Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros











Intervalo de año de publicación
1.
Exp Parasitol ; 262: 108774, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754618

RESUMEN

Acanthamoeba spp., are common free-living amoebae found in nature that can serve as reservoirs for certain microorganisms. The SARS-CoV-2 virus is a newly emerged respiratory infection, and the investigation of parasitic infections remains an area of limited research. Given that Acanthamoeba can act as a host for various endosymbiotic microbial pathogens and its pathogenicity assay is not fully understood, this study aimed to identify Acanthamoeba and its bacterial and fungal endosymbionts in patients with chronic respiratory disorders and hospitalized COVID-19 patients in northern Iran. Additionally, a pathogenicity assay was conducted on Acanthamoeba isolates. Urine, nasopharyngeal swab, and respiratory specimens were collected from two groups, and each sample was cultured on 1.5% non-nutrient agar medium. The cultures were then incubated at room temperature and monitored daily for a period of two weeks. Eight Acanthamoeba isolates were identified, and PCR was performed to confirm the presence of amoebae and identify their endosymbionts. Four isolates were found to have bacterial endosymbionts, including Stenotrophomonas maltophilia and Achromobacter sp., while two isolates harbored fungal endosymbionts, including an uncultured fungus and Gloeotinia sp. In the pathogenicity assay, five isolates exhibited a higher degree of pathogenicity compared to the other three. This study provides significant insights into the comorbidity of acanthamoebiasis and COVID-19 on a global scale, and presents the first evidence of Gloeotinia sp. as a fungal endosymbiont. Nevertheless, further research is required to fully comprehend the symbiotic patterns and establish effective treatment protocols.


Asunto(s)
Acanthamoeba , COVID-19 , SARS-CoV-2 , Simbiosis , Humanos , Irán , Acanthamoeba/aislamiento & purificación , Acanthamoeba/patogenicidad , Masculino , Femenino , Stenotrophomonas maltophilia/aislamiento & purificación , Stenotrophomonas maltophilia/patogenicidad , Persona de Mediana Edad , Adulto , Amebiasis/parasitología , Reacción en Cadena de la Polimerasa , Anciano , Células Vero , Hospitalización , Chlorocebus aethiops
2.
Biochem Biophys Res Commun ; 717: 150049, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38714014

RESUMEN

Acquired osmotolerance induced by initial exposure to mild salt stress is widespread across Arabidopsis thaliana ecotypes, but the mechanism underlying it remains poorly understood. To clarify it, we isolated acquired osmotolerance-deficient 1 (aod1), a mutant highly sensitive to osmotic stress, from ion-beam-irradiated seeds of Zu-0, an ecotype known for its remarkably high osmotolerance. Aod1 showed growth inhibition with spotted necrotic lesions on the rosette leaves under normal growth conditions on soil. However, its tolerance to salt and oxidative stresses was similar to that of the wild type (WT). Genetic and genome sequencing analyses suggested that the gene causing aod1 is identical to CONSTITUTIVELY ACTIVATED CELL DEATH 1 (CAD1). Complementation with the WT CAD1 gene restored the growth and osmotolerance of aod1, indicating that mutated CAD1 is responsible for the observed phenotypes in aod1. Although CAD1 is known to act as a negative regulator of immune response, transcript levels in the WT increased in response to osmotic stress. Aod1 displayed enhanced immune response and cell death under normal growth conditions, whereas the expression profiles of osmotic response genes were comparable to those of the WT. These findings suggest that autoimmunity in aod1 is detrimental to osmotolerance. Overall, our results suggest that CAD1 negatively regulates immune responses under osmotic stress, contributing to osmotolerance in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Presión Osmótica , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Inmunidad de la Planta/genética
3.
Turkiye Parazitol Derg ; 48(1): 15-20, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38449362

RESUMEN

Objective: The aim of this study was to evaluate the pathogenicity of Acanthamoeba strains with T4, T5, T11, and T12 genotypes by comparing the osmotolerance and thermotolerance characteristics of Acanthamoeba strains isolated from genotype groups, within species with the same genotype, and from environmental and keratitis cases. Methods: In this study, after axenic cultures of 22 Acanthamoeba strains with T4 (Neff, A, B, D, E), T5, T11, and T12 genotypes isolated from clinical and environmental samples, thermotolerance (37 °C, 39 °C and 41 °C) and osmotolerance (0.5 M, 1 M) tests were performed. Results: All strains showed growth ability at 37 °C and 0.5 M osmolarity. While all five strains isolated from patients with Acanthamoeba keratitis showed growth ability at 37 °C and 0.5 M osmolarity, no growth was detected at 41 °C and 1 M osmolarity. When the tolerance characteristics of the strains with the same genotype were evaluated, the strains with the T5 and T4E genotypes showed the same characteristics. When Acanthamoeba strains with the T4 genotype were evaluated in general, 31.25% of the strains were found to grow at 39 °C and 6.25% at 41 °C. Of the T4Neff strains, only one strain did not show the ability to reproduce at 39 °C and showed a different feature from the other strains. While the strain with the T11 genotype grew at all temperatures, the strain with the T12 genotype did not grow at 41 °C. Conclusion: According to our research results, we believe that tolerance to 39 °C and 1 M mannitol is not an indicator of pathogenicity. More studies with Acanthamoeba strains are required to clarify this issue.


Asunto(s)
Acanthamoeba , Termotolerancia , Humanos , Acanthamoeba/genética , Virulencia , Genotipo , Manitol
4.
Front Plant Sci ; 15: 1304366, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318497

RESUMEN

We have previously reported a wide variation in salt tolerance among Arabidopsis thaliana accessions and identified ACQOS, encoding a nucleotide-binding leucine-rich repeat (NLR) protein, as the causal gene responsible for the disturbance of acquired osmotolerance induced after mild salt stress. ACQOS is conserved among Arabidopsis osmosensitive accessions, including Col-0. In response to osmotic stress, it induces detrimental autoimmunity, resulting in suppression of osmotolerance, but how ACQOS triggers autoimmunity remains unclear. Here, we screened acquired osmotolerance (aot) mutants from EMS-mutagenized Col-0 seeds and isolated the aot19 mutant. In comparison with the wild type (WT), this mutant had acquired osmotolerance and decreased expression levels of pathogenesis-related genes. It had a mutation in a splicing acceptor site in NUCLEOPORIN 85 (NUP85), which encodes a component of the nuclear pore complex. A mutant with a T-DNA insertion in NUP85 acquired osmotolerance similar to aot19. The WT gene complemented the osmotolerant phenotype of aot19. We evaluated the acquired osmotolerance of five nup mutants of outer-ring NUPs and found that nup96, nup107, and aot19/nup85, but not nup43 or nup133, showed acquired osmotolerance. We examined the subcellular localization of the GFP-ACQOS protein and found that its nuclear translocation in response to osmotic stress was suppressed in aot19. We suggest that NUP85 is essential for the nuclear translocation of ACQOS, and the loss-of-function mutation of NUP85 results in acquired osmotolerance by suppressing ACQOS-induced autoimmunity in response to osmotic stress.

5.
G3 (Bethesda) ; 14(3)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38069680

RESUMEN

The neritid snail Theodoxus fluviatilis is found across habitats differing in salinity, from shallow waters along the coast of the Baltic Sea to lakes throughout Europe. Living close to the water surface makes this species vulnerable to changes in salinity in their natural habitat, and the lack of a free-swimming larval stage limits this species' dispersal. Together, these factors have resulted in a patchy distribution of quite isolated populations differing in their salinity tolerances. In preparation for investigating the mechanisms underlying the physiological differences in osmoregulation between populations that cannot be explained solely by phenotypic plasticity, we present here an annotated draft genome assembly for T. fluviatilis, generated using PacBio long reads, Illumina short reads, and transcriptomic data. While the total assembly size (1045 kb) is similar to those of related species, it remains highly fragmented (N scaffolds = 35,695; N50 = 74 kb) though moderately high in complete gene content (BUSCO single copy complete: 74.3%, duplicate: 2.6%, fragmented: 10.6%, missing: 12.5% using metazoa n = 954). Nevertheless, we were able to generate gene annotations of 21,220 protein-coding genes (BUSCO single copy complete: 65.1%, duplicate: 16.7%, fragmented: 9.1%, missing: 9.1% using metazoa n = 954). Not only will this genome facilitate comparative evolutionary studies across Gastropoda, as this is the first genome assembly for the basal snail family Neritidae, it will also greatly facilitate the study of salinity tolerance in this species. Additionally, we discuss the challenges of working with a species where high molecular weight DNA isolation is very difficult.


Asunto(s)
Genoma , Caracoles , Animales , Caracoles/genética , Europa (Continente) , Anotación de Secuencia Molecular , Perfilación de la Expresión Génica
6.
Biofilm ; 6: 100153, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37711514

RESUMEN

Pseudomonas aeruginosa, Staphylococcus aureus, and Burkholderia cepacia are notorious pathogens known for their ability to form resilient biofilms, particularly within the lung environment of cystic fibrosis (CF) patients. The heightened concentration of NaCl, prevalent in the airway liquid of CF patients' lungs, has been identified as a factor that promotes the growth of osmotolerant bacteria like S. aureus and dampens host antibacterial defenses, thereby fostering favorable conditions for infections. In this study, we aimed to investigate how increased NaCl concentrations impact the development of multi-species biofilms in vitro, using both laboratory strains and clinical isolates of P. aeruginosa, S. aureus, and B. cepacia co-cultures. Employing a low-nutrient culture medium that fosters biofilm growth of the selected species, we quantified biofilm formation through a combination of adherent CFU counts, qPCR analysis, and confocal microscopy observations. Our findings reaffirmed the challenges faced by S. aureus in establishing growth within 1:1 mixed biofilms with P. aeruginosa when cultivated in a minimal medium. Intriguingly, at an elevated NaCl concentration of 145 mM, a symbiotic relationship emerged between S. aureus and P. aeruginosa, enabling their co-existence. Notably, this hyperosmotic environment also exerted an influence on the interplay of these two bacteria with B. cepacia. We demonstrated that elevated NaCl concentrations play a pivotal role in orchestrating the distribution of these three species within the biofilm matrix. Furthermore, our study unveiled the beneficial impact of NaCl on the biofilm growth of clinically relevant mucoid P. aeruginosa strains, as well as two strains of methicillin-sensitive and methicillin-resistant S. aureus. This underscores the crucial role of the microenvironment during the colonization and infection processes. The results suggest that hyperosmotic conditions could hold the key to unlocking a deeper understanding of the genesis and behavior of CF multi-species biofilms.

7.
Parasitol Res ; 122(6): 1371-1380, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37037947

RESUMEN

Free-living amoebae belonging to the genus Acanthamoeba are the causative agents of infections in humans and animals. Many studies are being conducted to find effective compounds against amoebae, but their sublethal concentration effects on surviving amoebae seem to have been overlooked. Chlorine is a common disinfection agent commonly added to public water facilities and supplies. In this study, the cytopathic and phagocytic properties of Acanthamoeba castellanii trophozoites following exposure to sublethal concentrations of chlorine were examined. Two hours of exposure to 5 ppm hypochlorite calcium was considered the sublethal concentration for A. castellanii trophozoites. To compare the pathogenic potential of treated and untreated Acanthamoeba trophozoites, cytotoxicity, adhesion assays in RAW 264.7 macrophages, osmo, and thermotolerance tests were carried out. Bacterial uptake was assessed in treated cells to evaluate their phagocytic characteristics. Oxidative stress biomarkers and antioxidant activities were compared in treated and untreated trophozoites. Finally, the mRNA expression of the mannose-binding protein (MBP), cysteine protease 3 (CP3), and serine endopeptidase (SEP) genes was determined in cells. In all the experiments, untreated trophozoites were considered the control. In comparison to untreated trophozoites, in chlorine-treated trophozoites, cytopathic effects were more extensive and resulted in the detachment of macrophage monolayers. Treated trophozoites could not grow at high temperatures (43 °C). Besides, they showed osmotolerance to 0.5 M D-mannitol but not to 1 M. Results demonstrated a higher bacterial uptake rate by chlorine-treated trophozoites than untreated cells. The treated and untreated cells had significantly different glutathione and glutathione/glutathione disulfide ratios. Antioxidant enzyme activities, total antioxidant capacity, and malondialdehyde levels were increased significantly in chlorine-treated cells. Quantifying mRNA expression in chlorine-treated trophozoites revealed that virulence genes were upregulated. Chlorine can form resistance and virulent amoebae if it is not used at a proper concentration and exposure time. Identification of stress responses, their mechanisms in Acanthamoeba, and their relation to amoeba virulence would give us a better perception of their pathophysiology.


Asunto(s)
Acanthamoeba castellanii , Amoeba , Humanos , Animales , Cloro/farmacología , Antioxidantes/farmacología , Cloruros , ARN Mensajero
8.
Appl Microbiol Biotechnol ; 107(9): 2997-3008, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36995384

RESUMEN

The γ-glutamyl tripeptide glutathione (γ-Glu-Cys-Gly) is a low molecular thiol that acts as antioxidant in response to oxidative stress in eukaryotes and prokaryotes. γ-Glutamyl dipeptides including γ-Glu-Cys, γ-Glu-Glu, and γ-Glu-Gly also have kokumi activity. Glutathione is synthesized by first ligating Glu with Cys by γ-glutamylcysteine ligase (Gcl/GshA), and then the resulting dipeptide γ-glutamylcysteine is ligated with Gly by glutathione synthetase (Gs/GshB). GshAB/GshF enzymes that contain both Gcl and Gs domains are capable of catalyzing both reactions. The current study aimed to characterize GshAB from Tetragenococcus halophilus after heterologous expression in Escherichia coli. The optimal conditions for GshAB from T. halophilus were pH 8.0 and 25 °C. The substrate specificity of the Gcl reaction of GshAB was also determined. GshAB has a high affinity to Cys. γ-Glu-Cys was the only dipeptide generated when Glu, Cys, Gly, and other amino acids were present in the reaction system. This specificity differentiates GshAB from T. halophilus from Gcl of heterofermentative lactobacilli and GshAB of Streptococcus agalactiae, which also use amino acids other than Cys as glutamyl-acceptor. Quantification of gshAB in cDNA libraries from T. halophilus revealed that gshAB was overexpressed in response to oxidative stress but not in response to acid, osmotic, or cold stress. In conclusion, GshAB in T. halophilus served as part of the oxidative stress response but this study did not provide any evidence for a contribution to the resistance to other stressors.Key points Glutathione synthesis in Tetragenococcus halophilus is carried out by the two-domain enzyme GshAB. GshAB is inhibited by glutathione and is highly specific for Cys as acceptor. T. halophilus synthesizes glutathione in response to oxidative stress.


Asunto(s)
Dipéptidos , Glutatión Sintasa , Glutatión Sintasa/genética , Dipéptidos/genética , Dipéptidos/metabolismo , Glutatión , Aminoácidos
9.
Metab Eng ; 76: 179-192, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36738854

RESUMEN

Although strain tolerance to high product concentrations is a barrier to the economically viable biomanufacturing of industrial chemicals, chemical tolerance mechanisms are often unknown. To reveal tolerance mechanisms, an automated platform was utilized to evolve Escherichia coli to grow optimally in the presence of 11 industrial chemicals (1,2-propanediol, 2,3-butanediol, glutarate, adipate, putrescine, hexamethylenediamine, butanol, isobutyrate, coumarate, octanoate, hexanoate), reaching tolerance at concentrations 60%-400% higher than initial toxic levels. Sequencing genomes of 223 isolates from 89 populations, reverse engineering, and cross-compound tolerance profiling were employed to uncover tolerance mechanisms. We show that: 1) cells are tolerized via frequent mutation of membrane transporters or cell wall-associated proteins (e.g., ProV, KgtP, SapB, NagA, NagC, MreB), transcription and translation machineries (e.g., RpoA, RpoB, RpoC, RpsA, RpsG, NusA, Rho), stress signaling proteins (e.g., RelA, SspA, SpoT, YobF), and for certain chemicals, regulators and enzymes in metabolism (e.g., MetJ, NadR, GudD, PurT); 2) osmotic stress plays a significant role in tolerance when chemical concentrations exceed a general threshold and mutated genes frequently overlap with those enabling chemical tolerance in membrane transporters and cell wall-associated proteins; 3) tolerization to a specific chemical generally improves tolerance to structurally similar compounds whereas a tradeoff can occur on dissimilar chemicals, and 4) using pre-tolerized starting isolates can hugely enhance the subsequent production of chemicals when a production pathway is inserted in many, but not all, evolved tolerized host strains, underpinning the need for evolving multiple parallel populations. Taken as a whole, this study provides a comprehensive genotype-phenotype map based on identified mutations and growth phenotypes for 223 chemical tolerant isolates.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación , 1-Butanol/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas Represoras/genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
10.
Biotechnol Adv ; 63: 108100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36669745

RESUMEN

The conventional yeast (Saccharomyces cerevisiae) is the most studied yeast and has been used in many important industrial productions, especially in bioethanol production from first generation feedstock (sugar and starchy biomass). However, for reduced cost and to avoid competition with food, second generation bioethanol, which is produced from lignocellulosic feedstock, is now being investigated. Production of second generation bioethanol involves pre-treatment and hydrolysis of lignocellulosic biomass to sugar monomers containing, amongst others, d-glucose and D-xylose. Intrinsically, S. cerevisiae strains lack the ability to ferment pentose sugars and genetic engineering of S. cerevisiae to inculcate the ability to ferment pentose sugars is ongoing to develop recombinant strains with the required stability and robustness for commercial second generation bioethanol production. Furthermore, pre-treatment of these lignocellulosic wastes leads to the release of inhibitory compounds which adversely affect the growth and fermentation by S. cerevisae. S. cerevisiae also lacks the ability to grow at high temperatures which favour Simultaneous Saccharification and Fermentation of substrates to bioethanol. There is, therefore, a need for robust yeast species which can co-ferment hexose and pentose sugars and can tolerate high temperatures and the inhibitory substances produced during pre-treatment and hydrolysis of lignocellulosic materials. Non-conventional yeast strains are potential solutions to these problems due to their abilities to ferment both hexose and pentose sugars, and tolerate high temperature and stress conditions encountered during ethanol production from lignocellulosic hydrolysate. This review highlights the limitations of the conventional yeast species and the potentials of non-conventional yeast strains in commercialization of second generation bioethanol.


Asunto(s)
Pentosas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Xilosa , Ingeniería Genética , Fermentación
11.
Appl Microbiol Biotechnol ; 107(4): 1129-1141, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36700967

RESUMEN

Cyanobacteria harbor a high level of physiological flexibility, which enables them to reside in virtually all available environmental niches, including extreme environments. In this review, we summarize the recent advancements in stress mechanisms of salt-tolerant (a.k.a. halotolerant) cyanobacteria. Omics approaches have been extensively employed in recent years to decipher mechanisms of halotolerance and to understand the relevance of halotolerance-associated gene regulatory networks. The vast knowledge from genome mining disclosed that halotolerant cyanobacteria possess extended gene families and/or clusters, encoding enzymes that synthesize unique osmoprotectants, including glycine betaine (GB), betaine derivatives, and mycosporine-like amino acids (MAAs). Comprehensive transcriptomic analyses were conducted using Halothece sp. PCC7418 (hereafter referred to as Halothece), a cyanobacterium that exhibits remarkable halotolerance. These studies revealed a specific transcriptional response when Halothece was subjected to salt stress, whereas salt and osmotic stresses were found to share a common transcriptomic response. Transcriptome and metabolite analyses of Halothece illustrated a complex dynamic relationship between the biosyntheses of osmoprotectants, as well as corresponding and ancillary pathways. Lastly, novel insights highlight the relationship between the molecular regulation of the circadian rhythm and salt stress tolerance. Since the circadian rhythm of gene expression was distorted under salt stress, halotolerant cyanobacteria may prioritize the adaptation to salt stress by attenuation of circadian rhythmicity. KEY POINTS: • Recent advancements in the understanding of stress mechanisms in halotolerant cyanobacteria are described based on omics analyses. • Transcriptome and metabolite analyses of Halothece illustrated a complex dynamic relationship between the biosyntheses of osmoprotectants, as well as corresponding and ancillary pathways. • Since salt stress affects the molecular regulation among clock-related proteins, salt stress may attenuate circadian rhythmicity.


Asunto(s)
Relojes Circadianos , Cianobacterias , Relojes Circadianos/genética , Cianobacterias/metabolismo , Aminoácidos/metabolismo , Betaína/metabolismo , Estrés Salino/genética
12.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36564017

RESUMEN

In this review, we describe the genomic and physiological features of the yeast species predominantly isolated from Nuruk, a starter for traditional Korean rice wines, and Jang, a traditional Korean fermented soy product. Nuruk and Jang have several prevalent yeast species, including Saccharomycopsis fibuligera, Hyphopichia burtonii, and Debaryomyces hansenii complex, which belong to the CUG clade showing high osmotic tolerance. Comparative genomics revealed that the interspecies hybridization within yeast species for generating heterozygous diploid genomes occurs frequently as an evolutional strategy in the fermentation environment of Nuruk and Jang. Through gene inventory analysis based on the high-quality reference genome of S. fibuligera, new genes involved in cellulose degradation and volatile aroma biosynthesis and applicable to the production of novel valuable enzymes and chemicals can be discovered. The integrated genomic and transcriptomic analysis of Hyphopichia yeasts, which exhibit strong halotolerance, provides insights into the novel mechanisms of salt and osmo-stress tolerance for survival in fermentation environments with a low-water activity and high-concentration salts. In addition, Jang yeast isolates, such as D. hansenii, show probiotic potential for the industrial application of yeast species beyond fermentation starters to diverse human health sectors.


Asunto(s)
Glycine max , Vino , Humanos , Filogenia , Levaduras/genética , Fermentación , Genómica , República de Corea
13.
Cells ; 11(22)2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36429056

RESUMEN

Rhizobia are soil bacteria that induce nodule formation on leguminous plants. In the nodules, they reduce dinitrogen to ammonium that can be utilized by plants. Besides nitrogen fixation, rhizobia have other symbiotic functions in plants including phosphorus and iron mobilization and protection of the plants against various abiotic stresses including salinity. Worldwide, about 20% of cultivable and 33% of irrigation land is saline, and it is estimated that around 50% of the arable land will be saline by 2050. Salinity inhibits plant growth and development, results in senescence, and ultimately plant death. The purpose of this study was to investigate how rhizobia, isolated from Kenyan soils, relieve common beans from salinity stress. The yield loss of common bean plants, which were either not inoculated or inoculated with the commercial R. tropici rhizobia CIAT899 was reduced by 73% when the plants were exposed to 300 mM NaCl, while only 60% yield loss was observed after inoculation with a novel indigenous isolate from Kenyan soil, named S3. Expression profiles showed that genes involved in the transport of mineral ions (such as K+, Ca2+, Fe3+, PO43-, and NO3-) to the host plant, and for the synthesis and transport of osmotolerance molecules (soluble carbohydrates, amino acids, and nucleotides) are highly expressed in S3 bacteroids during salt stress than in the controls. Furthermore, genes for the synthesis and transport of glutathione and γ-aminobutyric acid were upregulated in salt-stressed and S3-inocculated common bean plants. We conclude that microbial osmolytes, mineral ions, and antioxidant molecules from rhizobia enhance salt tolerance in common beans.


Asunto(s)
Phaseolus , Rhizobium , Tolerancia a la Sal , Kenia , Suelo/química
14.
World J Microbiol Biotechnol ; 38(12): 225, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36121519

RESUMEN

Global warming has a significant impact on different viticultural parameters, including grape maturation. An increment of photosynthetic activity generates a rapid accumulation of sugars in the berry, followed by a dehydration process which leads to a higher concentration of soluble solids. This effect is exacerbated by current viticultural practices which favor the harvest of very mature grapes to obtain wines with sweet tannins. Considering the initial hyperosmotic stress conditions and the high ethanol concentration of the produced wine, fermentation of grape musts with high sugar content could be problematic for yeast starters. In the present study, we were able to obtain by classical hybridization and spore dissection methods one hybrid and one monosporic wine yeast strain with a combined ethanol and osmotolerant phenotype. The improved yeasts were tested in vinification trials with high sugar concentration and displayed excellent fermentation performance. Importantly, the obtained wines also showed good organoleptic properties during sensory analysis. Based on our results, we believed our improved hybrid and monosporic strains can be considered good alternatives to be used as yeast starters for fermentations with high sugar content.


Asunto(s)
Vitis , Vino , Carbohidratos/análisis , Etanol/análisis , Saccharomyces cerevisiae/genética , Esporas/química , Azúcares/análisis , Taninos , Vino/análisis
15.
FEMS Yeast Res ; 22(1)2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-35932192

RESUMEN

Zygosaccharomyces rouxii is an osmotolerant and halotolerant yeast that can participate in fermentation. To understand the mechanisms of salt and sugar tolerance, the transcription levels of Z. rouxii M 2013310 under 180 g/L NaCl stress and 600 g/L glucose stress were measured. The transcriptome analysis showed that 2227 differentially expressed genes (DEGs) were identified under 180 g/L NaCl stress, 1530 DEGs were identified under 600 g/L glucose stress, and 1278 DEGs were identified under both stress conditions. Then, KEGG enrichment analyses of these genes indicated that 53.3% of the upregulated genes were involved in the ergosterol synthesis pathway. Subsequently, quantitative PCR was used to verify the results, which showed that the genes of the ergosterol synthesis pathway were significantly upregulated under 180 g/L NaCl stress. Finally, further quantitative testing of ergosterol and spotting assays revealed that Z. rouxii M 2013310 increased the amount of ergosterol in response to high salt stress. These results highlighted the functional differences in ergosterol under sugar stress and salt stress, which contributes to our understanding of the tolerance mechanisms of salt and sugar in Z. rouxii.


Asunto(s)
Zygosaccharomyces , Ergosterol/metabolismo , Glucosa/metabolismo , Saccharomyces cerevisiae/genética , Saccharomycetales , Cloruro de Sodio/metabolismo , Azúcares/metabolismo , Zygosaccharomyces/fisiología
16.
Nanotoxicology ; 16(5): 549-565, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35997812

RESUMEN

Climate change events, such as drought, are increasing and soil bacteria can be severely affected. Moreover, the accumulation of emerging pollutants is expected to rapidly increase, and their impact on soil organisms, their interactions, and the services they provide is poorly known. The use of graphene oxide (GO) has been increasing due to its enormous potential for application in several areas and it is expected that concentration in soil will increase in the future, potentially causing disturbances in soil microorganisms not yet identified.Here we show the effects that GO nanosheets can cause on soil bacteria, in particular those that promote plant growth, in control and 10% polyethylene glycol (PEG) conditions. Low concentrations of GO nanosheets did not affect the growth of Rhizobium strain E20-8, but under osmotic stress (PEG) GO decreased bacterial growth even at lower concentrations. GO caused oxidative stress, with antioxidant mechanisms being induced to restrain damage, effectively at lower concentrations, but less effective at higher concentrations, and oxidative damage overcame. Under osmotic stress, alginate and glycine betaine osmoregulated the bacteria. Simultaneous exposure to PEG and GO induced oxidative damage. Plant growth promotion traits (indole acetic acid and siderophores production) were increased by osmotic stress and GO did not disturb these abilities. In the context of climate change, our findings might be relevant as they can form the premises for the implementation of crop production methodologies adapted to the new prevailing conditions, which include the presence of nanoparticles in the soil and more frequent and severe drought.


Asunto(s)
Rhizobium , Rhizobium/metabolismo , Presión Osmótica , Antioxidantes/metabolismo , Suelo , Raíces de Plantas/metabolismo , Bacterias/metabolismo , Estrés Oxidativo
17.
Front Plant Sci ; 13: 898317, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812913

RESUMEN

Acquired osmotolerance induced after salt stress is widespread across Arabidopsis thaliana (Arabidopsis) accessions (e.g., Bu-5). However, it remains unclear how this osmotolerance is established. Here, we isolated a mutant showing an acquired osmotolerance-defective phenotype (aod2) from an ion-beam-mutagenized M2 population of Bu-5. aod2 was impaired not only in acquired osmotolerance but also in osmo-shock, salt-shock, and long-term heat tolerances compared with Bu-5, and it displayed abnormal morphology, including small, wrinkled leaves, and zigzag-shaped stems. Genetic analyses of aod2 revealed that a 439-kbp region of chromosome 4 was translocated to chromosome 3 at the causal locus for the osmosensitive phenotype. The causal gene of the aod2 phenotype was identical to ECERIFERUM 10 (CER10), which encodes an enoyl-coenzyme A reductase that is involved in the elongation reactions of very-long-chain fatty acids (VLCFAs) for subsequent derivatization into cuticular waxes, storage lipids, and sphingolipids. The major components of the cuticular wax were accumulated in response to osmotic stress in both Bu-5 WT and aod2. However, less fatty acids, primary alcohols, and aldehydes with chain length ≥ C30 were accumulated in aod2. In addition, aod2 exhibited a dramatic reduction in the number of epicuticular wax crystals on its stems. Endoplasmic reticulum stress mediated by bZIP60 was increased in aod2 under osmotic stress. The only cer10 showed the most pronounced loss of epidermal cuticular wax and most osmosensitive phenotype among four Col-0-background cuticular wax-related mutants. Together, the present findings suggest that CER10/AOD2 plays a crucial role in Arabidopsis osmotolerance through VLCFA metabolism involved in cuticular wax formation and endocytic membrane trafficking.

18.
Cell Rep ; 40(3): 111092, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858571

RESUMEN

The integrated stress response (ISR) plays a pivotal role in adaptation of translation machinery to cellular stress. Here, we demonstrate an ISR-independent osmoadaptation mechanism involving reprogramming of translation via coordinated but independent actions of mTOR and plasma membrane amino acid transporter SNAT2. This biphasic response entails reduced global protein synthesis and mTOR signaling followed by translation of SNAT2. Induction of SNAT2 leads to accumulation of amino acids and reactivation of mTOR and global protein synthesis, paralleled by partial reversal of the early-phase, stress-induced translatome. We propose SNAT2 functions as a molecular switch between inhibition of protein synthesis and establishment of an osmoadaptive translation program involving the formation of cytoplasmic condensates of SNAT2-regulated RNA-binding proteins DDX3X and FUS. In summary, we define key roles of SNAT2 in osmotolerance.


Asunto(s)
Sistema de Transporte de Aminoácidos A , Aminoácidos , Sistema de Transporte de Aminoácidos A/genética , Sistema de Transporte de Aminoácidos A/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Biosíntesis de Proteínas , Serina-Treonina Quinasas TOR/metabolismo
19.
Stud Mycol ; 102: 53-93, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36760461

RESUMEN

Aspergillus series Versicolores members occur in a wide range of environments and substrates such as indoor environments, food, clinical materials, soil, caves, marine or hypersaline ecosystems. The taxonomy of the series has undergone numerous re-arrangements including a drastic reduction in the number of species and subsequent recovery to 17 species in the last decade. The identification to species level is however problematic or impossible in some isolates even using DNA sequencing or MALDI-TOF mass spectrometry indicating a problem in the definition of species boundaries. To revise the species limits, we assembled a large dataset of 518 strains. From these, a total of 213 strains were selected for the final analysis according to their calmodulin (CaM) genotype, substrate and geography. This set was used for phylogenetic analysis based on five loci (benA, CaM, RPB2, Mcm7, Tsr1). Apart from the classical phylogenetic methods, we used multispecies coalescence (MSC) model-based methods, including one multilocus method (STACEY) and five single-locus methods (GMYC, bGMYC, PTP, bPTP, ABGD). Almost all species delimitation methods suggested a broad species concept with only four species consistently supported. We also demonstrated that the currently applied concept of species is not sustainable as there are incongruences between single-gene phylogenies resulting in different species identifications when using different gene regions. Morphological and physiological data showed overall lack of good, taxonomically informative characters, which could be used for identification of such a large number of existing species. The characters expressed either low variability across species or significant intraspecific variability exceeding interspecific variability. Based on the above-mentioned results, we reduce series Versicolores to four species, namely A. versicolor, A. creber, A. sydowii and A. subversicolor, and the remaining species are synonymized with either A. versicolor or A. creber. The revised descriptions of the four accepted species are provided. They can all be identified by any of the five genes used in this study. Despite the large reduction in species number, identification based on phenotypic characters remains challenging, because the variation in phenotypic characters is high and overlapping among species, especially between A. versicolor and A. creber. Similar to the 17 narrowly defined species, the four broadly defined species do not have a specific ecology and are distributed worldwide. We expect that the application of comparable methodology with extensive sampling could lead to a similar reduction in the number of cryptic species in other extensively studied Aspergillus species complexes and other fungal genera. Citation: Sklenár F, Glässnerová K, Jurjevic Z, Houbraken J, Samson RA, Visagie CM, Yilmaz N, Gené J, Cano J, Chen AJ, Nováková A, Yaguchi T, Kolarík M, Hubka V (2022). Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability. Studies in Mycology 102 : 53-93. doi: 10.3114/sim.2022.102.02.

20.
Toxins (Basel) ; 13(9)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34564619

RESUMEN

Yeasts can have additional genetic information in the form of cytoplasmic linear dsDNA molecules called virus-like elements (VLEs). Some of them encode killer toxins. The aim of this work was to investigate the prevalence of such elements in D. hansenii killer yeast deposited in culture collections as well as in strains freshly isolated from blue cheeses. Possible benefits to the host from harboring such VLEs were analyzed. VLEs occurred frequently among fresh D. hansenii isolates (15/60 strains), as opposed to strains obtained from culture collections (0/75 strains). Eight new different systems were identified: four composed of two elements and four of three elements. Full sequences of three new VLE systems obtained by NGS revealed extremely high conservation among the largest molecules in these systems except for one ORF, probably encoding a protein resembling immunity determinant to killer toxins of VLE origin in other yeast species. ORFs that could be potentially involved in killer activity due to similarity to genes encoding proteins with domains of chitin-binding/digesting and deoxyribonuclease NucA/NucB activity, could be distinguished in smaller molecules. However, the discovered VLEs were not involved in the biocontrol of Yarrowia lipolytica and Penicillium roqueforti present in blue cheeses.


Asunto(s)
Queso/virología , Citoplasma/virología , Debaryomyces/virología , Micotoxinas/análisis , Retroelementos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA