Mb-expressing cells such as skeletal muscle, heart, brown adipocytes, and select cancer cells. Here, we review historic and emerging views related to the physiological roles for Mb and present working models illustrating the possible importance of interactions between Mb, gases, and small-molecule metabolites in regulation of cell signaling and bioenergetics.


Asunto(s)
Metabolismo Energético , Mioglobina , Oxígeno , Animales , Mioglobina/metabolismo , Humanos , Oxígeno/metabolismo , Metabolismo Energético/fisiología , Tejido Adiposo Pardo/metabolismo , Fosforilación Oxidativa , Termogénesis/fisiología
10.
Function (Oxf) ; 5(3): zqae010, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706960

RESUMEN

The Olfr78 gene encodes a G-protein-coupled olfactory receptor that is expressed in several ectopic sites. Olfr78 is one of the most abundant mRNA species in carotid body (CB) glomus cells. These cells are the prototypical oxygen (O2) sensitive arterial chemoreceptors, which, in response to lowered O2 tension (hypoxia), activate the respiratory centers to induce hyperventilation. It has been proposed that Olfr78 is a lactate receptor and that glomus cell activation by the increase in blood lactate mediates the hypoxic ventilatory response (HVR). However, this proposal has been challenged by several groups showing that Olfr78 is not a physiologically relevant lactate receptor and that the O2-based regulation of breathing is not affected in constitutive Olfr78 knockout mice. In another study, constitutive Olfr78 knockout mice were reported to have altered systemic and CB responses to mild hypoxia. To further characterize the functional role of Olfr78 in CB glomus cells, we here generated a conditional Olfr78 knockout mouse strain and then restricted the knockout to glomus cells and other catecholaminergic cells by crossing with a tyrosine hydroxylase-specific Cre driver strain (TH-Olfr78 KO mice). We find that TH-Olfr78 KO mice have a normal HVR. Interestingly, glomus cells of TH-Olfr78 KO mice exhibit molecular and electrophysiological alterations as well as a reduced dopamine content in secretory vesicles and neurosecretory activity. These functional characteristics resemble those of CB neuroblasts in wild-type mice. We suggest that, although Olfr78 is not essential for CB O2 sensing, activation of Olfr78-dependent pathways is required for maturation of glomus cells.


Asunto(s)
Cuerpo Carotídeo , Receptores Odorantes , Tirosina 3-Monooxigenasa , Animales , Masculino , Ratones , Cuerpo Carotídeo/metabolismo , Hipoxia/metabolismo , Hipoxia/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/genética
11.
Trends Biochem Sci ; 49(6): 545-556, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38622038

RESUMEN

Thiol oxidation to dioxygenated sulfinic acid is catalyzed by an enzyme family characterized by a cupin fold. These proteins act on free thiol-containing molecules to generate central metabolism precursors and signaling compounds in bacteria, fungi, and animal cells. In plants and animals, they also oxidize exposed N-cysteinyl residues, directing proteins to proteolysis. Enzyme kinetics, X-ray crystallography, and spectroscopy studies prompted the formulation and testing of hypotheses about the mechanism of action and the different substrate specificity of these enzymes. Concomitantly, the physiological role of thiol dioxygenation in prokaryotes and eukaryotes has been studied through genetic and physiological approaches. Further structural characterization is necessary to enable precise and safe manipulation of thiol dioxygenases (TDOs) for therapeutic, industrial, and agricultural applications.


Asunto(s)
Dioxigenasas , Compuestos de Sulfhidrilo , Dioxigenasas/metabolismo , Dioxigenasas/química , Compuestos de Sulfhidrilo/metabolismo , Compuestos de Sulfhidrilo/química , Animales , Humanos , Oxidación-Reducción , Especificidad por Sustrato
12.
Biosens Bioelectron ; 255: 116198, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555771

RESUMEN

Accurate oxygen sensing and cost-effective fabrication are crucial for the adoption of wearable devices inside and outside the clinical setting. Here we introduce a simple strategy to create nonwoven polymeric fibrous mats for a notable contribution towards addressing this need. Although morphological manipulation of polymers for cell culture proliferation is commonplace, especially in the field of regenerative medicine, non-woven structures have not been used for oxygen sensing. We used an airbrush spraying, i.e. solution blowing, to obtain nonwoven fiber meshes embedded with a phosphorescent dye. The fibers serve as a polymer host for the phosphorescent dye and are shown to be non-cytotoxic. Different composite fibrous meshes were prepared and favorable mechanical and oxygen-sensing properties were demonstrated. A Young's modulus of 9.8 MPa was achieved and the maximum oxygen sensitivity improved by a factor of ∼2.9 compared to simple drop cast film. The fibers were also coated with silicone rubbers to produce mechanically robust sensing films. This reduced the sensing performance but improved flexibility and mechanical properties. Lastly, we are able to capture oxygen concentration maps via colorimetry using a smartphone camera, which should offer unique advantages in wider usage. Overall, the introduced composite fiber meshes show a potential to significantly improve cell cultures and healthcare monitoring via absolute oxygen sensing.


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Oxígeno , Polímeros/química , Prótesis e Implantes
13.
Methods Mol Biol ; 2755: 3-29, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38319566

RESUMEN

Hypoxia resulting from an imbalance of oxygen availability and consumption defines a metabolic cellular state with a profound impact on developmental processes, tissue maintenance, and the development of pathologies. Fluorescence imaging using genetically encoded reporters enables hypoxia and oxygen imaging with cellular resolution. Thereby unrestricted visualization of hypoxic cells and regions essentially relies on the availability of oxygen-independent fluorescent proteins like UnaG, isolated from the Japanese freshwater eel. Here, we describe the application of recently developed members of a UnaG-based hypoxia reporter family to visualize oxygenation patterns by in vitro live-cell imaging and during the ex vivo analysis of intracranial xenografted tumors. Thus, the generation of stably transfected transgenic tumor cell lines, the in vitro calibration of the genetically encoded sensors, the surgical procedures for orthotopic xenografting of tumors in mice, and workflows for the respective sample preparation and microscopy are outlined.


Asunto(s)
Neoplasias Encefálicas , Hipoxia , Animales , Ratones , Hipoxia/genética , Oxígeno , Animales Modificados Genéticamente , Calibración
14.
Acta Crystallogr C Struct Chem ; 80(Pt 3): 85-90, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38407217

RESUMEN

The compound [5,10,15,20-tetrakis(4-fluoro-2,6-dimethylphenyl)porphyrinato]platinum(II), [Pt(C52H40F4N4)] or Pt(II)TFP, has been synthesized and structurally characterized by single-crystal X-ray crystallography. The Pt porphyrin exhibits a long-lived phosphorescent excited state (τ0 = 66 µs), which has been characterized by transient absorption and emission spectroscopy. The phosphorescence is extremely sensitive to oxygen, as reflected by a quenching rate constant of 5.0 × 108 M-1 s-1, and as measured by Stern-Volmer quenching analysis.

15.
Mol Plant ; 17(3): 377-394, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38243593

RESUMEN

Oxygen is essential for plant growth and development. Hypoxia occurs in plants due to limited oxygen availability following adverse environmental conditions as well in hypoxic niches in otherwise normoxic environments. However, the existence and functional integration of spatiotemporal oxygen dynamics with plant development remains unknown. In animal systems dynamic fluctuations in oxygen availability are known as cyclic hypoxia. In this study, we demonstrate that cyclic fluctuations in internal oxygen levels occur in young emerging leaves of Arabidopsis plants. Cyclic hypoxia in plants is based on a mechanism requiring the ETHYLENE RESPONSE FACTORS type VII (ERFVII) that are central components of the oxygen-sensing machinery in plants. The ERFVII-dependent mechanism allows precise adjustment of leaf growth in response to carbon status and oxygen availability within plant cells. This study thus establishes a functional connection between internal spatiotemporal oxygen dynamics and developmental processes of plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Etilenos , Oxígeno/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Hipoxia , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
16.
J Inorg Biochem ; 252: 112482, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38218138

RESUMEN

Bacteria utilize heme proteins, such as globin coupled sensors (GCSs), to sense and respond to oxygen levels. GCSs are predicted in almost 2000 bacterial species and consist of a globin domain linked by a central domain to a variety of output domains, including diguanylate cyclase domains that synthesize c-di-GMP, a major regulator of biofilm formation. To investigate the effects of middle domain length and heme edge residues on GCS diguanylate cyclase activity and cellular function, a putative diguanylate cyclase-containing GCS from Shewanella sp. ANA-3 (SA3GCS) was characterized. Binding of O2 to the heme resulted in activation of diguanylate cyclase activity, while NO and CO binding had minimal effects on catalysis, demonstrating that SA3GCS exhibits greater ligand selectivity for cyclase activation than many other diguanylate cyclase-containing GCSs. Small angle X-ray scattering analysis of dimeric SA3GCS identified movement of the cyclase domains away from each other, while maintaining the globin dimer interface, as a potential mechanism for regulating cyclase activity. Comparison of the Shewanella ANA-3 wild type and SA3GCS deletion (ΔSA3GCS) strains identified changes in biofilm formation, demonstrating that SA3GCS diguanylate cyclase activity modulates Shewanella phenotypes.


Asunto(s)
GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli , Shewanella , Globinas/química , Oxígeno/metabolismo , Proteínas de Escherichia coli/química , Liasas de Fósforo-Oxígeno/química , Biopelículas , Hemo/química , Proteínas Bacterianas/química
17.
Sensors (Basel) ; 24(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38203132

RESUMEN

Respirometric microbial assays are gaining popularity, but their uptake is limited by the availability of optimal O2 sensing materials and the challenge of validating assays with complex real samples. We conducted a comparative evaluation of four different O2-sensing probes based on Pt-porphyrin phosphors in respirometric bacterial assays performed on standard time-resolved fluorescence reader. The macromolecular MitoXpress, nanoparticle NanO2 and small molecule PtGlc4 and PtPEG4 probes were assessed with E. coli cells in five growth media: nutrient broth (NB), McConkey (MC), Rapid Coliform ChromoSelect (RCC), M-Lauryl lauryl sulfate (MLS), and Minerals-Modified Glutamate (MMG) media. Respiration profiles of the cells were recorded and analyzed, along with densitometry profiles and quenching studies of individual media components. This revealed several limiting factors and interferences impacting assay performance, which include probe quenched lifetime, instrument temporal resolution, inner filter effects (mainly by indicator dyes), probe binding to lipophilic components, and dynamic and static quenching by media components. The study allowed for the ranking of the probes based on their ruggedness, resilience to interferences and overall performance in respirometric bacterial assays. The 'shielded' probe NanO2 outperformed the established MitoXpress probe and the small molecule probes PtGlc4 and PtPEG4.


Asunto(s)
Bioensayo , Escherichia coli , Transporte Biológico , Ácido Glutámico , Oxígeno
18.
Angew Chem Int Ed Engl ; 63(12): e202319089, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38277401

RESUMEN

Purely organic materials exhibiting room temperature phosphorescence (RTP) are promising candidates for oxygen sensors and information encryption owing to their cost-effective and environmentally friendly nature. Herein, we report a bimolecular RTP system where DTBU acts as the guest and TBBU serves as the host. In contrast to previously reported results, we find that both pure DTBU and TBBU do not exhibit RTP in the solid state even under N2 atmosphere. A DTBU/TBBU system with a low doping ratio (0.1 mol %) exhibits persistent yellowish-green afterglow with a lifetime of 340 ms and is highly sensitive to oxygen. A DTBU/TBBU system with a higher doping ratio (10 mol %) maintains a phosphorescence lifetime of 179 ms under air. Applications of DTBU/TBBU at varied doping ratios in both oxygen sensing and information encryption are demonstrated. We propose that the T1 state of TBBU acts as an energy transfer intermediate between Tn and T1 of DTBU, ultimately leading to the generation of persistent RTP. Overall, this work demonstrates the critical importance of material purity in the design of RTP systems, and how an understanding of host-guest doping enables their photophysical properties to be precisely tuned.

19.
J Exp Bot ; 75(5): 1217-1233, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37991267

RESUMEN

With recent progress in active research on flooding and hypoxia/anoxia tolerance in native and agricultural crop plants, vast knowledge has been gained on both individual tolerance mechanisms and the general mechanisms of flooding tolerance in plants. Research on carbohydrate consumption, ethanolic and lactic acid fermentation, and their regulation under stress conditions has been accompanied by investigations on aerenchyma development and the emergence of the radial oxygen loss barrier in some plant species under flooded conditions. The discovery of the oxygen-sensing mechanism in plants and unravelling the intricacies of this mechanism have boosted this very international research effort. Recent studies have highlighted the importance of oxygen availability as a signalling component during plant development. The latest developments in determining actual oxygen concentrations using minute probes and molecular sensors in tissues and even within cells have provided new insights into the intracellular effects of flooding. The information amassed during recent years has been used in the breeding of new flood-tolerant crop cultivars. With the wealth of metabolic, anatomical, and genetic information, novel holistic approaches can be used to enhance crop species and their productivity under increasing stress conditions due to climate change and the subsequent changes in the environment.


Asunto(s)
Inundaciones , Oxígeno , Oxígeno/metabolismo , Fitomejoramiento , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Desarrollo de la Planta
20.
Small ; 20(16): e2307318, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38044287

RESUMEN

Cucurbit[7]uril (CB7), a supramolecular host, is employed to control the pathway of photolysis of an aryl azide in an aqueous medium. Normally, photolysis of aryl azides in bulk water culminates predominantly in the formation of azepine derivatives via intramolecular rearrangement. Remarkably, however, when this process unfolds within the protective confinement of the CB7 cavity, it results in a carboline derivative, as a consequence of a C─H amination reaction. The resulting carboline caged by CB7 reveals long-lived room temperature phosphorescence (RTP) in the solid state, with lifetimes extending up to 2.1 s. These findings underscore the potential of supramolecular hosts to modulate the photolysis of aryl azides and to facilitate novel phosphorescent materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA