Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.896
Filtrar
1.
J Environ Sci (China) ; 149: 386-393, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181651

RESUMEN

To understand the smoke level and NOx emission characteristics of in-use construction machinery in Beijing, we selected 905 construction machines in Beijing from August 2022 to April 2023 to monitor the emission level of smoke and NOx. The exhaust smoke level and excessive emission situation of different machinery types were identified, and their NOx emission levels were monitored according to the free acceleration method. We investigated the correlation of NOx and smoke emission, and proposed suggestions for controlling pollution discharge from construction machinery in the future. The results show that the exhaust smoke level was 0-2.62 m-1, followed a log-normal distribution (µ = -1.73, δ = 1.09, R2 = 0.99), with a 5.64% exceedance rate. Differences were observed among machinery types, with low-power engine forklifts showing higher smoke levels. The NOx emission range was 71-1516 ppm, followed a normal distribution (µ = 565.54, δ = 309.51, R2 = 0.83). Differences among machinery types were relatively small. Engine rated net power had the most significant impact on NOx emissions. Thus, NOx emissions from construction machinery need further attention. Furthermore, we found a weak negative correlation (p < 0.05) between the emission level of smoke and NOx, that is the synergic emission reduction effect is poor, emphasizing the need for NOx emission limits. In the future, the oversight in Beijing should prioritize phasing out China Ⅰ and China Ⅱ machinery, and monitor emissions from high-power engine China Ⅲ machinery.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Humo , Beijing , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Humo/análisis , Emisiones de Vehículos/análisis , Óxidos de Nitrógeno/análisis , Industria de la Construcción
2.
Food Chem ; 462: 141021, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39226644

RESUMEN

Gelatin have excellent film-forming and barrier properties, but its lack of biological activity limits its application in packaging. In this study, fish gelatin incorporated with apple polyphenol/cumin essential oil composite films were successfully prepared by melt extrusion. The cross-linking existed in gelatin and apple polyphenol improved the thermal stability and oxidation resistance of the film. The synergistic effect of apple polyphenols and cumin essential oil decreased the sensitivity of the film to water, especially the water solubility decreased from 41.60 % to 26.07 %. The plasticization of essential oil nearly doubled the elongation at break while maintaining the tensile strength of the film (11.45 MPa). Furthermore, the FG-CEO-AP film can inhibit peroxide value to extend the shelf life about 20 days in the walnut oil preservation. In summary, the apple polyphenol/cumin essential oil of FG film exhibits excellent comprehensive properties and high preparation efficiency for utilization as an active packaging material.


Asunto(s)
Embalaje de Alimentos , Gelatina , Juglans , Aceites de Plantas , Embalaje de Alimentos/instrumentación , Gelatina/química , Juglans/química , Aceites de Plantas/química , Aceites Volátiles/química , Resistencia a la Tracción , Malus/química , Solubilidad
3.
J Ethnopharmacol ; 336: 118654, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39098621

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Chaihu Guizhi Decoction (CGD) has a long history of use in China for the treatment of influenza, which involves the use of a variety of aromatic herbs. Our previous studies have found that the contents of aromatic constituents in CGD affected the efficacy of treatment of influenza-infected mice, suggesting a clue that essential oil from CGD may play a relatively important role in ameliorating influenza induced pneumonia. AIM OF THE STUDY: To evaluate the anti-influenza potential of essential oil derived from Chaihu Guizhi Decoction (CGD-EO), to characterize and predict the key active components in CGD-EO, and to explore the mechanism of action of CGD-EO. MATERIALS AND METHODS: CGD-EO was obtained by steam distillation, and the components of the essential oil were characterized by gas chromatography-mass spectrometry (GC-MS) in conjunction with the retention index. The constituents absorbed into the blood of mice treated with CGD-EO were analyzed by headspace solid phase microextraction gas chromatography/mass spectrometry (HS-SPME-GC/MS). The potential anti-influenza active constituents and their possible action pathway were predicted by simulation using a network pharmacology approach. The protective effect of CGD-EO and its major components on H1N1/PR8-infected cells was determined using the CCK8 assay kit. Mice infected with influenza A virus H1N1/PR8 were administered different doses of CGD-EO orally and the body weights and lung weights were recorded. Mice with varying degrees of H1N1/PR8 infection were administered CGD-EO orally, and their daily weight, water consumption, and clinical indicators were recorded. Necropsies were conducted on days 3 and 5, during which lung weights were measured and lung tissues were preserved. Furthermore, the mRNA expression of the H1N1/PR8 virus and inflammatory factors in lung tissue was analyzed using RT-qPCR. RESULTS: (E)-cinnamaldehyde was the most abundant compound in the CGD-EO. The results of serum medicinal chemistry combined with network pharmacological analysis indicated that (E)-cinnamaldehyde and 3-phenyl-2-propenal may be potential active components of the CGD-EO anti-influenza, and may be involved in the NF-κB signalling pathway. In vitro studies have demonstrated that both CGD-EO and cinnamaldehyde exert a protective effect on MDCK cells infected with H1N1/PR8. In a 0.5 TCID50 H1N1/PR8-induced influenza model, mice treated with CGD-EO at a dose of 63.50 µg/kg exhibited a reduction in lung index, pathological lung lesions, and H1N1/PR8 viral gene levels. In addition, CGD-EO treatment was found to regulate the levels of inflammatory cytokines, including IL-6, TNF-α, and IFN-γ. Moreover, following three days of administration, an upregulation of NF-κB mRNA levels in mouse lung tissue was observed in response to CGD-EO treatment. CONCLUSIONS: The findings of our study indicate CGD-EO exerts a protective effect against H1N1-induced cytopathic lesions in vitro and is capable of alleviating H1N1-induced pneumonitis in mice. Moreover, it appears to be more efficacious in the treatment of mild symptoms of H1N1 infection. Studies have demonstrated that CGD-EO has antiviral potential to attenuate influenza-induced lung injury by modulating inflammatory cytokines and NF-κB signalling pathways during the early stages of influenza infection. It is possible that (E)-cinnamaldehyde is a potential active ingredient in the anti-influenza efficacy of CGD-EO.


Asunto(s)
Antivirales , Medicamentos Herbarios Chinos , Aceites Volátiles , Infecciones por Orthomyxoviridae , Animales , Aceites Volátiles/farmacología , Medicamentos Herbarios Chinos/farmacología , Ratones , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Antivirales/farmacología , Ratones Endogámicos BALB C , Neumonía Viral/tratamiento farmacológico , Masculino , Células de Riñón Canino Madin Darby , Perros , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/virología , Pulmón/metabolismo , Humanos , Femenino , Neumonía/tratamiento farmacológico , Neumonía/virología , Neumonía/metabolismo
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124979, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39159510

RESUMEN

Although most petroleum oil species can be identified by their fluorescence spectra, overlapping fluorescence spectra make identification difficult. This study aims to address the issue that fluorescence spectroscopy is ineffective in identifying overlapping oil species. In this study, an equivalent model of overlapping oil species with fluorescence spectra was established. The linear discriminant analysis (LDA)-assisted machine learning (ML) algorithms K nearest neighbor (KNN), decision tree (DT), and random forest (RF) improved the identification of fluorescent spectrally overlapping oil species for diesel-lubricant oils. The identification accuracies of two-dimensional convolutional neural network (2DCNN), LDA combined with the ML algorithms effectively all 100 %. Furthermore, Partial Least Squares Regression (PLSR) algorithm, Support Vector Regression (SVR) algorithm, DT regression algorithm, and RF regression algorithm were also used to identify the lubricant concentration in diesel-lubricant oils. The coefficient of determination of the DT was 1, and the root-mean-square error was 0, which identified the concentration of lubricant oils in them accurately and without error.

5.
Food Chem ; 462: 140965, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39197242

RESUMEN

Perilla leaf oil (PLO) is a global premium vegetable oil with abundant nutrients and substantial economic value, rendering it susceptible to potential adulteration by unscrupulous entrepreneurs. The addition of cinnamon oil (CO) is one of the main adulteration avenues for illegal PLOs. In this study, new and real-time ambient mass spectrometric methods were developed to detect CO adulteration in PLO. First, atmospheric solids analysis probe tandem mass spectrometry combined with principal component analysis and principal component analysis-linear discriminant analysis was employed to differentiate between authentic and adulterated PLO. Then, a spectral library was established for the instantaneous matching of cinnamaldehyde in the samples. Finally, the results were verified using the SRM mode of ASAP-MS/MS. Within 3 min, the three methods successfully identified CO adulteration in PLO at concentrations as low as 5% v/v with 100% accuracy. The proposed strategy was successfully applied to the fraud detection of CO in PLO.


Asunto(s)
Cinnamomum zeylanicum , Contaminación de Alimentos , Hojas de la Planta , Aceites de Plantas , Contaminación de Alimentos/análisis , Aceites de Plantas/química , Aceites de Plantas/análisis , Hojas de la Planta/química , Cinnamomum zeylanicum/química , Perilla/química , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas/métodos
6.
Food Chem ; 462: 140909, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208727

RESUMEN

Probiotics serve a very important role in human health. However, probiotics have poor stability during processing, storage, and gastrointestinal digestion. The gellan gum (GG) is less susceptible to enzymatic degradation and resistant to thermal and acidic environments. This study investigated the effect of casein (CS)-GG emulsions to encapsulate Lactiplantibacillus plantarum CICC 6002 (L. plantarum CICC 6002) on its storage stability, thermal stability, and gastrointestinal digestion. L. plantarum CICC 6002 was suspended in palm oil and emulsions were prepared using CS or CS-GG complexes. We found the CS-GG emulsions improved the viability of L. plantarum CICC 6002 after storage, pasteurization, and digestion compared to the CS emulsions. In addition, we investigated the influence of the gellan gum concentration on emulsion stability, and the optimal stability was observed in the emulsion prepared by CS-0.8% GG complex. This study provided a new strategy for the protection of probiotics based on CS-GG delivery system.


Asunto(s)
Caseínas , Emulsiones , Lactobacillus plantarum , Polisacáridos Bacterianos , Probióticos , Emulsiones/química , Probióticos/química , Polisacáridos Bacterianos/química , Caseínas/química , Humanos , Lactobacillus plantarum/química , Lactobacillus plantarum/metabolismo , Pasteurización , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/metabolismo , Viabilidad Microbiana/efectos de los fármacos , Composición de Medicamentos , Digestión , Almacenamiento de Alimentos
7.
Food Chem ; 462: 141006, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39213974

RESUMEN

Aquatic products are highly susceptible to spoilage, and preparing composite edible film with essential oil is an effective solution. In this study, composite edible films were prepared using perilla essential oil (PEO)-glycerol monolaurate emulsions incorporated with chitosan and nisin, and the film formulation was optimized by response surface methodology. These films were applied to ready-to-eat fish balls and evaluated over a period of 12 days. The films with the highest inhibition rate against Staphylococcus aureus were acquired using a polymer composition of 6 µL/mL PEO, 18.4 µg/mL glycerol monolaurate, 14.2 mg/mL chitosan, and 11.0 µg/mL nisin. The fish balls coated with the optimal edible film showed minimal changes in appearance during storage and significantly reduced total bacterial counts and total volatile basic nitrogen compared to the control groups. This work indicated that the composite edible films containing essential oils possess ideal properties as antimicrobial packaging materials for aquatic foods.


Asunto(s)
Antibacterianos , Quitosano , Películas Comestibles , Emulsiones , Embalaje de Alimentos , Lauratos , Monoglicéridos , Nisina , Aceites Volátiles , Staphylococcus aureus , Nisina/farmacología , Nisina/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Lauratos/química , Lauratos/farmacología , Embalaje de Alimentos/instrumentación , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Emulsiones/química , Quitosano/química , Quitosano/farmacología , Monoglicéridos/química , Monoglicéridos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Aceites de Plantas/química , Aceites de Plantas/farmacología , Perilla/química
8.
Sci Rep ; 14(1): 20985, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251634

RESUMEN

This study delves into catalytic aquathermolysis to enhance the economic viability of heavy oil production by in-situ upgrading technique. It is known that introducing nanocatalysts would promote the aquathermolysis reaction. Therefore, in this study, the effect of matrix polymer carboxyl methyl cellulose/silicate graphene oxide nanocomposites (CSG1 and CSG2) in the catalytic aquathermolysis of Egyptian heavy crude oil was studied. Characterization techniques including Fourier-transform infrared (FTIR), X-ray diffraction (XRD), Dynamic light scattering (DLS), Brunauer-Emmett-Teller (BET) surface area analysis, Scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) were used to evaluate the structure of the synthesized nanocomposites. Results reveal CSG2 has higher crystallinity and superior dispersion compared to CSG1, and both exhibited a good stability in aqueous suspensions. CSG2 enriched with graphene oxide, demonstrates superior thermal stability, suitable for high-temperature applications such as catalytic aquathermolysis process. Single factor and orthogonal tests were used to assess the catalytic aquathermolysis performance of the prepared nanoparticles. The obtained results revealed that the optimum conditions to use CSG1 and CSG2 are 40% water concentration, 225 °C temperature, and 0.5 wt% catalyst percentage. Where, CSG2 showed better viscosity reduction (82%) compared to CSG1 (62%), highlighting its superior performance in reducing the viscosity of heavy oil. Numerical results from SARA analysis, gas chromatography, and rheological testing confirmed the catalytic aquathermolysis's efficacy in targeting asphaltene macromolecules and producing lighter hydrocarbon fractions.

9.
J Hazard Mater ; 479: 135710, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39241364

RESUMEN

As an important intermediary between upstream refineries and downstream urban gas stations, volatile organic compound (VOC) emissions from urban oil depots were often disregarded, underestimating their environmental and health implications. An extensive investigation of urban depots' fuel composition and operational dynamics was conducted nationwide. We developed a novel approach that integrates theoretical models with easily measurable operational data from the depots to evaluate the efficiency of post-treatment devices in actual situations. Even in well-managed oil depots, the actual control efficiency of vapor recovery units fluctuates between 63 % and 85 %, depending on the concentration of hydrocarbon vapors in the intake of the device. The national emission factors for gasoline, diesel, and aviation kerosene at a national level were 6.64 ± 1.16, 2.07 ± 0.42, and 6.17 ± 1.05 tons per 10,000 tons, respectively. In 2019, China's urban oil depots emitted 165 thousand tons of VOC. Enhancing control strategies by optimizing the physical and chemical parameters of refined oil, improving storage capacity and turnover efficiency, and upgrading storage tanks had the potential to reduce emissions by more than 60 %. However, a 30 % failure rate in these systems could negate the benefits of these improved strategies.

10.
Adv Colloid Interface Sci ; 333: 103296, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39241391

RESUMEN

Nanoparticles improve traditional Enhanced Oil Recovery (EOR) methods but face instability issues. Surface modification resolves these, making it vital to understand its impact on EOR effectiveness. This paper examines how surface-modified nanoparticles can increase oil recovery rates. We discuss post-synthesis modifications like chemical functionalization, surfactant and polymer coatings, surface etching, and oxidation, and during-synthesis modifications like core-shell formation, in-situ ligand exchange, and surface passivation. Oil displacement studies show surface-engineered nanoparticles outperform conventional EOR methods. Coatings or functionalizations alter nanoparticle size by 1-5 nm, ensuring colloidal stability for 7 to 30 days at 25 to 65 °C and 30,000 to 150,000 ppm NaCl. This stability ensures uniform distribution and enhanced penetration through low-permeability (1-10 md) rocks, improving oil recovery by 5 to 50 %. Enhanced recovery is achieved through 1-25 µm oil-in-water emulsions, increased viscosity by ≥30 %, wettability changes from 170° to <10°, and interfacial tension reductions of up to 95 %. Surface oxidation is suitable for carbon-based nanoparticles in high-permeability (≥500 md) reservoirs, leading to 80 % oil recovery in micromodel studies. Surface etching is efficient for all nanoparticle types, and combining it with chemical functionalization enhances resistance to harsh conditions (≥40,000 ppm salinity and ≥ 50 °C). Modifying nanoparticle surfaces with a silane coupling agent before using polymers and surfactants improves EOR parameters and reduces polymer thermal degradation (e.g., only 10 % viscosity decrease after 90 days). Economically, 500 ppm of nanoparticles requires 56.25 kg in a 112,500 m3 reservoir, averaging $200/kg, and 2000 ppm of surface modifiers require 4 kg at $3.39/kg. This results in 188,694.30 barrels, or $16,039,015.50 at $85 per barrel for a 20 % increase in oil recovery. The economic benefits justify the initial costs, highlighting the importance of cost-effective nanoparticles for EOR applications.

11.
J Food Sci ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289796

RESUMEN

Plant essential oils have been extensively investigated for their application in food industry due to their broad antimicrobial spectrum and safety. However, rare studies investigated their application in decontaminating rice noodles from fungal contamination. In this study, the cinnamon essential oil was screened out among 12 species of plant essential oils, and its antifungal activity against Penicillium oxalicum isolated from rice noodles was investigated. Our study revealed that cinnamon essential oil inhibited the spore germination in a concentration-dependent manner, and a dosage of 0.025% (v/v) could entirely disable the spore germination. The disruption of the fungal plasma membrane was evidenced by the change of plasma membrane permeability and the leakage of cellular components. The cinnamon essential oil in vapor phase (0.00625% [v/v]) could totally inhibit the growth of fungi inoculated on rice noodles. In addition to the potential application in inactivating fungi germination on rice noodles, this study also demonstrated the feasibility of cinnamon essential as an environmental disinfectant. This study is the first report that cinnamon essential oil has been studied for decontaminating rice noodles from fungal contamination with P. oxalicum, which not only broadens the application field of plant essential oil but also provides an alternative approach for rice noodle preservation.

12.
J Appl Microbiol ; 135(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39237458

RESUMEN

AIMS: Evaluate the in vitro efficacy of the essential oils derived from Aloysia citrodora (Verbenaceae), Cymbopogon winterianus (Poaceae), and Ocimum gratissimum (Lamiaceae) against Acanthamoeba polyphaga trophozoites. Additionally, microemulsions formulated with these essential oils, along with their major components, were analyzed. METHODS AND RESULTS: The prepared microemulsions were characterized using polarized light microscopy and rheological techniques. The amoebicidal activity was determined by measuring the inhibitory concentration (IC50). Flow cytometry was employed to detect membrane damage and alterations in trophozoites size. The results revealed transparent and thermodynamically stable microemulsions. The essential oil from O. gratissimum exhibited a lower IC50, with values of 280.66 and 47.28 µg ml-1 after 24 and 48 h, respectively. When microemulsions containing essential oils were tested, the IC50 values exhibited a reduction of over 80% after 24 h. Particularly, eugenol, a constituent of the O. gratissimum essential oil, displayed higher amoebicidal activity. The essential oils also caused damage to the cell membrane, resulting in the subsequent death of the trophozoites. CONCLUSIONS: The EOs of A. citrodora, C. winterianus, and O. gratissimum and their microemulsions showed antiparasitic effect against A. polyphaga trophozoites, representing promising alternatives for the treatment of diseases caused by this protozoan.


Asunto(s)
Acanthamoeba , Cymbopogon , Emulsiones , Ocimum , Aceites Volátiles , Trofozoítos , Verbenaceae , Aceites Volátiles/farmacología , Aceites Volátiles/química , Cymbopogon/química , Ocimum/química , Emulsiones/farmacología , Trofozoítos/efectos de los fármacos , Acanthamoeba/efectos de los fármacos , Verbenaceae/química , Amebicidas/farmacología , Aceites de Plantas/farmacología , Extractos Vegetales/farmacología
13.
Int J Biol Macromol ; 279(Pt 3): 135379, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39244122

RESUMEN

The synergistic effects between xanthan gum (XG) and ß-cyclodextrin (ß-CD) on the properties and stability of vegetable oil-based whipped cream stabilized by kidney bean protein aggregates was investigated. The visual appearance, SEM, TEM, CLSM, FT-IR and LF-NMR results showed that when the ratio of XG to ß-CD in the XG-ß-CD complex was appropriate, the hydrogen bonding effect between ß-CD and XG was significant enhanced, the three-dimensional network structure has the highest density, the emulsion droplets were the smallest and evenly distributed. The unique tapered microstructure of ß-CD acted as a bridge between the hydrophilic and hydrophobic components, effectively preventing the aggregation of oil droplets and establishing a flexible support system between oil droplets; while the flexible molecular structure of XG could support Pickering emulsion system. The XG-ß-CD complex had a synergistic effect with protein aggregates, making it ideal for use in whipped cream products. This study explored the stability mechanism of ß-CD in the Pickering emulsion-based whipped cream system, providing valuable insights into producing whole plant-based whipped cream by texturizing highly unsaturated oils. This effectively solves the problem of inadequate intake of unsaturated oil for individuals who consume excessive amounts of animal-derived fats.

14.
Int J Biol Macromol ; 279(Pt 4): 135108, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244123

RESUMEN

The application of camellia oil is limited by its susceptibility to oxidation and insolubility in water, particularly under high humidity and temperature conditions. In order to effectively reduce the oxidation rate of camellia oil, prolong the shelf life in order to improve the stability in storage under different conditions, this study encapsulates camellia oil in Pickering emulsions stabilized by Octenyl succinic acid (OSA) starch, achieving a 100-fold reduction in release rate and enhanced lipid oxidation stability. The smooth surface and complete particles of the emulsion were observed and no new chemical bonds were formed. The minimum particle sizes were 1.72 µm and 2.73 µm, when the Pickering emulsion was set at pH 6 and 0.1 M NaCl. In the digestion process, the microstructures observed that Pickering emulsion possessed super stability against oral and gastric digestions, prolonged the release time and improved the bioavailability compared with camellia oil, and the digestibility of the emulsion was 56.16 % within 120 min. All these results indicate that OSA-starch stabilized camellia oil can effectively increase solubility, improve stability and expand the application range.

15.
Sci Rep ; 14(1): 21289, 2024 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266667

RESUMEN

The worldwide exploration of the ethanolysis protocol (EP) has decreased despite the multifaceted benefits of ethanol, such as lower toxicity, higher oxygen content, higher renewability, and fewer emission tail compared to methanol, and the enhanced fuel properties with improved engine characteristics of multiple-oily feedstocks (MOFs) compared to single-oily feedstocks. The study first proposed a strategy for the optimisation of ethylic biodiesel synthesis from MOFs: neem, animal fat, and jatropha oil (NFJO) on a batch reactor. The project's goals were to ensure environmental benignity and encourage the use of totally biobased products. This was made possible by the introduction of novel population based algorithms such as Driving Training-Based Optimization (DTBO) and Election-Based Optimization (EBOA), which were compared with the widely used Grey Wolf Optimizer (GWO) combined with Response Surface Methodology (RSM). The yield of NFJO ethyl ester (NFJOEE) was predicted using the RSM technique, and the ideal transesterification conditions were determined using the DTBO, EBOA, and GWO algorithms. Reaction time showed a strong linear relationship with ethylic biodiesel yield, while ethanol-to-NFJO molar ratio, catalyst dosage, and reaction temperature showed nonlinear effects. Reaction time was the most significant contributor to NFJOEE yield.The important fundamental characteristics of the fuel categories were investigated using the ASTM test procedures. The maximum NFJOEE yield (86.3%) was obtained at an ethanol/NFJO molar ratio of 5.99, KOH content of 0.915 wt.%, ethylic duration of 67.43 min, and reaction temperature of 61.55 °C. EBOA outperforms DTBO and GWO regarding iteration and computation time, converging towards a global fitness value equal to 7 for 4 s, 20 for 5 s and 985 for 34 s. The key fuel properties conformed to the standards outlined by ASTMD6751 and EN 14,214 specifications. The NFJOEE fuel processing cost is 0.9328 USD, and is comparatively lesser than that of conventional diesel. The new postulated population based algorithm models can be a prospective approach for enhancing biodiesel production from numerous MOFs and ensuring a balanced ecosystem and fulfilling enviromental benignity when adopted.


Asunto(s)
Algoritmos , Biocombustibles , Jatropha , Biocombustibles/análisis , Jatropha/química , Animales , Esterificación , Aceites de Plantas/química
16.
Sensors (Basel) ; 24(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39275372

RESUMEN

Oil spill SAR images are characterized by high noise, low contrast, and irregular boundaries, which lead to the problems of overfitting and insufficient capturing of detailed features of the oil spill region in the current method when processing oil spill SAR images. An improved DeepLabV3+ model is proposed to address the above problems. First, the original backbone network Xception is replaced by the lightweight MobileNetV2, which significantly improves the generalization ability of the model while drastically reducing the number of model parameters and effectively addresses the overfitting problem. Further, the spatial and channel Squeeze and Excitation module (scSE) is introduced and the joint loss function of Bce + Dice is adopted to enhance the sensitivity of the model to the detailed parts of the oil spill area, which effectively solves the problem of insufficient capture of the detailed features of the oil spill area. The experimental results show that the mIOU and F1-score of the improved model in an oil spill region in the Gulf of Mexico reach 80.26% and 88.66%, respectively. In an oil spill region in the Persian Gulf, the mIOU and F1-score reach 81.34% and 89.62%, respectively, which are better than the metrics of the control model.

17.
Sensors (Basel) ; 24(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39275394

RESUMEN

When using transformer insulation oil as a liquid dielectric, the oil is easily polluted by the solid particles generated in the operation of the transformer, and these metallic impurity particles have a significant impact on the insulation performance inside the power transformer. The force of the metal particles suspended in the flow insulation oil is multidimensional, which will lead to a change in the movement characteristics of the metal particles. Based on this, this study explored the motion rules of suspended metallic impurity particles in mobile insulating oil in different electric field environments and the influencing factors. A multiphysical field model of the solid-liquid two-phase flow of single-particle metallic impurity particles in mobile insulating oil was constructed using the dynamic analysis method, and the particles' motion characteristics in the oil in different electric field environments were simulated. The motion characteristics of metallic impurity particles under conditions of different particle sizes, oil flow velocities, and insulation oil qualities and influencing factors were analyzed to provide theoretical support for the detection of impurity particles in transformer insulation oil and enable accurate estimations of the location of equipment faults. Our results show that there are obvious differences in the trajectory of metallic impurity particles under different electric field distributions. The particles will move towards the region of high field intensity under an electric field, and the metallic impurity particles will not collide with the electrode under an AC field. When the electric field intensity and particle size increase, the trajectory of the metallic impurity particles between electrodes becomes denser, and the number of collisions between particles and electrodes and the motion speed both increase. Under the condition of a higher oil flow velocity, the number of collisions between metal particles and electrodes is reduced, which reduces the possibility of particle agglomeration. When the temperature of the insulation oil changes and the quality deteriorates, its dynamic viscosity changes. With a decrease in the dynamic viscosity of the insulation oil, the movement of the metallic impurity particles between the electrodes becomes denser, the collision times between the particles and electrodes increase, and the maximum motion speed of the particles increases.

18.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273254

RESUMEN

The fruit surface is a critical first line of defense against environmental stress. Overlaying the fruit epidermis is the cuticle, comprising a matrix of cutin monomers and waxes that provides protection and mechanical support throughout development. The epidermal layer of the cucumber (Cucumis sativus L.) fruit also contains prominent lipid droplets, which have recently been recognized as dynamic organelles involved in lipid storage and metabolism, stress response, and the accumulation of specialized metabolites. Our objective was to genetically characterize natural variations for traits associated with the cuticle and lipid droplets in cucumber fruit. Phenotypic characterization and genome-wide association studies (GWAS) were performed using a resequenced cucumber core collection accounting for >96% of the allelic diversity present in the U.S. National Plant Germplasm System collection. The collection was grown in the field, and fruit were harvested at 16-20 days post-anthesis, an age when the cuticle thickness and the number and size of lipid droplets have stabilized. Fresh fruit tissue sections were prepared to measure cuticle thickness and lipid droplet size and number. The collection showed extensive variation for the measured traits. GWAS identified several QTLs corresponding with genes previously implicated in cuticle or lipid biosynthesis, including the transcription factor SHINE1/WIN1, as well as suggesting new candidate genes, including a potential lipid-transfer domain containing protein found in association with isolated lipid droplets.


Asunto(s)
Cucumis sativus , Frutas , Estudio de Asociación del Genoma Completo , Gotas Lipídicas , Sitios de Carácter Cuantitativo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/crecimiento & desarrollo , Frutas/genética , Frutas/metabolismo , Gotas Lipídicas/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Epidermis de la Planta/genética , Epidermis de la Planta/metabolismo
19.
Plant Sci ; 349: 112266, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278569

RESUMEN

Paeonia ostii var. lishizhenii exhibits superiority of high α-linolenic acid in seed oils, yet, the low yield highlights the importance of enhancing oil accumulation in seeds for edible oil production. The transcription factor protein WRINKLED1 (WRI1) plays crucial roles in modulating oil content in higher plants; however, its functional characterization remains elusive in P. ostii var. lishizhenii. Herein, based on a correlation analysis of transcription factor transcript levels, FA accumulation rates, and interaction assay of FA biosynthesis associated proteins, a WRI1 homologous gene (PoWRI1) that potentially regulated oil content in P. ostii var. lishizhenii seeds was screened. The PoWRI1 exhibited an endosperm-specific and development-depended expression pattern, encoding a nuclear-localized protein with transcriptional activation capability. Notably, overexpressing PoWRI1 upregulated certain key genes relevant to glycolysis, FA biosynthesis and desaturation, and improved seed development, oil body formation and oil accumulation in Arabidopsis seeds, resulting an enhancement of total seed oil weight by 9.47-18.77 %. The defective impacts on seed phenotypes were rescued through ectopic induction of PoWRI1 in wri1 mutants. Our findings highlight the pivotal role of PoWRI1 in controlling oil accumulation in P. ostii var. lishizhenii, offering bioengineering strategies to increase seed oil accumulation and enhance its potential for edible oil production.

20.
Narra J ; 4(2): e853, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39280278

RESUMEN

In vivo studies on the hazards of deep-fried foods were commonly done by feeding used-or heated-cooking oil to rats. The aim of this study was to determine the effect of feeding tempe deep-fried in palm, olive, and coconut oils and the used frying oil on the blood biochemical profile of laboratory rats. An in vivo randomized control group study with pre-test and post-test was conducted. This study included healthy male Sprague-Dawley rats aged 2-3 months and weighing 100-200 grams. After acclimatization, the rats were randomly assigned to seven groups, which were: (1) regular diet (control diet); (2) diet of tempe deep-fried in 5× used palm oil (Tempe-in-used-Po); (3) diet of tempe deep-fried in 5× used coconut oil (Tempe-in-used-Co); (4) diet of tempe deep-fried in 5× used olive oil (Tempe-in-used-Oo); (5) diet of 5× used palm oil (Used-Po); (6) diet of 5× used coconut oil (Used-Co); and (7) diet of 5× used olive oil (Used-Oo). Each rat received 15 grams of a treatment diet daily and blood samples were collected after four weeks for a complete blood count and serum biochemistry analysis. The results showed that the final body weight and the weight gain of Tempe-in-used-Po, Tempe-in-used-Co, Tempe-in-used-Oo group, and Used-Po groups increased significantly compared to the control, Used-Co, and Used-Oo groups. However, there was a significant increase in serum tumor necrosis factor-alpha (TNF-α) in the Used-Co and Used-Oo groups (p<0.05), suggesting the used oil's detrimental effect. The Used-Co and Used-Oo were the only two groups whose creatinine increased significantly (p<0.05). Subsequently, only the Used-Oo group had a significantly increased malondialdehyde (MDA) level compared to all groups (p<0.05). These results prove that the effect of feeding fried food differs from used oils. Feeding used oil did not reflect the consumption of fried foods as part of the whole diet and generally resulted in more harmful effects. This is the first study to report an in vivo rat feeding study of deep-fried tempe and the used oil as part of the diet.


Asunto(s)
Aceite de Coco , Culinaria , Creatinina , Malondialdehído , Aceite de Oliva , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa , Animales , Masculino , Ratas , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/metabolismo , Creatinina/sangre , Malondialdehído/sangre , Malondialdehído/metabolismo , Aceite de Oliva/administración & dosificación , Aceite de Oliva/farmacología , Aceite de Palma/administración & dosificación , Aceite de Palma/farmacología , Aceite de Palma/química , Aceites de Plantas/farmacología , Aceites de Plantas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA