Your browser doesn't support javascript.
loading
Energy-efficient treatment of refractory industrial effluent using flow-through electrochemical processes: Oxidation mechanisms and reduction of chlorinated byproducts.
Yang, Kui; Ma, Jinxing; Li, Wei; He, Weiting; Zu, Daoyuan; Yang, Wenjian; Zhang, Zhong; Yang, Zhifeng.
Afiliación
  • Yang K; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
  • Ma J; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guan
  • Li W; Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
  • He W; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guan
  • Zu D; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guan
  • Yang W; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guan
  • Zhang Z; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guan
  • Yang Z; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Key Laboratory for City Cluster Environme
J Hazard Mater ; 474: 134737, 2024 Aug 05.
Article en En | MEDLINE | ID: mdl-38805813
ABSTRACT
While flow-through anodic oxidation (FTAO) technique has demonstrated high efficiency to treat various refractory waste streams, there is an increasing concern on the secondary hazard generation thereby. In this study, we developed an integrated system that couples FTAO and cathodic reduction processes (termed FTAO-CR) for sustainable treatment of chlorine-laden industrial wastewater. Among four common electrode materials (i.e., Ti4O7, ß-PbO2, RuO2, and SnO2-Sb), RuO2 flow-through anode exhibited the best pollutant removal performance and relatively low ClO3 and ClO4 yields. Because of the significant scavenging effect of Cl- in real wastewater treatment, the direct electron transfer process played a dominant role in contaminant degradation for both active and nonactive anodes though active species (i.e., active chlorine) were involved in the subsequent transformation of the organic matter. A continuous FTAO-CR system was then constructed for simultaneous COD removal and organic and inorganic chlorinated byproduct control. The quality of the treated effluent could meet the national discharge permit limit at low energy cost (∼4.52 kWh m3 or ∼0.035 kWh g1-COD). Results from our study pave the way for developing novel electrochemical platforms for the purification of refractory waste streams whilst minimizing the secondary pollution.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos