Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cell Physiol ; : e31403, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39129225

RESUMEN

A proton (H+) channel, Otopetrin 1 (OTOP1) is an acid sensor in the sour taste receptor cells. Although OTOP1 is known to be activated by extracellular acid, no posttranslational modification of OTOP1 has been reported. As one of the posttranslational modifications, glycosylation is known to modulate many ion channels. In this study, we investigated whether OTOP1 is glycosylated and how the glycosylation affects OTOP1 function. Pharmacological and enzymatic examinations (using an N-glycosylation inhibitor, tunicamycin and peptide: N-glycanase F [PNGase F]) revealed that overexpressed mouse OTOP1 was N-glycosylated. As the N-glycans were Endoglycosidase H (Endo H)-sensitive, they were most likely high-mannose type. A site-directed mutagenesis approach revealed that both two asparagine residues (N238 and N251) in the third extracellular loop between the fifth transmembrane region and the sixth transmembrane region (L5-6) were the glycosylation sites. Prevention of the glycosylations by the mutations of the asparagine residues or by tunicamycin treatment diminished the whole-cell OTOP1 current densities. The results of cell surface biotinylation assay showed that the prevention of the glycosylations reduced the surface expression of OTOP1 at the plasma membrane. These results indicate that mouse OTOP1 is N-glycosylated at N238 and N251, and that the glycosylations are necessary for OTOP1 to show the maximum degree of H+ current densities at the plasma membrane through promoting its targeting to the plasma membrane. These findings on glycosylations of OTOP1 will be a part of a comprehensive understanding on the regulations of OTOP1 function.

2.
Metabolites ; 13(11)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37999227

RESUMEN

Living organisms rely on pH levels for a multitude of crucial biological processes, such as the digestion of food and the facilitation of enzymatic reactions. Among these organisms, animals, including insects, possess specialized taste organs that enable them to discern between acidic and alkaline substances present in their food sources. This ability is vital, as the pH of these compounds directly influences both the nutritional value and the overall health impact of the ingested substances. In response to the various chemical properties of naturally occurring compounds, insects have evolved peripheral taste organs. These sensory structures play a pivotal role in identifying and distinguishing between nourishing and potentially harmful foods. In this concise review, we aim to provide an in-depth examination of the molecular mechanisms governing pH-dependent taste responses, encompassing both acidic and alkaline stimuli, within the peripheral taste organs of the fruit fly, Drosophila melanogaster, drawing insights from a comprehensive analysis of existing research articles.

3.
Biochem Biophys Res Commun ; 665: 64-70, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37149984

RESUMEN

Otopetrin 1 (OTOP1) is a proton (H+) channel which detects acidic stimuli in sour taste receptor cells and plays some sort of role in the formation of otoconia in the inner ear. Although it is known that zinc ion (Zn2+) inhibits OTOP1, Zn2+ requires high concentrations (mM order) to inhibit OTOP1 sufficiently, and no other inhibitors have been found. Therefore, to identify a novel inhibitor, we screened a chemical library (LOPAC1280) by whole-cell patch clamp recordings, measuring proton currents of heterologously-expressed mouse OTOP1. From the screening, we found that reactive blue 2 inhibited OTOP1 currents. Further evaluations of three analogues of reactive blue 2 revealed that cibacron blue 3G-A potently inhibited OTOP1 currents. Cibacron blue 3G-A inhibited OTOP1 currents in a concentration-dependent manner, and its 50% inhibitory concentration (IC50) and the Hill coefficient were 5.0 µM and 1.1, respectively. The inhibition of OTOP1 currents by cibacron blue 3G-A was less affected by extracellular anion compositions, membrane potentials, and low pH than the inhibition by Zn2+. These results suggest that the inhibition of OTOP1 by cibacron blue 3G-A is neither likely to be a pore-blocking inhibition nor a competitive inhibition. Furthermore, our findings revealed that cibacron blue 3G-A can be used as a novel inhibitor of OTOP1 especially under the conditions in which OTOP1 activity is evaluated such as low pH.


Asunto(s)
Protones , Triazinas , Ratones , Animales , Triazinas/farmacología , Proteínas de la Membrana
4.
Genes (Basel) ; 14(4)2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37107589

RESUMEN

Vertigo due to vestibular dysfunction is rare in children. The elucidation of its etiology will improve clinical management and the quality of life of patients. Genes for vestibular dysfunction were previously identified in patients with both hearing loss and vertigo. This study aimed to identify rare, coding variants in children with peripheral vertigo but no hearing loss, and in patients with potentially overlapping phenotypes, namely, Meniere's disease or idiopathic scoliosis. Rare variants were selected from the exome sequence data of 5 American children with vertigo, 226 Spanish patients with Meniere's disease, and 38 European-American probands with scoliosis. In children with vertigo, 17 variants were found in 15 genes involved in migraine, musculoskeletal phenotypes, and vestibular development. Three genes, OTOP1, HMX3, and LAMA2, have knockout mouse models for vestibular dysfunction. Moreover, HMX3 and LAMA2 were expressed in human vestibular tissues. Rare variants within ECM1, OTOP1, and OTOP2 were each identified in three adult patients with Meniere's disease. Additionally, an OTOP1 variant was identified in 11 adolescents with lateral semicircular canal asymmetry, 10 of whom have scoliosis. We hypothesize that peripheral vestibular dysfunction in children may be due to multiple rare variants within genes that are involved in the inner ear structure, migraine, and musculoskeletal disease.


Asunto(s)
Sordera , Enfermedad de Meniere , Trastornos Migrañosos , Escoliosis , Adulto , Adolescente , Niño , Animales , Ratones , Humanos , Calidad de Vida , Escoliosis/complicaciones , Vértigo , Sordera/complicaciones , Trastornos Migrañosos/genética , Trastornos Migrañosos/complicaciones , Proteínas de la Matriz Extracelular
5.
Elife ; 112022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35920807

RESUMEN

Otopetrin (OTOP) channels are proton-selective ion channels conserved among vertebrates and invertebrates, with no structural similarity to other ion channels. There are three vertebrate OTOP channels (OTOP1, OTOP2, and OTOP3), of which one (OTOP1) functions as a sour taste receptor. Whether extracellular protons gate OTOP channels, in addition to permeating them, was not known. Here, we compare the functional properties of the three murine OTOP channels using patch-clamp recording and cytosolic pH microfluorimetry. We find that OTOP1 and OTOP3 are both steeply activated by extracellular protons, with thresholds of pHo <6.0 and 5.5, respectively, and kinetics that are pH-dependent. In contrast, OTOP2 channels are broadly active over a large pH range (pH 5 pH 10) and carry outward currents in response to extracellular alkalinization (>pH 9.0). Strikingly, we could change the pH-sensitive gating of OTOP2 and OTOP3 channels by swapping extracellular linkers that connect transmembrane domains. Swaps of extracellular linkers in the N domain, comprising transmembrane domains 1-6, tended to change the relative conductance at alkaline pH of chimeric channels, while swaps within the C domain, containing transmembrane domains 7-12, tended to change the rates of OTOP3 current activation. We conclude that members of the OTOP channel family are proton-gated (acid-sensitive) proton channels and that the gating apparatus is distributed across multiple extracellular regions within both the N and C domains of the channels. In addition to the taste system, OTOP channels are expressed in the vertebrate vestibular and digestive systems. The distinct gating properties we describe may allow them to subserve varying cell-type specific functions in these and other biological systems.


Asunto(s)
Protones , Vertebrados , Animales , Concentración de Iones de Hidrógeno , Invertebrados , Canales Iónicos , Proteínas de la Membrana/metabolismo , Ratones , Vertebrados/metabolismo
6.
Annu Rev Physiol ; 84: 41-58, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34752707

RESUMEN

Sour taste, the taste of acids, is one of the most enigmatic of the five basic taste qualities; its function is unclear and its receptor was until recently unknown. Sour tastes are transduced in taste buds on the tongue and palate epithelium by a subset of taste receptor cells, known as type III cells. Type III cells express a number of unique markers, which allow for their identification and manipulation. These cells respond to acid stimuli with action potentials and release neurotransmitters onto afferent nerve fibers, with cell bodies in geniculate and petrosal ganglia. Here, we review classical studies of sour taste leading up to the identification of the sour receptor as the proton channel OTOP1.


Asunto(s)
Papilas Gustativas , Gusto , Ácidos , Potenciales de Acción , Humanos , Gusto/fisiología , Papilas Gustativas/fisiología
7.
Curr Opin Physiol ; 20: 8-15, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33709046

RESUMEN

Sour taste, which is evoked by low pH, is one of the original four fundamental taste qualities, recognized as a distinct taste sensation for centuries, and universally aversive across diverse species. It is generally assumed to have evolved for detection of acids in unripe fruit and spoiled food. But despite decades of study, only recently have the receptor, the neurotransmitter, and the circuits for sour taste been identified. In this review, we describe studies leading up to the identification of the sour receptor as OTOP1, an ion channel that is selectively permeable to protons. We also describe advances in our understanding of how information is transmitted from the taste receptor cells to gustatory neurons, leading to behavioral aversion to acids.

8.
Curr Biol ; 29(21): 3647-3656.e5, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31543453

RESUMEN

The sense of taste allows animals to sample chemicals in the environment prior to ingestion. Of the five basic tastes, sour, the taste of acids, had remained among the most mysterious. Acids are detected by type III taste receptor cells (TRCs), located in taste buds across the tongue and palate epithelium. The first step in sour taste transduction is believed to be entry of protons into the cell cytosol, which leads to cytosolic acidification and the generation of action potentials. The proton-selective ion channel Otop1 is expressed in type III TRCs and is a candidate sour receptor. Here, we tested the contribution of Otop1 to taste cell and gustatory nerve responses to acids in mice in which Otop1 was genetically inactivated (Otop1-KO mice). We first show that Otop1 is required for the inward proton current in type III TRCs from different parts of the tongue that are otherwise molecularly heterogeneous. We next show that in type III TRCs from Otop1-KO mice, intracellular pH does not track with extracellular pH and that moderately acidic stimuli do not elicit trains of action potentials, as they do in type III TRCs from wild-type mice. Moreover, gustatory nerve responses in Otop1-KO mice were severely and selectively attenuated for acidic stimuli, including citric acid and HCl. These results establish that the Otop1 proton channel plays a critical role in acid detection in the mouse gustatory system, evidence that it is a bona fide sour taste receptor.


Asunto(s)
Proteínas de la Membrana/genética , Percepción del Gusto/genética , Gusto/fisiología , Animales , Femenino , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados
9.
J Neurophysiol ; 121(6): 2300-2307, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30969882

RESUMEN

The role of the otoliths in mammals in the normal angular vestibuloocular reflex (VOR) was characterized in an accompanying study based on the Otopetrin1 (Otop1) mouse, which lacks functioning otoliths because of failure to develop otoconia but seems to have otherwise normal peripheral anatomy and neural circuitry. That study showed that otoliths do not contribute to the normal horizontal (rotation about Earth-vertical axis parallel to dorso-ventral axis) and vertical (rotation about Earth-vertical axis parallel to interaural axis) angular VOR but do affect gravity context-specific VOR adaptation. By using these animals, we sought to determine whether the otoliths play a role in the angular VOR after unilateral labyrinthectomy when the total canal signal is reduced. In five Otop1 mice and five control littermates we measured horizontal and vertical left-ear-down and right-ear-down sinusoidal VOR (0.2-10 Hz, 20-100°/s) during the early (3-5 days) and plateau (28-32 days) phases of compensation after unilateral labyrinthectomy and compared these measurements with baseline preoperative responses from the accompanying study. From similar baselines, acute gain loss was ~25% less in control mice, and chronic gain recovery was ~40% more in control mice. The acute data suggest that the otoliths contribute to the angular VOR when there is a loss of canal function. The chronic data suggest that a unilateral otolith signal can significantly improve angular VOR compensation. These data have implications for vestibular rehabilitation of patients with both canal and otolith loss and the development of vestibular implants, which currently only mimic the canals on one side. NEW & NOTEWORTHY This is the first study examining the role of the otoliths (defined here as the utricle and saccule) on the acute and chronic angular vestibuloocular reflex (VOR) after unilateral labyrinthectomy in an animal model in which the otoliths are reliably inactivated and the semicircular canals preserved. This study shows that the otolith signal is used to augment the acute angular VOR and help boost VOR compensation after peripheral injury.


Asunto(s)
Membrana Otolítica/fisiología , Reflejo Vestibuloocular/fisiología , Enfermedades Vestibulares/fisiopatología , Vestíbulo del Laberinto , Animales , Humanos , Masculino , Proteínas de la Membrana , Ratones , Ratones Noqueados , Modelos Animales , Vestíbulo del Laberinto/lesiones , Vestíbulo del Laberinto/cirugía
10.
J Neurophysiol ; 121(6): 2291-2299, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30969887

RESUMEN

The role of the otoliths in mammals in the angular vestibuloocular reflex (VOR) has been difficult to determine because there is no surgical technique that can reliably ablate them without damaging the semicircular canals. The Otopetrin1 (Otop1) mouse lacks functioning otoliths because of failure to develop otoconia but seems to have otherwise normal peripheral anatomy and neural circuitry. By using these animals we sought to determine the role of the otoliths in angular VOR baseline function and adaptation. In six Otop1 mice and six control littermates we measured baseline ocular countertilt about the three primary axes in head coordinates; baseline horizontal (rotation about an Earth-vertical axis parallel to the dorsal-ventral axis) and vertical (rotation about an Earth-vertical axis parallel to the interaural axis) sinusoidal (0.2-10 Hz, 20-100°/s) VOR gain (= eye/head velocity); and the horizontal and vertical VOR after gain-increase (1.5×) and gain-decrease (0.5×) adaptation training. Countertilt responses were significantly reduced in Otop1 mice. Baseline horizontal and vertical VOR gains were similar between mouse types, and so was horizontal VOR adaptation. For control mice, vertical VOR adaptation was evident when the testing context, left ear down (LED) or right ear down (RED), was the same as the training context (LED or RED). For Otop1 mice, VOR adaptation was evident regardless of context. Our results suggest that the otolith translational signal does not contribute to the baseline angular VOR, probably because the mouse VOR is highly compensatory, and does not alter the magnitude of adaptation. However, we show that the otoliths are important for gravity context-specific angular VOR adaptation. NEW & NOTEWORTHY This is the first study examining the role of the otoliths (defined here as the utricle and saccule) in adaptation of the angular vestibuloocular reflex (VOR) in an animal model in which the otoliths are reliably inactivated and the semicircular canals preserved. We show that they do not contribute to adaptation of the normal angular VOR. However, the otoliths provide the main cue for gravity context-specific VOR adaptation.


Asunto(s)
Adaptación Fisiológica/fisiología , Sensación de Gravedad/fisiología , Membrana Otolítica/fisiología , Reflejo Vestibuloocular/fisiología , Animales , Masculino , Proteínas de la Membrana , Ratones , Ratones Noqueados , Modelos Animales
11.
Curr Biol ; 29(3): 392-401.e4, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30686738

RESUMEN

Rocking has long been known to promote sleep in infants and, more recently, also in adults, increasing NREM sleep stage N2 and enhancing EEG slow waves and spindles. Nevertheless, whether rocking also promotes sleep in other species, and what the underlying mechanisms are, has yet to be explored. In the current study, C57BL/6J mice equipped with EEG and EMG electrodes were rocked laterally during their main sleep period, i.e., the 12-h light phase. We observed that rocking affected sleep in mice with a faster optimal rate than in humans (1.0 versus 0.25 Hz). Specifically, rocking mice at 1.0 Hz increased time spent in NREM sleep through the shortening of wake episodes and accelerated sleep onset. Although rocking did not increase EEG activity in the slow-wave and spindle-frequency ranges in mice, EEG theta activity (6-10 Hz) during active wakefulness shifted toward slower frequencies. To test the hypothesis that the rocking effects are mediated through the vestibular system, we used the otoconia-deficient tilted (tlt) mouse, which cannot encode linear acceleration. Mice homozygous for the tlt mutation were insensitive to rocking at 1.0 Hz, while the sleep and EEG response of their heterozygous and wild-type littermates resembled those of C57BL/6J mice. Our findings demonstrate that rocking also promotes sleep in the mouse and that this effect requires input from functional otolithic organs of the vestibule. Our observations also demonstrate that the maximum linear acceleration applied, and not the rocking rate per se, is key in mediating the effects of rocking on sleep.


Asunto(s)
Encéfalo/fisiología , Movimiento (Física) , Sueño/fisiología , Vestíbulo del Laberinto/fisiología , Animales , Electroencefalografía , Electromiografía , Masculino , Ratones , Ratones Endogámicos C57BL , Polisomnografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA