Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39288224

RESUMEN

The nonradical oxidation pathway for pollutant degradation in Fenton-like catalysis is favorable for water treatment due to the high reaction rate and superior environmental robustness. However, precise regulation of such reactions is still restricted by our poor knowledge of underlying mechanisms, especially the correlation between metal site conformation of metal atom clusters and pollutant degradation behaviors. Herein, we investigated the electron transfer and pollutant oxidation mechanisms of atomic-level exposed Ag atom clusters (AgAC) loaded on specifically crafted nitrogen-doped porous carbon (NPC). The AgAC triggered a direct electron transfer (DET) between the terminal oxygen (Oα) of surface-activated peroxodisulfate and the electron-donating substituents-containing contaminants (EDTO-DET), rendering it 11-38 times higher degradation rate than the reported carbon-supported metal catalysts system with various single-atom active centers. Heterocyclic substituents and electron-donating groups were more conducive to degradation via the EDTO-DET system, while contaminants with high electron-absorbing capacity preferred the radical pathway. Notably, the system achieved 79.5% chemical oxygen demand (COD) removal for the treatment of actual pharmaceutical wastewater containing 1053 mg/L COD within 30 min. Our study provides valuable new insights into the Fenton-like reactions of metal atom cluster catalysts and lays an important basis for revolutionizing advanced oxidation water purification technologies.

2.
Water Res ; 265: 122252, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39173353

RESUMEN

Dissolved Mn(III), as a potent one-electron transfer oxidant, is ubiquitous in natural waters and sediments and actively involved in the transformation of organics in biogeochemical processes and water treatment. However, the important role of Mn(III) has long been overlooked because of its short life. This study was the first to investigate the performance of Mn(III) in organoarsenic transformation and to highlight the environmental implications. Both homogeneous and heterogeneous Mn(III)-based systems were effective to remove p-arsanilic acid (p-ASA, 15 µM) with degradation efficiency approaching 40.4 %-98.3 %. Two degradation pathways of p-ASA were proposed, in which As-C bond and amino group were vulnerable sites to Mn(III) attack, leading to the formation of more toxic arsenate (As(V)) and nitarsone. Through transforming organoarsenic to inorganic arsenic species, the removal efficiency of total arsenic and dissolved organics were enhanced to 65.1 %-95.5 % and 16.6 %-36.6 %, respectively, by post-treatment of coagulation or adsorption, accompanied with significant reduction of cytotoxicity and environmental risks. Particularly, polymeric ferric sulfate and granular activated alumina showed superior performance in the total As removal. Moreover, oxidation efficiency of Mn(III) was hardly affected by common cations and anions (e.g., Ca2+, Mg2+, NH4+, NO3-, SO4-), halide ions (e.g., Cl-, Br-) and natural organic matter, showing high robustness for organoarsenic removal under complicated water matrices. Overall, this study shed light on the significance of Mn(III) to the fate of organoarsenics in manganese-rich environments, and demonstrated the promising potential of Mn(III)-based strategies to achieve targeted decontamination in water/wastewater purification.


Asunto(s)
Ácido Arsanílico , Arsénico , Manganeso , Contaminantes Químicos del Agua , Purificación del Agua , Manganeso/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Ácido Arsanílico/química , Adsorción
3.
Environ Sci Technol ; 58(28): 12742-12753, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38959431

RESUMEN

Short carbon chain alkanes, as typical volatile organic compounds (VOCs), have molecular structural stability and low molecular polarity, leading to an enormous challenge in the catalytic oxidation of propane. Although Ru-based catalysts exhibit a surprisingly high activity for the catalytic oxidation of propane to CO2 and H2O, active RuOx species are partially oxidized and sintered during the oxidation reaction, leading to a decrease in catalytic activity and significantly inhibiting their application in industrial processes. Herein, the Ru/Ce@Co catalyst is synthesized with a specific structure, in which cerium dioxide is dispersed in a thin layer on the surface of Co3O4, and Ru nanoparticles fall preferentially on cerium oxide with high dispersity. Compared with the Ru/CeO2 and Ru/Co3O4 catalysts, the Ru/Ce@Co catalyst demonstrates excellent catalytic activity and stability for the oxidation of propane, even under severe operating conditions, such as recycling reaction, high space velocity, a certain degree of moisture, and high temperature. Benefiting from this particular structure, the Ru/Ce@Co (5:95) catalyst with more Ce3+ species leads to the Ru species being anchored more firmly on the CeO2 surface with a low-valent state and has a strong potential for adsorption and activation of propane and oxygen, which is beneficial for RuOx species with high activity and stability. This work provides a novel strategy for designing high-efficiency Ru-based catalysts for the catalytic combustion of short carbon alkanes.


Asunto(s)
Oxidación-Reducción , Catálisis , Cerio/química , Propano/química , Propano/análogos & derivados , Rutenio/química
4.
Environ Res ; 258: 119477, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38909943

RESUMEN

In this study, UiO-67 (Zr)/g-C3N4 composites (U67N) were synthesized at wt.% ratios of 05:95, 15:85, and 30:70 using the solvothermal method at 80 °C for 24 h followed by calcination at 350 °C. The composites were characterized using UV-Vis diffuse reflectance spectroscopy, Fourier-transform infrared spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy-energy-dispersive X-ray spectroscopy, transmission electron microscopy, and nitrogen physisorption analysis. In addition, thermal stability analysis of UiO-67 was conducted using thermogravimetric analysis. The photocatalytic performance of the composites was assessed during the degradation and mineralization of a mixture of methylparaben (MeP) and propylparaben (PrP) under simulated sunlight. The adsorption process of U67N 15:85 was characterized through kinetic studies and adsorption capacity experiments, which were modeled using pseudo-first-order and pseudo-second-order kinetics and Langmuir and Freundlich isotherms, respectively. The influence of pH levels 3, 5, and 7 on the photocatalytic degradation of the mixture was investigated, revealing enhanced degradation and mineralization at pH 3. The U67N composite exhibited dual capability in removing contaminants through adsorption and photocatalytic processes. Among the prepared composites, U67N 15:85 demonstrated the highest photocatalytic activity, achieving removal efficiencies of 96.8% for MeP, 92.5% for PrP, and 45.7% for total organic carbon in 300 kJ/m2 accumulated energy (3 h of reaction time). The detoxification of the effluent was confirmed through acute toxicity evaluation using the Vibrio fischeri method. The oxidation mechanism of the heterojunction formed between UiO-67 (Zr) and g-C3N4 was proposed based on PL analysis, photoelectrochemistry studies (including photocurrent response, Nyquist, and Mott-Schottky analyses), and scavenger assays.


Asunto(s)
Parabenos , Contaminantes Químicos del Agua , Parabenos/química , Adsorción , Contaminantes Químicos del Agua/química , Estructuras Metalorgánicas/química , Catálisis , Cinética
5.
Chemosphere ; 361: 142556, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851499

RESUMEN

In this study, the Fe(III)/WS2/peroxymonosulfate (PMS) system was found to remove up to 97% of cyclohexanecarboxylic acid (CHA) within 10 min. CHA is a model compound for naphthenic acids (NAs), which are prevalent in petroleum industrial wastewater. The addition of WS2 effectively activated the Fe(III)/PMS system, significantly enhancing its ability to produce reactive oxidative species (ROS) for the oxidation of CHA. Further experimental results and characterization analyses demonstrated that the metallic element W(IV) in WS2 could provide electrons for the direct reduction of Fe(III) to Fe(II), thus rapidly activating PMS and initiating a chain redox process to produce ROS (SO4•-, •OH, and 1O2). Repeated tests and practical exploratory experiments indicated that WS2 exhibited excellent catalytic performance, reusability and anti-interference capacity, achieving efficient degradation of commercial NAs mixtures. Therefore, applying WS2 to catalyze the Fe(III)/PMS system can overcome speed limitations and facilitate simple, economical engineering applications.


Asunto(s)
Oxidación-Reducción , Peróxidos , Tungsteno , Peróxidos/química , Tungsteno/química , Catálisis , Ácidos Carboxílicos/química , Contaminantes Químicos del Agua/química , Sulfuros/química , Compuestos Férricos/química , Aguas Residuales/química , Petróleo , Hierro/química , Especies Reactivas de Oxígeno/química
6.
Molecules ; 29(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38792116

RESUMEN

Noble metals have become a research hotspot for the oxidation of light alkanes due to their low ignition temperature and easy activation of C-H; however, sintering and a high price limit their industrial applications. The preparation of effective and low-noble-metal catalysts still presents profound challenges. Herein, we describe how a Ru@CoMn2O4 spinel catalyst was synthesized via Ru in situ doping to promote the activity of propane oxidation. Ru@CoMn2O4 exhibited much higher catalytic activity than CoMn2O4, achieving 90% propane conversion at 217 °C. H2-TPR, O2-TPD, and XPS were used to evaluate the catalyst adsorption/lattice oxygen activity and the adsorption and catalytic oxidation capacity of propane. It could be concluded that Ru promoted synergistic interactions between cobalt and manganese, leading to electron transfer from the highly electronegative Ru to Co2+ and Mn3+. Compared with CoMn2O4, 0.1% Ru@CoMn2O4, with a higher quantity of lattice oxygen and oxygen mobility, possessed a stronger capability of reducibility, which was the main reason for the significant increase in the activity of Ru@CoMn2O4. In addition, intermediates of the reaction between adsorbed propane and lattice oxygen on the catalyst were monitored by in situ DRIFTS. This work highlights a new strategy for the design of a low-noble-metal catalyst for the efficient oxidation of propane.

7.
Materials (Basel) ; 17(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38793297

RESUMEN

Due to the recurrent starting and stopping operations of automobiles during service, their engines' hot ends are continually subjected to high-temperature cyclic oxidation. Therefore, it is crucial to develop ferritic stainless steels with better high-temperature oxidation resistance. This study focuses on improving the high-temperature cyclic oxidation performance of 18Cr-Mo (444-type) ferritic stainless steel by alloying with high-melting-point metal W and the rare earth element Ce. For this purpose, a high-temperature cyclic oxidation experiment was designed to simulate the actual service environment and investigate the high-temperature cyclic oxidation behavior and microstructure evolution of 444-type ferritic stainless steel alloyed with W and Ce. The oxide structure and composition formed during this process were analyzed and characterized using scanning electron microscopy/energy dispersive spectroscopy (SEM-EDS) and electron probe X-ray micro-analyzer (EPMA), in order to reveal the mechanism of action of W and Ce in the cyclic oxidation process. The results show that 18Cr-Mo ferritic stainless steel alloyed with W and Ce exhibits an excellent resistance to high-temperature cyclic oxidation. The element W can promote the precipitation of the Laves phase between the matrix and the oxide film, and the small-sized Laves phase can inhibit the interfacial diffusion of oxidation reaction elements and prevent the inward growth of the oxide film. The element Ce can refine oxide particles and reduce the thickness of the oxide film. CeO2 particles within the oxide film can serve as nucleation sites for the formation of oxide particles from reactive elements, and they also contribute to pinning the oxide film, thereby enhancing its adhesion.

8.
Food Chem ; 454: 139751, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38820639

RESUMEN

Decanal is one of the main products of lipid oxidation. It has been shown that decanal can oxidize to form volatiles with shorter carbon chains during heating, but the mechanism is still unclear. In this study, volatile compounds formed in the decanal thermal oxidation were verified using thermal-desorption cryo-trapping combined with GC-MS. A total of 32 volatile compounds were identified. The oxidation mechanism of decanal was studied by applying density functional theory. Results revealed that the carbonyl carbon atom was the thermal oxidation site of decanal and two pathways of peroxide oxidation were determined: the ortho­carbon and the meta­carbon oxidation. The ortho­carbon oxidation pathway is superior to the occurrence of the meta­carbon oxidation pathway. The oxidative mechanism of decanal was finally summarized as the peroxide oxidation based on radical attack on the carbonyl carbon, which would provide a theoretical basis for exploring the oxidation mechanism of other saturated aldehydes.


Asunto(s)
Aldehídos , Calor , Oxidación-Reducción , Compuestos Orgánicos Volátiles , Aldehídos/química , Compuestos Orgánicos Volátiles/química , Cromatografía de Gases y Espectrometría de Masas , Teoría Funcional de la Densidad
9.
J Hazard Mater ; 474: 134737, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38805813

RESUMEN

While flow-through anodic oxidation (FTAO) technique has demonstrated high efficiency to treat various refractory waste streams, there is an increasing concern on the secondary hazard generation thereby. In this study, we developed an integrated system that couples FTAO and cathodic reduction processes (termed FTAO-CR) for sustainable treatment of chlorine-laden industrial wastewater. Among four common electrode materials (i.e., Ti4O7, ß-PbO2, RuO2, and SnO2-Sb), RuO2 flow-through anode exhibited the best pollutant removal performance and relatively low ClO3 and ClO4 yields. Because of the significant scavenging effect of Cl- in real wastewater treatment, the direct electron transfer process played a dominant role in contaminant degradation for both active and nonactive anodes though active species (i.e., active chlorine) were involved in the subsequent transformation of the organic matter. A continuous FTAO-CR system was then constructed for simultaneous COD removal and organic and inorganic chlorinated byproduct control. The quality of the treated effluent could meet the national discharge permit limit at low energy cost (∼4.52 kWh m3 or ∼0.035 kWh g1-COD). Results from our study pave the way for developing novel electrochemical platforms for the purification of refractory waste streams whilst minimizing the secondary pollution.

10.
Food Res Int ; 186: 114372, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729730

RESUMEN

The oxidation and degradation of fats lead to a decrease in the nutritional value of food and pose safety concerns. Saturated fatty acids also hold a significant position in the field of lipid oxidation. In this study, the oxidation products of methyl palmitate were investigated by using gas chromatography mass spectrometry (GC-MS). Seven monohydroperoxides and 72 secondary oxidation products were detected. Combined with density functional theory (DFT) calculations, the formation mechanisms of oxidation products can be summarized into four stages. The initial stage involved the formation of monohydroperoxides and alkanes, followed by the subsequent stage involving methyl x-oxo(hydroxy)hexadecanoates. The third stage involved the formation of methyl ketones, carboxylic acids, and aldehydes, while the final stage involved lactones. Meanwhile, methyl ketones were the most abundant oxidation product, approximately 25 times more abundant than aldehydes; the calculated results agreed well with the experimental results. The establishment of a comprehensive thermal oxidation mechanism for palmitic acid provided a new foundation for future lipid oxidation analyses.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Calor , Oxidación-Reducción , Aldehídos/química , Aldehídos/análisis , Palmitatos/química , Ácido Palmítico/química , Cetonas/química , Ácidos Carboxílicos/química
11.
Artículo en Inglés | MEDLINE | ID: mdl-38606549

RESUMEN

PtRu alloys have been recognized as the state-of-the-art catalysts for the methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). However, their applications in DMFCs are still less efficient in terms of both catalytic activity and durability. Rare earth (RE) metals have been recognized as attractive elements to tune the catalytic activity, while it is still a world-class challenge to synthesize well-dispersed Pt-RE alloys. Herein, we developed a novel hydrogen-assisted magnesiothermic reduction strategy to prepare a highly dispersed carbon-supported lutetium-doped PtRu catalyst with ultrafine nanoclusters and atomically dispersed Ru sites. The PtRuLu catalyst shows an outstanding high electrochemical surface area (ECSA) of 239.0 m2 gPt-1 and delivers an optimized MOR mass activity and specific activity of 632.5 mA mgPt-1 and 26 A cmPt-2 at 0.4 V vs saturated calomel electrode (SCE), which are 3.6 and 3.5 times of commercial PtRu-JM and an order higher than PtLu, respectively. These novel catalysts have been demonstrated in a high-temperature direct methanol fuel cell running in a temperature range of 180-240 °C, achieving a maximum power density of 314.3 mW cm-2. The AC-STEM imaging, in situ ATR-IR spectroscopy, and DFT calculations disclose that the high performance is resulted from the highly dispersed PtRuLu nanoclusters and the synergistic effect of the atomically dispersed Ru sites with PtRuLu nanoclusters, which significantly reduces the CO* intermediates coverage due to the promoted water activation to form the OH* to facilitate the CO* removal.

12.
Mikrochim Acta ; 191(5): 236, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570402

RESUMEN

Three different types of Zr-based MOFs derived from benzene dicarboxylic acid (BDC) and naphthalene dicarboxylic acid as organic linkers (ZrBDC, 2,6-ZrNDC, and 1,4-ZrNDC) were synthesized. They were characterized using X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform IR spectroscopy (FT-IR), and Transmission electron microscopy (TEM). Their hydrophilic/hydrophobic nature was investigated via contact angle measurements; ZrBDC MOF was hydrophilic and the other two (ZrNDC) MOFs were hydrophobic. The three MOFs were combined with MWCNTs as electrode modifiers for the determination of a hydrophobic analyte, flibanserin (FLB), as a proof-of-concept analyte. Under the optimized experimental conditions, a significant enhancement in the oxidation peak current of FLB was observed when utilizing 2,6-ZrNDC and 1,4-ZrNDC, being the highest when using 1,4-ZrNDC. Furthermore, a thorough investigation of the complex oxidation pathway of FLB was performed by carrying out simultaneous spectroelectrochemical measurements. Based on the obtained results, it was verified that the piperazine moiety of FLB is the primary site for electrochemical oxidation. The fabricated sensor based on 1,4-ZrNDC/MW/CPE showed an oxidation peak of FLB at 0.8 V vs Ag/AgCl. Moreover, it showed excellent linearity for the determination of FLB in the range 0.05 to 0.80 µmol L-1 with a correlation coefficient (r) = 0.9973 and limit of detection of 3.0 nmol L-1. The applicability of the developed approach was demonstrated by determination of FLB in pharmaceutical tablets and human urine samples with acceptable repeatability (% RSD values were below 1.9% and 2.1%, respectively) and reasonable recovery values (ranged between 97 and 103% for pharmaceutical tablets and between 96 and 102% for human urine samples). The outcomes of the suggested methodology can be utilized for the determination of other hydrophobic compounds of pharmaceutical or biological interest with the aim of achieving low detection limits of these compounds in various matrices.

13.
Proc Natl Acad Sci U S A ; 121(11): e2319374121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437550

RESUMEN

Identifying the two substrate water sites of nature's water-splitting cofactor (Mn4CaO5 cluster) provides important information toward resolving the mechanism of O-O bond formation in Photosystem II (PSII). To this end, we have performed parallel substrate water exchange experiments in the S1 state of native Ca-PSII and biosynthetically substituted Sr-PSII employing Time-Resolved Membrane Inlet Mass Spectrometry (TR-MIMS) and a Time-Resolved 17O-Electron-electron Double resonance detected NMR (TR-17O-EDNMR) approach. TR-MIMS resolves the kinetics for incorporation of the oxygen-isotope label into the substrate sites after addition of H218O to the medium, while the magnetic resonance technique allows, in principle, the characterization of all exchangeable oxygen ligands of the Mn4CaO5 cofactor after mixing with H217O. This unique combination shows i) that the central oxygen bridge (O5) of Ca-PSII core complexes isolated from Thermosynechococcus vestitus has, within experimental conditions, the same rate of exchange as the slowly exchanging substrate water (WS) in the TR-MIMS experiments and ii) that the exchange rates of O5 and WS are both enhanced by Ca2+→Sr2+ substitution in a similar manner. In the context of previous TR-MIMS results, this shows that only O5 fulfills all criteria for being WS. This strongly restricts options for the mechanism of water oxidation.

14.
Food Chem X ; 21: 101174, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38362527

RESUMEN

Unsaturated aliphatic aldehyde oxidation plays a significant role in the deep oxidation of fatty acids to produce volatile chemicals. Exposing the oxidation process of unsaturated aliphatic aldehydes is crucial to completely comprehend how food flavor forms. In this study, thermal desorption cryo-trapping in conjunction with gas chromatography-mass spectrometry was used to examine the volatile profile of (E)-4-decenal during heating, and 32 volatile compounds in all were detected and identified. Meanwhile, density functional theory (DFT) calculations were used, and 43 reactions were obtained in the 24 pathways, which were summarized into the peroxide reaction mechanism (ROOH), the peroxyl radical reaction mechanism (ROO·) and the alkoxy radical reaction mechanism (RO·). Moreover, the priority of these three oxidative mechanisms was the RO· mechanism > ROOH mechanism > ROO· mechanism. Furthermore, the DFT results and experimental results agreed well, and the oxidative mechanism of (E)-4-decenal was finally illuminated.

15.
Anal Biochem ; 688: 115478, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38309680

RESUMEN

In this study, a simple electrochemical sensor based on l-arginine membrane (P-L-arg/GCE) was developed for rapid and sensitive detection of MDMA and MDA. A polyarginine membrane was obtained through one-step direct electropolymerization, which provides more reaction sites for the analyte and improves the sensitivity of the sensor. Following the optimized selection parameters, the MDMA detection range was established at 1.0 × 10-7∼3.5 × 10-5 mol L-1, with a detection limit of 3.3 × 10-8 mol L-1. Similarly, the detection range for MDA was established at 1.0 × 10-7∼5.3 × 10-5 mol L-1 with a detection limit of 3.3 × 10-8 mol L-1. Additionally, the potential oxidation mechanism of MDMA and MDA during the REDOX process was analyzed by cyclic voltammetry. Furthermore, the proposed sensor exhibited superior selectivity, excellent reproducibility, and satisfactory stability. The proposed sensors can be used for reliable monitoring of MDMA or MDA in human urine and hair samples, respectively, and it has acceptable analytical reliability and enormous potential for practical applications.


Asunto(s)
N-Metil-3,4-metilenodioxianfetamina , Humanos , Reproducibilidad de los Resultados , Péptidos , Oxidación-Reducción , Técnicas Electroquímicas , Límite de Detección , Electrodos
16.
Sci Total Environ ; 921: 170911, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354796

RESUMEN

Elucidation of the catalytic decomposition mechanism of dioxins is pivotal in developing highly efficient dioxin degradation catalysts. In order to accurately simulate the whole molecular structure of dioxins, two model compounds, o-dichlorobenzene (o-DCB) and furan, were employed to represent the chlorinated benzene ring and oxygenated central ring within a dioxin molecule, respectively. Experiments and Density Functional Theory (DFT) calculations were combined to investigate the adsorption as well as oxidation of o-DCB and furan over MnOx-CeO2/TiO2 catalyst (denoted as MnCe/Ti). The results indicate that competitive adsorption exists between furan and o-DCB. The former exhibits superior adsorption capacity on MnCe/Ti catalyst at 100 °C - 150 °C, for it can adsorb on both surface metal atom and surface oxygen vacancies (Ov) via its O-terminal; while the latter adsorbs primarily by anchoring its Cl atom to surface Ov. Regarding oxidation, furan can be completely oxidized at 150 °C - 300 °C with a high CO2 selectivity (above 80 %). However, o-DCB cannot be totally oxidized and the resulting intermediates cause the deactivation of catalyst. Interestingly, the pre-adsorption of furan on catalyst surface can facilitate the catalytic oxidation of o-DCB below 200 °C, possibly because the dissociated adsorption of furan may form additional reactive oxygen species on catalyst surface. Therefore, this work provides new insights into the catalytic decomposition mechanism of dioxins as well as the optimization strategies for developing dioxin-degradation catalysts with high efficiency at low temperature.

17.
Sci Total Environ ; 916: 170275, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38262532

RESUMEN

The remediation of arsenic-contaminated groundwater by sulfidated nanoscale zero-valent iron (S-nZVI) has raised considerable attention. However, the role of trivalent arsenic (As(III)) oxidation by S-nZVI in oxic conditions (S-nZVI/O2) remains controversial, and the comprehensive effect of citric acid (CA) prevalent in groundwater on As(III) removal by S-nZVI remains unclear. Herein, the mechanisms of reactive oxygen species (ROS) generation and multiple effects of CA on As(III) removal by S-nZVI/O2 were systematically explored. Results indicated that the removal efficiency of As(III) by S-nZVI/O2 (97.81 %) was prominently higher than that by S-nZVI (66.71 %), resulting from the significant production of ROS (mainly H2O2 and OH) under oxic conditions, which played a crucial role in promoting the As(III) oxidation. Additionally, CA had multiple effects on As(III) removal by S-nZVI/O2 system: (i) CA impeded the diffusion of As(III) towards S-nZVI and increased the secondary risk of immobilized As(III) re-releasing into the environment due to the Fe dissolution from S-nZVI; (ii) CA could significantly enhance the yields of OH from 25.29 to 133.00 µM via accelerating the redox cycle of Fe(II)/Fe(III) and increasing the oriented conversion rate of H2O2 to OH; (iii) CA could also enrich the types of ROS (such as O2- and 1O2) in favor of further As(III) oxidation. This study contributed novel findings regarding the control of As(III) contaminated groundwater using S-nZVI technologies.

18.
Arch Biochem Biophys ; 752: 109874, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38145834

RESUMEN

The X-ray crystal structures of soybean lipoxygenase (LOX) and rabbit 15-LOX were reported in the 1990s. Subsequent 3D structures demonstrated a conserved U-like shape of the substrate cavities as reviewed here. The 8-LOX:arachidonic acid (AA) complex showed AA bound to the substrate cavity carboxylate-out with C10 at 3.4 Å from the iron metal center. A recent cryo-electron microscopy (EM) analysis of the 12-LOX:AA complex illustrated AA in the same position as in the 8-LOX:AA complex. The 15- and 12-LOX complexes with isoenzyme-specific inhibitors/substrate mimics confirmed the U-fold. 5-LOX oxidizes AA to leukotriene A4, the first step in biosynthesis of mediators of asthma. The X-ray structure showed that the entrance to the substrate cavity was closed to AA by Phe and Tyr residues of a partly unfolded α2-helix. Recent X-ray analysis revealed that soaking with inhibitors shifted the short α2-helix to a long and continuous, which opened the substrate cavity. The α2-helix also adopted two conformations in 15-LOX. 12-LOX dimers consisted of one closed and one open subunit with an elongated α2-helix. 13C-ENDOR-MD computations of the 9-MnLOX:linoleate complex showed carboxylate-out position with C11 placed 3.4 ± 0.1 Å from the catalytic water. 3D structures have provided a solid ground for future research.


Asunto(s)
Lipooxigenasa , Lipooxigenasas , Animales , Conejos , Lipooxigenasas/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/química , Ácido Araquidónico/química , Ácido Araquidónico/metabolismo , Araquidonato 12-Lipooxigenasa
19.
Small ; 20(22): e2308419, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38102103

RESUMEN

The unsatisfactory oxygen evolution reaction (OER) activity of IrO2 has intensively raised the cost and energy consumption of hydrogen generation from proton exchange membrane water electrolyzers. Here, the acidic OER activity of the rutile IrO2 is significantly enhanced by the incorporation of trivalent metals (e.g., Gd, Nd, and Pr) to increase the Ir-O covalency, while the high-valence (pentavalent or higher) metal incorporation decreases the Ir-O covalency resulting in worse OER activity. Experimental and theoretical analyses indicate that enhanced Ir-O covalency activates lattice oxygen and triggers lattice oxygen-mediated mechanism to enhance OER kinetics, which is verified by the finding of a linear relationship between the natural logarithm of intrinsic activity and Ir-O covalency described by charge transfer energy. By regulating the Ir-O covalency, the obtained Gd-IrO2-δ merely needs 260 mV of overpotential to reach 10 mA cm-2 and shows impressive stability during a 200-h test in 0.5 м H2SO4. This work provides an effective strategy for significantly enhancing the OER activity of the widely used IrO2 electrocatalysts through the rational regulation of Ir-O covalency.

20.
Antioxidants (Basel) ; 12(10)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37891969

RESUMEN

The oxidation of wine may be beneficial or harmful to its quality. On the one hand, controlled oxidation can lead to the development of desirable sensory characteristics for red wine, such as enhanced color stability. Alternatively, oxidation can lead to white wine browning and a decrease in fruity aromas, and the development of an off flavor and wine polyphenols are also involved. The presence of glutathione (GSH) can help mitigate the negative effects of oxidation by acting as a protective antioxidant. In order to better understand the antioxidant role played by GSH, wine polyphenols oxidation experiments by electrochemical means in the presence of GSH were carried out. The oxidation behavior of polyphenols representing different phenolic classes commonly found in wines, including protocatechuic acid (PCA), caffeic acid (CAF), epicatechin (EC), and rutin (Ru), was investigated using cyclic voltammetry and bulk electrolysis. We identified the oxidation products and reaction pathways of these polyphenols using ultra-high-performance liquid chromatography coupled with mass spectrometry (UPLC-MS), in both the absence and the presence of glutathione (GSH). UPLC-MS was utilized to demonstrate that, in the presence of glutathione (GSH), the four molecules were subjected to electrochemical oxidation, resulting in the formation of mono- and bi-glutathione conjugates. A two-electron oxidation process combined with the removal of two protons is the first step in transforming polyphenol molecules. As a result, the corresponding quinone is formed. The quinone can then be reduced back to its original form by glutathione (GSH), or it can interact further with GSH to produce mono- and bi-glutathione conjugates. These results contribute to understanding and predicting the oxidative degradation pathway of polyphenols in wine. Understanding this process seems important for winemakers to control and optimize the sensory characteristics of their wines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA